首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 154 毫秒
1.
Plant-associated microbial diversity encompasses symbionts, protecting their host against various aggressions. Mycorrhizal and rhizospheric microorganisms buffer effects of soil toxic compounds and soil-borne pathogens. Endophytic bacteria and fungi, some of which are vertically inherited through seeds, take part in plant protection by acting directly on aggressive factors (mainly pathogens and herbivores) or by enhancing plant responses. Plant protective microbial symbionts determine the ecological success of plants; they drastically modify plant communities and related trophic webs. This review suggests approaches to improve the inventory of diversity and functions of in situ plant-associated microorganisms.  相似文献   

2.
3.
Nuclear effector proteins released by bacteria, oomycete, nematode, and fungi burden the global environment and crop yield. Microbial effectors are key weapons in the evolutionary arms race between plants and pathogens, vital in determining the success of pathogenic colonization. Secreted effectors undermine a multitude of host cellular processes depending on their target destination. Effectors are classified by their localization as either extracellular (apoplastic) or intracellular. Intracellular effectors can be further subclassified by their compartment such as the nucleus, cytoplasm or chloroplast. Nuclear effectors bring into question the role of the plant nucleus' intrinsic defence strategies and their vulnerability to effector-based manipulation. Nuclear effectors interfere with multiple nuclear processes including the epigenetic regulation of the host chromatin, the impairment of the trans-kingdom antifungal RNAi machinery, and diverse classes of immunity-associated host proteins. These effector-targeted pathways are widely conserved among different hosts and regulate a broad array of plant cellular processes. Thus, these nuclear sites constitute meaningful targets for effectors to subvert the plant defence system and acquire resources for pathogenic propagation. This review provides an extensive and comparative compilation of diverse plant microbe nuclear effector libraries, thereby highlighting the distinct and conserved mechanisms these effectors employ to modulate plant cellular processes for the pathogen's profit.  相似文献   

4.
5.
Herbivore microbial associates can affect diverse interactions between plants and insect herbivores. Some insect symbionts enable herbivores to expand host plant range or to facilitate host plant use by modifying plant physiology. However, little attention has been paid to the role of herbivore-associated microbes in manipulating plant defenses. We have recently shown that Colorado potato beetle secrete the symbiotic bacteria to suppress plant defenses. The bacteria in oral secretions from the beetle hijack defense signaling pathways of host plants and the suppression of induced plant defenses benefits the beetle’s performance. While the defense suppression by the beetle-associated bacteria has been investigated in local damaged leaves, little is known about the effects of the symbiotic bacteria on the manipulation of plant defenses in systemic undamaged leaves. Here, we demonstrate that the symbiotic bacteria suppress plant defenses in both local and systemic tissues when plants are attacked by antibiotic-untreated larvae.  相似文献   

6.
Phytopathogenic fungi secrete a large arsenal of effector molecules, including proteinaceous effectors, small RNAs, phytohormones and derivatives thereof. The pathogenicity of fungal pathogens is primarily determined by these effectors that are secreted into host cells to undermine innate immunity, as well as to facilitate the acquisition of nutrients for their in planta growth and proliferation. After conventional and non-conventional secretion, fungal effectors are translocated into different subcellular compartments of the host cells to interfere with various biological processes. In extracellular spaces, apoplastic effectors cope with physical and chemical barriers to break the first line of plant defenses. Intracellular effectors target essential immune components on the plasma membrane, in the cytosol, including cytosolic organelles, and in the nucleus to suppress host immunity and reprogram host physiology, favoring pathogen colonization. In this review, we comprehensively summarize the recent advances in fungal effector biology, with a focus on the versatile virulence functions of fungal effectors in promoting pathogen infection and colonization. A perspective of future research on fungal effector biology is also discussed.  相似文献   

7.
Kale SD 《The New phytologist》2012,193(4):874-881
Oomycete and fungal symbionts have significant impacts on most commercially important crop and forest species, and on natural ecosystems, both negatively as pathogens and positively as mutualists. Symbiosis may be facilitated through the secretion of effector proteins, some of which modulate a variety of host defense mechanisms. A subset of these secreted proteins are able to translocate into host cells. In the oomycete pathogens, two conserved N-terminal motifs, RXLR and dEER, mediate translocation of effector proteins into host cells independent of any pathogen-encoded machinery. An expanded 'RXLR-like' motif [R/K/H]X[L/M/I/F/Y/W]X has been used to identify functional translocation motifs in host-cell-entering fungal effector proteins from pathogens and a mutualist. The RXLR-like translocation motifs were required for the fungal effectors to enter host cells in the absence of any pathogen-encoded machinery. Oomycete and fungal effectors with RXLR and RXLR-like motifs can bind phospholipids, specifically phosphatidylinositol-3-phosphate (PtdIns-3-P). Effector-PtdIns-3-P binding appears to mediate cell entry via lipid raft-mediated endocytosis, and could be blocked by sequestering cell surface PtdIns-3-P or by utilizing inositides that competitively inhibit effector binding to PtdIns-3-P. These findings suggest that effector blocking technologies could be developed and utilized in a variety of important crop species against a broad spectrum of plant pathogens.  相似文献   

8.
Recent outbreaks of vegetable-borne gastrointestinal illnesses across the globe demonstrate that human enteric pathogens can contaminate produce at any stage of production. Interactions of enterics with native plant-associated microbiota influence the microbiological safety of produce by affecting the attachment, persistence and proliferation of human pathogens on plants. Supermarket surveys have revealed that bacteria, but not fungi or mechanical damage, promote the growth of Salmonella enterica on produce. Field and laboratory studies have indicated that some plant pathogenic bacteria and fungi facilitate the entry and internalization of human pathogens in plants. Conversely, some phytobacteria, including those involved in biocontrol of plant diseases, significantly inhibit attachment and plant colonization by non-typhoidal Salmonella and enterovirulent Escherichia coli by producing antibiotics or competing for nutrients in the phyllosphere. In this review, we attempt to elucidate the mechanisms of interactions between human enteric pathogens and plant-associated microbiota, and describe how these interactions affect produce safety.  相似文献   

9.
The deliberate production of reactive oxygen species (ROS) by phagocyte NADPH oxidase is widely appreciated as a critical component of antimicrobial host defense. Recently, additional homologs of NADPH oxidase (NOX) have been discovered throughout the animal and plant kingdoms, which appear to possess diverse functions in addition to host defense, in cell proliferation, differentiation, and in regulation of gene expression. Several of these NOX homologs are also expressed within the respiratory tract, where they participate in innate host defense as well as in epithelial and inflammatory cell signaling and gene expression, and fibroblast and smooth muscle cell proliferation, in response to bacterial or viral infection and environmental stress. Inappropriate expression or activation of NOX/DUOX during various lung pathologies suggests their specific involvement in respiratory disease. This review summarizes the current state of knowledge regarding the general functional properties of mammalian NOX enzymes, and their specific importance in respiratory tract physiology and pathology.  相似文献   

10.
11.
Ubiquitylation participates in a repertoire of reversible post-translational modifications that modulate the function, localization and half-life of proteins by regulating their association with various ubiquitin-binding proteins. In response to pathogen infection, bacterial effectors impact ubiquitin and ubiquitin-like modifications of key proteins in immune and anti-apoptotic signaling cascades. Certain bacteria corrupt the ubiquitylation machinery in order to regulate their virulence factors spatially and temporally or to trigger internalization of bacteria into host cells. Several new examples of how bacterial factors target ubiquitin and ubiquitin-like regulation emphasize the importance of modulating ubiquitin signaling to establish either long-lasting or devastating relationships of bacteria with their hosts.  相似文献   

12.
A mathematical model is created to assess the inputs of sym gene transfer of in planta multiplication and of interstrain competition into dynamics of the rhizobia populations. Their microevolution is presented as a series of the "infection and release" cycles; each cycle includes transfer of sym genes from virulent initial symbionts to avirulent local bacteria yielding the virulent novel symbionts; competition between initial symbionts and novel symbionts for the host nodulation; multiplication of initial symbionts and novel symbionts in planta and their release into soil; competition between the released novel symbionts and resident local bacteria for ex planta survival. A recurrent equation is created to determine the number of novel symbionts at each cycle of evolution of the closed bacteria-plant system. Its analysis demonstrates that under certain, really allowable values of the introduced parameters two major effects may occur: (a) rapid multiplication of novel symbionts arisen from sym gene transfer; and (b) increase of frequency of rare local bacteria genotypes after acquisition of virulence. Multiplication of very rare strains (p<10(-19)) in the plant-associated bacteria population is possible at certain parameters of the system. Variation of the sizes of bacteria populations and of the parameters for interstrain competition may influence the evolutionary rate of the bacteria population. The "infection and release" model represents a selective mechanism which may be responsible for a high taxonomic diversity of rhizobia and for a panmictic structure of their populations.  相似文献   

13.
14.
Insect bacterial symbionts are ubiquitous, however, only a few groups of host families have been well studied in relation to their associations with microbes. The determination of the phylogenetic relationships among bacteria associated with different species within an insect family can provide insights into the biology and evolution of these interactions. We studied the phylogenetic placement of vertically transmitted bacterial symbionts associated with the posterior midgut (crypt-bearing) region of pentatomid stink bugs (Hemiptera, Pentatomidae). Our results demonstrate that different host species carried one major bacterium in their midgut. Phylogenetic analyses of the 16S rRNA gene sequences obtained from the midgut of stink bugs placed all symbionts in a clade with Erwinia and Pantoea species, both plant-associated bacteria. Results indicate that symbiont monophyly occurs among recently diverged taxa (e.g., within a genus) but does not occur in the Pentatomidae. Results suggest that these vertically transmitted symbionts are occasionally replaced by other taxonomically similar bacteria over evolutionary time. Our findings highlight how the evolutionary history of hemipteran symbionts in unexplored host families may have unpredictable levels of complexity.  相似文献   

15.
Gu B  Kale SD  Wang Q  Wang D  Pan Q  Cao H  Meng Y  Kang Z  Tyler BM  Shan W 《PloS one》2011,6(11):e27217

Background

Effector proteins of biotrophic plant pathogenic fungi and oomycetes are delivered into host cells and play important roles in both disease development and disease resistance response. How obligate fungal pathogen effectors enter host cells is poorly understood. The Ps87 gene of Puccinia striiformis encodes a protein that is conserved in diverse fungal pathogens. Ps87 homologs from a clade containing rust fungi are predicted to be secreted. The aim of this study is to test whether Ps87 may act as an effector during Puccinia striiformis infection.

Methodology/Principal Findings

Yeast signal sequence trap assay showed that the rust protein Ps87 could be secreted from yeast cells, but a homolog from Magnaporthe oryzae that was not predicted to be secreted, could not. Cell re-entry and protein uptake assays showed that a region of Ps87 containing a conserved RXLR-like motif [K/R]RLTG was confirmed to be capable of delivering oomycete effector Avr1b into soybean leaf cells and carrying GFP into soybean root cells. Mutations in the Ps87 motif (KRLTG) abolished the protein translocation ability.

Conclusions/Significance

The results suggest that Ps87 and its secreted homologs could utilize similar protein translocation machinery as those of oomycete and other fungal pathogens. Ps87 did not show direct suppression activity on plant defense responses. These results suggest Ps87 may represent an “emerging effector” that has recently acquired the ability to enter plant cells but has not yet acquired the ability to alter host physiology.  相似文献   

16.
Indole-3-acetic acid in microbial and microorganism-plant signaling   总被引:14,自引:0,他引:14  
Diverse bacterial species possess the ability to produce the auxin phytohormone indole-3-acetic acid (IAA). Different biosynthesis pathways have been identified and redundancy for IAA biosynthesis is widespread among plant-associated bacteria. Interactions between IAA-producing bacteria and plants lead to diverse outcomes on the plant side, varying from pathogenesis to phyto-stimulation. Reviewing the role of bacterial IAA in different microorganism-plant interactions highlights the fact that bacteria use this phytohormone to interact with plants as part of their colonization strategy, including phyto-stimulation and circumvention of basal plant defense mechanisms. Moreover, several recent reports indicate that IAA can also be a signaling molecule in bacteria and therefore can have a direct effect on bacterial physiology. This review discusses past and recent data, and emerging views on IAA, a well-known phytohormone, as a microbial metabolic and signaling molecule.  相似文献   

17.
Plants perceive an assortment of external cues during their life cycle, including abiotic and biotic stressors. Biotic stress from a variety of pathogens, including viruses, oomycetes, fungi, and bacteria, is considered to be a substantial factor hindering plant growth and development. To hijack the host cell's defence machinery, plant pathogens have evolved sophisticated attack strategies mediated by numerous effector proteins. Several studies have indicated that plasmodesmata (PD), symplasmic pores that facilitate cell-to-cell communication between a cell and neighbouring cells, are one of the targets of pathogen effectors. However, in contrast to plant-pathogenic viruses, reports of fungal- and bacterial-encoded effectors that localize to and exploit PD are limited. Surprisingly, a recent study of PD-associated bacterial effectors has shown that a number of bacterial effectors undergo cell-to-cell movement via PD. Here we summarize and highlight recent advances in the study of PD-associated fungal/oomycete/bacterial effectors. We also discuss how pathogen effectors interfere with host defence mechanisms in the context of PD regulation.  相似文献   

18.
AM真菌在植物病虫害生物防治中的作用机制   总被引:12,自引:0,他引:12  
罗巧玉  王晓娟  李媛媛  林双双  孙莉  王强  王茜  金樑 《生态学报》2013,33(19):5997-6005
丛枝菌根(Arbuscular Mycorrhizae,AM)真菌是一类广泛分布于土壤生态系统中的有益微生物,能与大约80%的陆生高等植物形成共生体。由土传病原物侵染引起的土传病害被植物病理学界认定为最难防治的病害之一。研究表明,AM真菌能够拮抗由真菌、线虫、细菌等病原体引起的土传性植物病害,诱导宿主植物增强对病虫害的耐/抗病性。当前,利用AM真菌开展病虫害的生物防治已经引起生态学家和植物病理学家的广泛关注。基于此,围绕AM真菌在植物病虫害生物防治中的最新研究进展,从AM真菌改变植物根系形态结构、调节次生代谢产物的合成、改善植物根际微环境、与病原微生物直接竞争入侵位点和营养分配、诱导植株体内抗病防御体系的形成等角度,探究AM真菌在植物病虫害防治中的作用机理,以期为利用AM真菌开展植物病虫害的生物防治提供理论依据,并对本领域未来的发展方向和应用前景进行展望。  相似文献   

19.
Research on effectors secreted by pathogens during host attack has dominated the field of molecular plant-microbe interactions over recent years. Functional analysis of type III secreted effectors injected by pathogenic bacteria into host cells has significantly advanced the field and demonstrated that many function to suppress host defense. Fungal and oomycete effectors are delivered outside the host plasma membrane, and although research has lagged behind on bacterial effectors, we are gradually learning more and more about the functions of these effectors. While some function outside the host cell to disarm defense, others exploit host cellular uptake mechanisms to suppress defense or liberate nutrients intracellularly. Comparative genomics suggests that the organization of effector genes drives effector evolution in many pathogen genomes.  相似文献   

20.
Many gram-negative plant pathogenic bacteria employ type III secretion systems to deliver effector proteins directly into the host cell during infection. On susceptible hosts, type III effectors aid pathogen growth by manipulating host defense pathways. On resistant hosts, some effectors can activate specific host disease resistance (R) genes, leading to generation of rapid and effective immune responses. The biochemical basis of these processes is poorly understood. The HopX (AvrPphE) family is a widespread type III effector among phytopathogenic bacteria. We determined that HopX family members are modular proteins composed of a conserved putative cysteine-based catalytic triad and a conserved potential target/cofactor interaction domain. HopX is soluble in host cells. Putative catalytic triad residues are required for avirulence activity on resistant bean hosts and for the generation of a cell-death response in specific Arabidopsis genotypes. The putative target/cofactor interaction domain is also required for these activities. Our data suggest that specific interaction with and modification of a cytosolic host target drives HopX recognition in resistant hosts and may contribute to virulence in susceptible hosts. Surprisingly, the Legionella pneumophila genome was found to contain a protein with similarity to HopX in sequence and domain arrangement, suggesting that these proteins might also contribute to animal pathogenesis and could be delivered to plant and animal hosts by diverse secretion systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号