共查询到20条相似文献,搜索用时 15 毫秒
1.
Hiroaki Kimura Katsuhiro Hayashi Kensuke Yamauchi Norio Yamamoto Hiroyuki Tsuchiya Katsuro Tomita Hiroyuki Kishimoto Michael Bouvet Robert M. Hoffman 《Journal of cellular biochemistry》2010,109(1):58-64
We have developed a new in vivo mouse model to image single cancer‐cell dynamics of metastasis to the lung in real‐time. Regulating airflow volume with a novel endotracheal intubation method enabled controlling lung expansion adequate for imaging of the exposed lung surface. Cancer cells expressing green fluorescent protein (GFP) in the nucleus and red fluorescent protein (RFP) in the cytoplasm were injected in the tail vein of the mouse. The right chest wall was then opened in order to image metastases on the lung surface directly. After each observation, the chest wall was sutured and the air was suctioned in order to re‐inflate the lung, in order to keep the mice alive. Observations have been carried out for up to 8 h per session and repeated up to six times per mouse thus far. The seeding and arresting of single cancer cells on the lung, accumulation of cancer‐cell emboli, cancer‐cell viability, and metastatic colony formation were imaged in real‐time. This new technology makes it possible to observe real‐time monitoring of cancer‐cell dynamics of metastasis in the lung and to identify potential metastatic stem cells. J. Cell. Biochem. 109: 58–64, 2010. © 2009 Wiley‐Liss, Inc. 相似文献
2.
Fucci (fluorescent ubiquitination-based cell cycle indicator) is able to visualize dynamics of cell cycle progression in live cells; G1- and S-/G2-/M-phase cells expressing Fucci emit red and green fluorescence, respectively. This system could be applied to cell kinetic analysis of tumour cells in the field of cancer therapy; however, it is still unclear how fluorescence kinetics change after various treatments, including exposure to anticancer agents. To explore this, we arrested live HeLa cells expressing the Fucci probes at various cell cycle stages and observed the fluorescence, in conjunction with flow cytometric analysis. X-irradiation, HU (hydroxyurea) and nocodazole arrest cells at G2/M boundary, early S-phase and early M-phase, respectively. Although X-irradiation and HU treatment induced similar accumulation kinetics of green fluorescent cells, nocodazole treatment induced an abnormal red fluorescence at M phase, followed by accumulation of both red and green fluorescent cells with 4N DNA content. We conclude that certain agents that disrupt normal cell cycle regulation could cause unexpected fluorescence kinetics in the Fucci system. 相似文献
3.
Katharina Haase Niels Kröger‐Lui Annemarie Pucci Arthur Schönhals Wolfgang Petrich 《Journal of biophotonics》2016,9(1-2):61-66
The speed and efficiency of quantum cascade laser‐based mid‐infrared microspectroscopy are demonstrated using two different model organisms as examples. For the slowly moving Amoeba proteus, a quantum cascade laser is tuned over the wavelength range of 7.6 µm to 8.6 µm (wavenumbers 1320 cm–1 and 1160 cm–1, respectively). The recording of a hyperspectral image takes 11.3 s whereby an average signal‐to‐noise ratio of 29 is achieved. The limits of time resolution are tested by imaging the fast moving Caenorhabditis elegans at a discrete wavenumber of 1265 cm–1. Mid‐infrared imaging is performed with the 640 × 480 pixel video graphics array (VGA) standard and at a full‐frame time resolution of 0.02 s (i.e. well above the most common frame rate standards). An average signal‐to‐noise ratio of 16 is obtained. To the best of our knowledge, these findings constitute the first mid‐infrared imaging of living organisms at VGA standard and video frame rate.
4.
5.
Jing Zhao Yongchao Liu Wenhong Zhang Zhongwen Zhou Jing Wu Peng Cui Ying Zhang Guangjian Huang 《Cell cycle (Georgetown, Tex.)》2015,14(19):3112-3123
Gastric cancer remains a serious threat to public health with high incidence and mortality worldwide. Accumulating evidence demonstrates that long non-coding RNAs (lncRNAs) play important roles in regulating gene expression and are involved in various pathological processes, including gastric cancer. To investigate the possible role of dysregulated lncRNAs in gastric cancer development, we performed lncRNA microarray and identified 3141 significantly differentially expressed lncRNAs in gastric cancer tissues. Next, some of deregulated lncRNAs were validated among about 60 paired gastric cancer specimens such as Linc00261, DKFZP434K028, RPL34-AS1, H19, HOTAIR and Linc00152. Our results found that the decline of DKFZP434K028 and RPL34-AS1, and the increased expression of Linc00152 positively correlated with larger tumor size. The high expression levels of HOTAIR were associated with lymphatic metastasis and poor differentiation. Since the biological roles of Linc00152 are largely unknown in gastric cancer pathogenesis, we assessed its functions by silencing its up-regulation in gastric cancer cells. We found that Linc00152 knockdown could inhibit cell proliferation and colony formation, promote cell cycle arrest at G1 phase, trigger late apoptosis, reduce the epithelial to mesenchymal transition (EMT) program, and suppress cell migration and invasion. Taken together, we delineate the gastric cancer lncRNA signature and demonstrate the oncogenic functions of Linc00152. These findings may have implications for developing lncRNA-based biomarkers for diagnosis and therapeutics for gastric cancer. 相似文献
6.
7.
Hitomi Takagi Takehiro Kajihara Shiori Sugamata Aki Takashi Nobusawa Chikage Umeda‐Hara Masaaki Umeda 《The Plant journal : for cell and molecular biology》2014,80(3):541-552
Visualization of the spatiotemporal pattern of cell division is crucial to understand how multicellular organisms develop and how they modify their growth in response to varying environmental conditions. The mitotic cell cycle consists of four phases: S (DNA replication), M (mitosis and cytokinesis), and the intervening G1 and G2 phases; however, only G2/M‐specific markers are currently available in plants, making it difficult to measure cell cycle duration and to analyze changes in cell cycle progression in living tissues. Here, we developed another cell cycle marker that labels S‐phase cells by manipulating Arabidopsis CDT1a, which functions in DNA replication origin licensing. Truncations of the CDT1a coding sequence revealed that its carboxy‐terminal region is responsible for proteasome‐mediated degradation at late G2 or in early mitosis. We therefore expressed this region as a red fluorescent protein fusion protein under the S‐specific promoter of a histone 3.1‐type gene, HISTONE THREE RELATED2 (HTR2), to generate an S/G2 marker. Combining this marker with the G2/M‐specific CYCB1‐GFP marker enabled us to visualize both S to G2 and G2 to M cell cycle stages, and thus yielded an essential tool for time‐lapse imaging of cell cycle progression. The resultant dual‐color marker system, Cell Cycle Tracking in Plant Cells (Cytrap), also allowed us to identify root cells in the last mitotic cell cycle before they entered the endocycle. Our results demonstrate that Cytrap is a powerful tool for in vivo monitoring of the plant cell cycle, and thus for deepening our understanding of cell cycle regulation in particular cell types during organ development. 相似文献
8.
Lee JJ Kwak HJ Lee YM Lee JW Park MJ Ko YG Choi HD Kim N Pack JK Hong SI Lee JS 《Bioelectromagnetics》2008,29(8):615-625
Although in vitro studies have been previously conducted to determine the biological effects of radio frequency (RF) radiation, it has not yet been determined whether or not RF radiation poses a potential hazard. This study was conducted to determine whether RF radiation exposure exerts detectable effects on cell cycle distribution, cellular invasion, and migration. NIH3T3 mouse fibroblasts were exposed to 849 MHz of RF radiation at average SAR values of 2 or 10 W/kg for either 1 h, or for 1 h per day for 3 days. During the exposure period, the temperature in the exposure chamber was maintained isothermally by circulating water throughout the cavity. Cell cycle distribution was analyzed at 24 and 48 h after exposure, by flow cytometry. We detected no statistically significant differences between the sham-exposed and RF radiation-exposed cells. Cellular invasion and migration were assessed by in vitro Matrigel invasion and Transwell migration assays. The RF radiation-exposed groups evidenced no significant changes in motility and invasiveness compared to the sham-exposed group. However, the ionizing radiation-exposed cells, used as a positive control group, manifested dramatic alterations in their cell cycle distribution, cellular invasiveness, and migration characteristics. Our results show that 849 MHz RF radiation exposure exerts no detectable effects on cell cycle distribution, cellular migration, or invasion at average SAR values of 2 or 10 W/kg. 相似文献
9.
Zhiwei Wang Yiwei Li Sanjeev Banerjee Dejuan Kong Aamir Ahmad Veronique Nogueira Nissim Hay Fazlul H Sarkar 《Journal of cellular biochemistry》2010,109(4):726-736
Notch signaling is involved in a variety of cellular processes, such as cell fate specification, differentiation, proliferation, and survival. Notch‐1 over‐expression has been reported in prostate cancer metastases. Likewise, Notch ligand Jagged‐1 was found to be over‐expressed in metastatic prostate cancer compared to localized prostate cancer or benign prostatic tissues, suggesting the biological significance of Notch signaling in prostate cancer progression. However, the mechanistic role of Notch signaling and the consequence of its down‐regulation in prostate cancer have not been fully elucidated. Using multiple cellular and molecular approaches such as MTT assay, apoptosis assay, gene transfection, real‐time RT‐PCR, Western blotting, migration, invasion assay and ELISA, we found that down‐regulation of Notch‐1 or Jagged‐1 was mechanistically associated with inhibition of cell growth, migration, invasion and induction of apoptosis in prostate cancer cells, which was mediated via inactivation of Akt, mTOR, and NF‐κB signaling. Consistent with these results, we found that the down‐regulation of Notch‐1 or Jagged‐1 led to decreased expression and the activity of NF‐κB downstream genes such as MMP‐9, VEGF, and uPA, contributing to the inhibition of cell migration and invasion. Taken together, we conclude that the down‐regulation of Notch‐1 or Jagged‐1 mediated inhibition of cell growth, migration and invasion, and the induction of apoptosis was in part due to inactivation of Akt, mTOR, and NF‐κB signaling pathways. Our results further suggest that inactivation of Notch signaling pathways by innovative strategies could be a potential targeted approach for the treatment of metastatic prostate cancer. J. Cell. Biochem. 109: 726–736, 2010. © 2010 Wiley‐Liss, Inc. 相似文献
10.
11.
Yingbo Lin Hongyu Liu Ahmed Waraky Felix Haglund Prasoon Agarwal Helena Jernberg‐Wiklund Dudi Warsito Olle Larsson 《Journal of cellular physiology》2017,232(10):2722-2730
Increasing number of studies have shown nuclear localization of the insulin‐like growth factor 1 receptor (nIGF‐1R) in tumor cells and its links to adverse clinical outcome in various cancers. Any obvious cell physiological roles of nIGF‐1R have, however, still not been disclosed. Previously, we reported that IGF‐1R translocates to cell nucleus and modulates gene expression by binding to enhancers, provided that the receptor is SUMOylated. In this study, we constructed stable transfectants of wild type IGF1R (WT) and triple‐SUMO‐site‐mutated IGF1R (TSM) using igf1r knockout mouse fibroblasts (R‐). Cell clones (R‐WT and R‐TSM) expressing equal amounts of IGF‐1R were selected for experiments. Phosphorylation of IGF‐1R, Akt, and Erk upon IGF‐1 stimulation was equal in R‐WT and R‐TSM. WT was confirmed to enter nuclei. TSM did also undergo nuclear translocation, although to a lesser extent. This may be explained by that TSM heterodimerizes with insulin receptor, which is known to translocate to cell nuclei. R‐WT proliferated substantially faster than R‐TSM, which did not differ significantly from the empty vector control. Upon IGF‐1 stimulation G1‐S‐phase progression of R‐WT increased from 12 to 38%, compared to 13 to 20% of R‐TSM. The G1‐S progression of R‐WT correlated with increased expression of cyclin D1, A, and CDK2, as well as downregulation of p27. This suggests that SUMO‐IGF‐1R affects upstream mechanisms that control and coordinate expression of cell cycle regulators. Further studies to identify such SUMO‐IGF‐1R dependent mechanisms seem important. 相似文献
12.
《Cell》2021,184(25):6119-6137.e26
13.
Andrés García‐Reina María Juliana Rodríguez‐García Guillermo Ramis José Galián 《Insect Science》2017,24(3):358-370
The rust red flour beetle, Tribolium castaneum (Herbst, 1797) (Coleoptera: Tenebrionidae), is a pest of stored grain and one of the most studied insect model species. Some of the previous studies involved heat response studies in terms of survival and heat shock protein expression, which are regulated to protect other proteins against environmental stress conditions. In the present study, we characterize the impedance profile with the xCELLigence Real‐Time Cell Analyzer and study the effect of increased temperature in cell growth and viability in the cell line BCIRL‐TcA‐CLG1 (TcA) of T. castaneum. This novel system measures cells behavior in real time and is applied for the first time to insect cells. Additionally, cells are exposed to heat shock, increased salinity, acidic pH and UV‐A light with the aim of measuring the expression levels of Hsp27, Hsp68a, and Hsp83 genes. Results show a high thermotolerance of TcA in terms of cell growth and viability. This result is likely related to gene expression results in which a significant up‐regulation of all studied Hsp genes is observed after 1 h of exposure to 40 °C and UV light. All 3 genes show similar expression patterns, but Hsp27 seems to be the most affected. The results of this study validate the RTCA method and reveal the utility of insect cell lines, real‐time analysis and gene expression studies to better understand the physiological response of insect cells, with potential applications in different fields of biology such as conservation biology and pest management. 相似文献
14.
15.
P‐bodies (processing bodies) are observed in different organisms such as yeast, Caenorhabditis elegans and mammals. A typical eukaryotic cell contains several types of spatially formed granules, such as P‐bodies, stress granules and a variety of ribonucleoprotein bodies. These microdomains play important role in mRNA processing, including RNA interference, repression of translation and mRNA decay. The P‐bodies components as well as stress granules may play an important role in host defense against viral infection. The complete set of P‐bodies protein elements is still poor known. They contain conserved protein core limited to different organisms or to stress status of the cell. P‐bodies are related also to some neuronal mRNA granules as well as to maternal RNA granules or male germ cell granules. In this mini‐review, we focus on the structure of P‐bodies and their function in the mRNA utilization and processing because of the high mRNA's dynamics between different cellular compartments and its key role in modulation of gene expression. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
16.
Mina Okochi Taku Matsumura and Shuhei Yamamoto Eiichi Nakayama Kowichi Jimbow Hiroyuki Honda 《Biotechnology progress》2013,29(1):135-142
A three‐dimensional (3D) multicellular tumor spheroid culture array has been fabricated using a magnetic force‐based cell patterning method, analyzing the effect of stromal fibroblast on the invasive capacity of melanoma. Formation of spheroids was observed when array‐like multicellular patterns of melanoma were developed using a pin‐holder device made of magnetic soft iron and an external magnet, which enables the assembly of the magnetically labeled cells on the collagen gel‐coated surface as array‐like cell patterns. The interaction of fibroblast on the invasion of melanoma was investigated using three types of cell interaction models: (i) fibroblasts were magnetically labeled and patterned together in array with melanoma spheroids (direct‐interaction model), (ii) fibroblasts coexisting in the upper collagen gel (indirect‐interaction model) of melanoma spheroids, and (iii) fibroblast‐sheets coexisting under melanoma spheroids (fibroblast‐sheet model). The fibroblast‐sheet model has largely increased the invasive capacity of melanoma, and the promotion of adhesion, migration, and invasion were also observed. In the fibroblast‐sheet model, the expression of IL‐8 and MMP‐2 increased by 24‐fold and 2‐fold, respectively, in real time RT‐PCR compared to the absence of fibroblasts. The results presented in this study demonstrate the importance of fibroblast interaction to invasive capacity of melanoma in the 3D in vitro bioengineered tumor microenvironment. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2013 相似文献
17.
Real‐time monitoring of antibody glycosylation site occupancy by in situ Raman spectroscopy during bioreactor CHO cell cultures 下载免费PDF全文
Meng‐Yao Li Bruno Ebel Cédric Paris Fabien Chauchard Emmanuel Guedon Annie Marc 《Biotechnology progress》2018,34(2):486-493
The glycosylation of therapeutic monoclonal antibodies (mAbs), a known critical quality attribute, is often greatly modified during the production process by animal cells. It is essential for biopharmaceutical industries to monitor and control this glycosylation. However, current glycosylation characterization techniques involve time‐ and labor‐intensive analyses, often carried out at the end of the culture when the product is already synthesized. This study proposes a novel methodology for real‐time monitoring of antibody glycosylation site occupancy using Raman spectroscopy. It was first observed in CHO cell batch culture that when low nutrient concentrations were reached, a decrease in mAb glycosylation was induced, which made it essential to rapidly detect this loss of product quality. By combining in situ Raman spectroscopy with chemometric tools, efficient prediction models were then developed for both glycosylated and nonglycosylated mAbs. By comparing variable importance in projection profiles of the prediction models, it was confirmed that Raman spectroscopy is a powerful method to distinguish extremely similar molecules, despite the high complexity of the culture medium. Finally, the Raman prediction models were used to monitor batch and feed‐harvest cultures in situ. For the first time, it was demonstrated that the concentrations of glycosylated and nonglycosylated mAbs could be successfully and simultaneously estimated in real time with high accuracy, including their sudden variations due to medium exchanges. Raman spectroscopy can thus be considered as a promising PAT tool for feedback process control dedicated to on‐line optimization of mAb quality. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:486–493, 2018 相似文献
18.
Cheng‐Ping Kuan Min‐Tze Wu Hung Chang Huang Hsiang Chang 《Journal of Phytopathology》2011,159(4):276-282
Rapid and accurate polymerase chain reaction (PCR) and real‐time PCR methods were developed for the detection of Colletotrichum lagenarium, the causal agent of anthracnose, in tissues of squash (Cucurbita moschata), watermelon (Citrullus lanatus), cucumber (Cucumis sativus) and muskmelon (Cucumis melo). PCR assays amplified different internal transcribed spacer sequences from C. lagenarium, so effectively detected this pathogen in infected tissues. PCR analysis with the primer co‐m‐337F1/R1 was able to differentiate C. lagenarium from other fungal pathogens, including Colletotrichum spp., Fusarium spp., Alternaria spp. and Didymella spp. An optimized real‐time PCR assay was developed to detect and monitor C. lagenarium in both infected plant tissues and soil samples. The sensitivity of real‐time PCR can detect down to 1 pg of DNA. Thus, PCR‐based analysis is a useful technique for rapid detection and diagnosis of C. lagenarium in infected plants or infested soils. 相似文献
19.
Satoshi Migita Ken‐Ichi Wada Akiyoshi Taniguchi 《Biotechnology and bioengineering》2010,107(3):561-565
Live cell‐based sensors potentially provide functional information about the cytotoxic effect of reagents on various signaling cascades. Cells transfected with a reporter vector derived from a cytotoxic response promoter can be used as intelligent cytotoxicity sensors (i.e., sensor cells). We have combined sensor cells and a microfluidic cell culture system that can achieve several laminar flows, resulting in a reliable high‐throughput cytotoxicity detection system. These sensor cells can also be applied to single cell arrays. However, it is difficult to detect a cellular response in a single cell array, due to the heterogeneous response of sensor cells. The objective of this study was cell homogenization with cell cycle synchronization to enhance the response of cell‐based biosensors. Our previously established stable sensor cells were brought into cell cycle synchronization under serum‐starved conditions and we then investigated the cadmium chloride‐induced cytotoxic response at the single cell level. The GFP positive rate of synchronized cells was approximately twice as high as that of the control cells, suggesting that cell homogenization is an important step when using cell‐based biosensors with microdevices, such as a single cell array. Biotechnol. Bioeng. 2010;107: 561–565. © 2010 Wiley Periodicals, Inc. 相似文献