首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A relative decrease of the high temperature part (above 60°C) of the chlorophyll fluorescence temperature curve during 3 h to 10 h greening period of barley (Hordeum vulgare L.) leaves was found to be concomitant to a decrease of Chl alb ratio and to a gradual increase of LHCP/core ratio found by electrophoresis and the ratio of granal to total length of thylakoid membranes. It is suggested that the high temperature part of the fluorescence temperature curve depends inversely on the relative amount of LHC II in thylakoid membranes.Abbreviations Chl a(b) chlorophyll a(b) - CPa chlorophyll a protein complex of PS II - CP1 P700 chlorophyll a protein complex of PS I - FP free pigments - FTC fluorescence temperature curve - F(T30) fluorescence intensity at 30°C - LHC II light harvesting complex II - LHCP light harvesting chlorophyll protein - LHCP3 (LHCPm) monomeric form of LHC II - LHCPo oligomeric form of LHC II complex - M1 first maximum of FTC - M2 second maximum (region) of FTC - PAA polyacrylamide - PAR photosynthetically active radiation - PS I(II) Photosystem I(II) - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis  相似文献   

2.
The light-induced/dark-reversible changes in the chlorophyll (Chl) a fluorescence of photosynthetic cells and membranes in the μs-to-several min time window (fluorescence induction, FI; or Kautsky transient) reflect quantum yield changes (quenching/de-quenching) as well as changes in the number of Chls a in photosystem II (PS II; state transitions). Both relate to excitation trapping in PS II and the ensuing photosynthetic electron transport (PSET), and to secondary PSET effects, such as ion translocation across thylakoid membranes and filling or depletion of post-PS II and post-PS I pools of metabolites. In addition, high actinic light doses may depress Chl a fluorescence irreversibly (photoinhibitory lowering; q(I)). FI has been studied quite extensively in plants an algae (less so in cyanobacteria) as it affords a low resolution panoramic view of the photosynthesis process. Total FI comprises two transients, a fast initial (OPS; for Origin, Peak, Steady state) and a second slower transient (SMT; for Steady state, Maximum, Terminal state), whose details are characteristically different in eukaryotic (plants and algae) and prokaryotic (cyanobacteria) oxygenic photosynthetic organisms. In the former, maximal fluorescence output occurs at peak P, with peak M lying much lower or being absent, in which case the PSMT phases are replaced by a monotonous PT fluorescence decay. In contrast, in phycobilisome (PBS)-containing cyanobacteria maximal fluorescence occurs at M which lies much higher than peak P. It will be argued that this difference is caused by a fluorescence lowering trend (state 1 → 2 transition) that dominates the FI pattern of plants and algae, and correspondingly by a fluorescence increasing trend (state 2 → 1 transition) that dominates the FI of PBS-containing cyanobacteria. Characteristically, however, the FI pattern of the PBS-minus cyanobacterium Acaryochloris marina resembles the FI patterns of algae and plants and not of the PBS-containing cyanobacteria.  相似文献   

3.
Ultrastructural features and immunological properties of some thylakoid proteins were examined in two strains of the prochlorophyte Prochlorococcus and compared to those of other photosynthetic prokaryotes and eukaryotes. Both strains exhibited two or three rows of tightly appressed thylakoidal membranes, located at the cell periphery. However, thylakoids were concentrically arranged in the strain from the Sargasso Sea (SARG) and horseshoe-shaped in the Mediterranean isolate (CCMP 1378). Although lacking phycobilisomes, both cell types shared with cyanobacteria the presence of carboxysome-like structures and glycogen granules as storage compounds. The main thylakoid polypeptides separated by sodium dodecyl sulfate—polyacrylamide gel electrophoresis were characterized by Western blotting using several antibodies. The 30-kDa polypeptide of the light-harvesting complex (LHC) of Prochlorococcus showed a weak positive immunological cross-reaction with an antibody raised against the 32-kDa apoprotein of the LHC of the prochlorophyte Prochlorothrix hollandica. In contrast, it showed no immunological relationships with the chlorophyll a/b (Chl a/b) LHCs of green algae and higher plants. Protein membranes from Prochlorococcus strongly cross-reacted with antibodies raised against reaction center polypeptides of photosystems II and I (PSs II and I) of other photosynthetic organisms, confirming the high degree of conservation of these basic compounds of the photosynthetic machinery during evolution. Immunolocalization of thylakoid proteins showed that the LHC proteins, the major PS II reaction center proteins (CP 43 and D2), and the PS I reaction center proteins were equally distributed within the thylakoid membranes in contrast to the segregation observed in higher plants and green alga thylakoids. We also identified ribulose-1, 5-bisphosphate carboxylase/oxygenase in the carboxysomes. These results suggest that Prochlorococcus is more closely related to cyanobacteria than to green plastids even though it contains Chl b.  相似文献   

4.
In different marine red algae (Chondrus crispus, Delesseria sanguinea, Membranoptera alata, Phycodrys rubens, Phyllophora truncata, Polyneura hilliae) photoinhibition of photosynthesis has been investigated by means of both fluorescence and oxygen measurements. Measurements of absolute oxygen production show that photoinhibition causes a decline in the initial slope and in the rate of bending of the fluence rate-response curve (i.e. the photosynthetic efficiency at non-saturating fluence rates), as well as a decline in the photosynthetic capacity (Pm) at saturating fluence rates. Fluorescence data (Fv/Fm) were consistent with the results of oxygen measurements. Under excessive light photoinhibition protects photosynthesis against photo-damage in red algae. However, an increase in the initial fluorescence (Fo) after photoinhibitory treatment indicates that it could not prevent photodamage entirely. Action spectra of photoinhibition demonstrate that the main photoinhibition site in Polyneura hiliae is PS II, because far red light absorbed by PS I was ineffective. The strong increase of Fo in the blue wavelength range and the slight and partial recovery in weak blue light indicate that blue light especially causes photodamage. Recovery of photosynthesis requires dim white light conditions. Experiments with monochromatic light also show a wavelength dependence of recovery. Moreover, the recovery of photosynthesis after a photoinhibitory treatment is strongly temperature dependent, indicating participation of enzymatic processes. The comparison of fluorescence and oxygen measurement of the recovery shows different results in some species. The rate of oxygen production in red control light increased immediately after photoinhibited algae were exposed to weak light conditions. Surprisingly, the ratio of variable to maximum fluorescence (Fv/Fm) of Phyllophora truncata and the maximum fluorescence (Fm) of Polyneura hilliae show first a delay of the recovery under weak light conditions. Thus, in recovery experiments fluorescence and oxygen data are not quite consistent.  相似文献   

5.
高温对仁用杏光合特性及PSⅡ光化学活性的影响   总被引:1,自引:0,他引:1  
Du GD  Lü DG  Zhao L  Wang SS  Cai Q 《应用生态学报》2011,22(3):701-706
为探讨高温胁迫下仁用杏叶片的光合适应机制,以科尔沁沙地生长的4年生'超仁'仁用杏为试材,设置环境温度为25℃、30℃、40℃和50℃处理,利用气体交换技术和快速叶绿素荧光诱导动力学曲线分析技术(JIP-test),研究了仁用杏叶片光合特性和PSⅡ光化学活性.结果表明:在一定温度范围内,随着温度升高,仁用杏通过提高光合色素含量和比例来维持光能的吸收、传递和转换能力,从而保证光合机构正常运转;当高温超过叶片自身生理调节限度后,叶绿素发生分解、净光合速率(Pn)明显下降、胞间CO2浓度(Ci)上升,说明光合作用的下降是由叶肉因素造成的.温度40℃导致单位面积有活性反应中心数量(RC/CSo)显著下降;而50℃高温下荧光诱导曲线中K点(Wk)和J点(Vj)明显增加,高温对仁用杏叶片放氧复合体(OEC)、受体侧和PsⅡ反应中心造成了伤害.此外,50℃高温还导致初始荧光(Fo)显著升高,为对照的2.26倍,PSⅡ最大光化学效率(Fv/Fm)和光化学性能指数(PI/ABS)分别下降为对照的37.9%和10.3%.高温损害了PSⅡ供体侧和受体侧的功能,造成光合效率下降,这是高温胁迫对仁用杏叶片光合机构伤害的主要机制之一.  相似文献   

6.
Wheat leaves were exposed to light treatments that excite preferentially Photosystem I (PS I) or Photosystem II (PS II) and induce State 1 or State 2, respectively. Simultaneous measurements of CO2 assimilation, chlorophyll fluorescence and absorbance at 820 nm were used to estimate the quantum efficiencies of CO2 assimilation and PS II and PS I photochemistry during State transitions. State transitions were found to be associated with changes in the efficiency with which an absorbed photon is transferred to an open PS II reaction centre, but did not correlate with changes in the quantum efficiencies of PS II photochemistry or CO2 assimilation. Studies of the phosphorylation status of the light harvesting chlorophyll protein complex associated with PS II (LHC II) in wheat leaves and using chlorina mutants of barley which are deficient in this complex demonstrate that the changes in the effective antennae size of Photosystem II occurring during State transitions require LHC II and correlate with the phosphorylation status of LHC II. However, such correlations were not found in maize leaves. It is concluded that State transitions in C3 leaves are associated with phosphorylation-induced modifications of the PS II antennae, but these changes do not serve to optimise the use of light absorbed by the leaf for CO2 assimilation.Abbreviations Fm, Fo, Fv maximal, minimal and variable fluorescence yields - Fm, Fv maximal and variable fluorescence yields in a light adapted state - LHC II light harvesting chlorophyll a/b protein complex associated with PS II - qP photochemical quenching - A820 light-induced absorbance change at 820 nm - PS I, PS II relative quantum efficiencies of PS I and PS II photochemistry - CO 2 quantum yield of CO2 assimilation  相似文献   

7.
Exposure of algae or plants to irradiance from above the light saturation point of photosynthesis is known as high light stress. This high light stress induces various responses including photoinhibition of the photosynthetic apparatus. The degree of photoinhibition could be clearly determined by measuring the parameters such as absorption and fluorescence of chromoproteins. In cyanobacteria and red algae, most of the photosystem (PS) II associated light harvesting is performed by a membrane attached complex called the phycobilisome (PBS). The effects of high intensity light (1000-4000 micromol photons m(-2) s(-1)) on excitation energy transfer from PBSs to PS II in a cyanobacterium Spirulina platensis were studied by measuring room temperature PC fluorescence emission spectra. High light (3000 micromol photons m(-2) s(-1)) stress had a significant effect on PC fluorescence emission spectra. On the other hand, light stress induced an increase in the ratio of PC fluorescence intensity of PBS indicating that light stress inhibits excitation energy transfer from PBS to PS II. The high light treatment to 3000 micromol photons m(-2) s(-1) caused disappearance of 31.5 kDa linker polypeptide which is known to link PC discs together. In addition we observed the similar decrease in the other polypeptide contents. Our data concludes that the Spirulina cells upon light treatment causes alterations in the phycobiliproteins (PBPs) and affects the energy transfer process within the PBSs.  相似文献   

8.
The functional peculiarities and responses of the photosynthetic system in the flowering homoiochlorophyllous desiccation-tolerant (HDT) Haberlea rhodopensis and the non-desiccation-tolerant spinach were compared during desiccation and rehydration. Increasing rate of water loss clearly modifies the kinetic parameters of fluorescence induction, thermoluminescence emission, far-red induced P700 oxidation and oxygen evolution in the leaves of both species. The values of these parameters returned nearly to the control level after 24 h rehydration only of the leaves of HDT plant. PS II was converted in a non-functional state in desiccated spinach in accordance with the changes in membrane permeability, malondialdehyde, proline and H2O2 contents. Moreover, our data showed a strong reduction of the total number of PS II centers in Haberlea without any changes in the energetics of the charge recombination. We consider this observation, together with the previously reported unusually high temperature of B-band (S2QB-) emission of Haberlea to reflect some specific adaptive characteristics of the photosynthetic system. As far as we know this is the first time when such adaptive characteristics and mechanism of the photosynthetic system of a flowering HDT higher plant is described. These features of Haberlea can explain the fast recovery of its photosynthesis after desiccation, which enable this HDT plant to rapidly take advantage of frequent changes in water availability.  相似文献   

9.
光照、温度和pH对雨生红球藻光合特性的影响   总被引:2,自引:2,他引:2  
采用测定光合放氧速率和荧光动力学的方法,研究分析了光照强度、温度和pH对雨生红球藻Haematococcus pluvialis CG-11绿色游动细胞阶段光合作用特性的影响。结果表明,H. pluvialis CG-11光合作用的饱和光强为109.1 μmol/m2·s,最大光合放氧速率为75.9 μmol O2/mg Chla·h;适宜的生长温度范围在25-30℃之间,温度在25℃时光合速率最大;pH在7.5-8.0范围内,光合效率较高,在pH为7.5时放氧速率最大,为75.5 μmol O2/mg Chla·h。在实验pH条件下,H. pluvialis CG-11叶绿素荧光动力学参数呈现出相似的趋势,在6.0-7.5范围内,Fv/ Fm、Fv/ F0、ΦPSⅡ和ETR值随pH升高而增大,pH为7.5时达到最大值,pH超过7.5时,Fv/ Fm和Fv/ F0值明显下降,而ΦPSⅡ和ETR的下降趋势不明显。  相似文献   

10.
The light harvesting and photosynthetic characteristics of a chlorophyll-deficient mutant of cowpea (Vigna unguilata), resulting from a single nuclear gene mutation, are examined. The 40% reduction in total chlorophyll content per leaf area in the mutant is associated with a 55% reduction in pigment-proteins of the light harvesting complex associated with Photosystem II (LHC II), and to a lesser extent (35%) in the light harvesting complex associated with Photosystem I (LHC I). No significant differences were found in the Photosystem I (PS I) and Photosystem II (PS II) contents per leaf area of the mutant compared to the wildtype parent. The decreases in the PS I and PS II antennae sizes in the mutant were not accompanied by any major changes in quantum efficiencies of PS I and PS II in leaves at non-saturating light levels for CO2 assimilation. Although the chlorophyll deficiency resulted in an 11% decrease in light absorption by mutant leaves, their maximum quantum yield and light saturated rate of CO2 assimilation were similar to those of wildtype leaves. Consequently, the large and different decreases in the antennae of PS II and PS I in the mutant are not associated with any loss of light use efficiency in photosynthesis.Abbreviations LHC I, LHC II light harvesting chlorophyll a/b protein complexes associated with PS I and PS II - A820 light-induced absorbance change at 820 nm - øPS I, øPS II relative quantum efficiencies of PS I and PS II photochemistry  相似文献   

11.
In the cyanobacterium Anabaena variabilis the dependence of photoinhibition on fluence rate, duration and wavelength of irradiation were studied by measurements of oxygen production and fluorescence emission spectra. The analysis of the photosynthetic activity revealed that photoinhibition affects exclusively photosystem II (PS II), whereas photosystem I (PS I) remained largely unimpaired. Furthermore, PS II fluorescence emission decreased much faster in bleached than in unbleached controls.Studying the wavelength dependence of photoinhibition it was found that only radiation between 520 and 680 nm causes photoinhibition. This is about the same range of wavelengths which causes photobleaching. Fluorescence emission spectra of samples exposed to high fluence rates of 582 and 662 nm, respectively, essentially agree with those samples exposed to high fluence rates of white light, whereas the fluorescence emission spectra of samples exposed to blue light resemble those exposed to dim white light.NaN3, a substance which prevents photobleaching, inhibits the photosynthetic O2 production of Anabaena and, hence, enhances the photoinhibitory effect.  相似文献   

12.
Colored light modifies the relative concentration of chlorophyll-forms of the diatom Phaeodactylum tricornutum compared to white-light control. No change in the ratio carotenoids/chlorophylls was observed after 4 days exposure to green light (max: 530 nm), blue light (max: 470 nm) or red light ( > 650 nm) of same intensity.However, the absorption spectra were modified, the content in Ca 684, Ca 690, Ca 699 forms increased in red and green light cultures and photosynthetic unit size of PS II decreased by 30% in green and blue light cultures.Fluorescence emission and fluorescence excitation spectra according to the Butler and Kitajima method (1975) were carried out for each culture. Ca 669 form was predominant in the two photosystems. The newly appeared far red forms fluoresce at 715 nm like PS I forms.We conclude that these new forms originated in a rearrangement of PS II forms. They do not transmit excitation energy to reaction center of PS I and are disconnected from the other chlorophyll-forms of the photosynthetic antennae.Abbreviations ABS absorption - Ca chlorophyll-complex - chla chlorophyll a - chl c chlorophyll c - chl t total chlorophylls - D.C.M.U. 3-(3, 4 dichlorophenyl) 1-diméthyl-urea - dv division - F fluorescence - PS I and PS II photosystem I and photosystem II  相似文献   

13.
Red algae contain two types of light‐harvesting antenna systems, the phycobilisomes and chlorophyll a binding polypeptides (termed Lhcr), which expand the light‐harvesting capacity of the photosynthetic reaction centers. In this study, photosystem I (PSI) and its associated light‐harvesting proteins were isolated from the red alga Cyanidioschyzon merolae. The structural and functional properties of the largest PSI particles observed were investigated by biochemical characterization, mass spectrometry, fluorescence emission and excitation spectroscopy, and transmission electron microscopy. Our data provide strong evidence for a stable PSI complex in red algae that possesses two distinct types of functional peripheral light‐harvesting antenna complex, comprising both Lhcr and a PSI‐linked phycobilisome sub‐complex. We conclude that the PSI antennae system of red algae represents an evolutionary intermediate between the prokaryotic cyanobacteria and other eukaryotes, such as green algae and vascular plants.  相似文献   

14.
To study the effects of limitations in the Calvin-cycle on Photosystem (PS) II function and on its repair by D1-protein turnover, glycerinaldehyde (DLGA) was applied to 1 h dark-adapted pea leaves via the petiole. The application resulted in a 90% inhibition of photosynthetic oxygen evolution after 90 min illumination at either 120 or 500 µmol m–2 s–1. In the control leaves an increase of light-dependent oxygen production to 147 and 171% was observed after 90 min illumination. According to chlorophyll fluorescence quenching analysis the inhibition of photosynthetic electron transport by DLGA led to a substantial increase in the reduction state of the primary quinone acceptor of PS II, QA, and to a rise in membrane energetisation. However, PS II functionality was hardly affected by DLGA at the low light intensity as indicated by the constant high yield of variable fluorescence, Fv/Fm. Only at 500 µmol m–2 s–1 a 15% loss of Fv/Fm was observed in the presence of DLGA indicating that inactivated PS II centres had accumulated. The control leaves also showed a slight loss of Fv/Fm which did not affect photosynthetic electron transport due to a faster reoxidation of QA. The relative stability of PS II function in the presence of DLGA could not be ascribed to an increased repair by the rapid turnover of the D1-protein. Radioactive pulse-labelling studies with [14C] leucine in combination with immunological determination of the protein content revealed that both synthesis and degradation of the protein were inhibited in DLGA-treated leaves whereas in the control leaves a stimulation of D1-protein turnover was observed. The changes of D1-protein turnover could be explained by differences in the occupancy state of the QB-binding niche. A relation between the phosphorylation status of the PS II polypeptides and the turnover of the D1-protein could not be established. As shown by radioactive labelling with [32P]i, addition of DLGA led to an increase in the phosphorylation level of the PS II polypeptides D1 and D2 at the low light intensity when compared to the non-treated control. At the higher light intensity the phosphorylation level of the PS II polypeptides in control and DLGA-treated leaves were identical in spite of the substantial differences in D1-protein turnover.  相似文献   

15.
The effects of decreasing water potential (Ψ) on O2 evolution and fluorescence yield at room temperature and at 77 K were investigated using the lichen Lobaria pulmonaria. Changes in Ψ were created either by atmospheric desiccation or by osmotic dehydration, with either sucrose, sorbitol or NaCl as osmoticum. Independent of the method used to establish Ψ, similar inactivation patterns were obtained and were reversible after reincubation in pure water for 10 min. Our data indicate that exposure to increasing water stress acts at two levels. In the first phase, at ‘mild’ stress, i.e. at Ψ greater than ?13, ?16 and ?20 MPa for drying, NaCl and sucrose treatments, respectively, a progressive decline in O2 production and the fluorescence yield (ΔF/Fm′ and Fv/Fm) was correlated with increases in non-photochemical quenching (qN). At the same time the photochemical quenching (qp) changed only sligthly, indicating the absence of overreduction. The Fo level remained relatively constant in this first stage of water loss. A ΔpH mediated down regulation and a donor side limitation of photosystem (PS) II are discussed. When the water stress was severe, a further decrease in the fluorescence yield was observed and correlated with a considerable decrease in Fo (second phase). Kinetic analysis of the 77 K emission showed that osmotic stress and atmospheric desiccation possibly lead to an increased spillover from PS II to PS I. In addition, a strong negative effect of NaF on the recovery from dehydration was found. This may indicate a state transition mediated by the displacement/recoupling of light harvesting complex (LHC) II from/to PS II. The photoprotective role of spatial rearrangements of antenna complexes during desiccation is discussed.  相似文献   

16.
B. Schroeter 《Oecologia》1994,98(2):212-220
In situ photosynthetic activity in the green algal and the cyanobacterial photobionts of Placopsis contortuplicata was monitored within the same thallus using chlorophyll a fluorescence methods. It proved possible to show that the response to hydration of the green algal and the cyanobacterial photobionts is different within the same thallus. Measurements of the photochemical efficiency of PS II, Fv/Fm, reveal that in the dry lichen thallus photosynthetic activity could be induced in the green algal photobiont by water vapour uptake, in the cyanobacterial photobiont only if it was hydrated with liquid water. However, rates of apparent electron flow through PS II as well as rates of CO2 gas exchange were suboptimal after hydration with water vapour alone and maximum rates could only be observed when the thallus was saturated with liquid water. The differences in the waterrelated photosynthetic performance and different light response curves of apparent electron transport rate through PS II indicate that the two photobionts act highly independently of each other. It was shown that the cyanobacteria from the cephalodia in P. contortuplicata act as photobiont. The rate of electron flow through PS II was found to be saturated at 1500 mol photon m–2 s–1, despite a considerable increase of non-photochemical quenching in the green algal photobiont which is lacking in the cyanobacterial photobiont. No evidence of photoinhibition could be found in either photobiont. Pronounced competition between the green algal and the cyanobacterial thallus can be observed in the natural habitat, indicating that the symbiosis in P. contortuplicata should be regarded as a very variable adaptation to the extreme environmental conditions in the maritime Antarctic.Abbreviations DR dark respiration - ETR apparent rate of electron flow of PS II (=F/Fm×PFD) - F difference in yield of fluorescence and maximal Fm and steady state Fs under ambient light - Fo minimum level of fluorescence yield in dark-adapted state - Fo minimum level of fluorescence yield after transient darkening and far-red illumination - Fm maximum level of dark-adapted fluorescence yield - Fm maximum yield of fluorescence under ambient light - Fs yield of fluorescence at steady state - Fv difference in minimum fluorescence and maximum fluorescence in dark-adapted state - NP net photosynthesis - NPQ coefficient for non-photochemical quenching - PAR photosynthetically active radiation (400–700 nm) - PFD photon flux density in PAR - PS II photosystem II - qN coefficient for non-photochemical quenching - qP coefficient for photochemical quenching  相似文献   

17.
Cyanobacterium Nostoc commune is a species highly resistant against desiccation. In this study, we investigated changes in photochemical processes of photosynthesis and spectral reflectance indices during controlled desiccation of the colonies from Antarctica. In a dehydration process, water potential (WP) reached ?3 MPa and values of potential (F v/F m) and effective quantum yields (ΦPSII) of photosystem II were kept to high value until 90% of water was lost from the colony, and these values decreased rapidly by further loss of water. This indicates that the colony loses water mostly from the exopolysaccharidic envelope, not from cells during the initial part of dehydration (relative water content, RWC = 100–10%). Other suggestions of inhibition of photosynthetic processes after 90% loss of water were the increase of the chlorophyll fluorescence parameter F p/F s. The F m′ was higher than F m in hydrated colonies because of state transition which change energy distribution between PS I and PS II, but decreased to same level as F m in dehydrated colonies. The Normalized Difference Vegetation Index (NDVI) and Photochemical Reflectance Index (PRI) showed concave‐ and convex‐curvilinear relationship with RWC, respectively. The changes of NDVI values were, however, statistically insignificant. PRI values were predominantly below 0 because of phycobiliprotein involvement. These results were compared with the same species in the Arctic region. This is, according to our best knowledge, the first measurement of changes in spectral reflectance indices during desiccation of cyanobacteria.  相似文献   

18.
Soil cyanobacterial crusts occur throughout the world, especially in the semiarid and arid regions. It always encounters sand burial, which is an important feature of mobile sand dunes. A greenhouse study was conducted to determine the effects of sand burial on biomass, chlorophyll fluorescence and extracellular polysaccharides of man-made cyanobacterial crusts in six periods of time (0, 5, 10, 15, 20 and 30 d after burying) and at five depths (0, 0.2, 0.5, 1 and 2cm). The results indicated that with the increase of the burial time and burial depth extracellular polysaccharides content and Fv/Fm decreased correspondingly and there were no significant differences between 20 and 30 burial days under different burial depths. The degradation of chlorophyll a content appeared only at 20 and 30 burial days and there was also no significant difference between them under different burial depths. It was also observed a simultaneous decrease of the values of the Fv/Fm and the content of extracellular polysaccharides happened in the crusted cyanobacterium Microcoleus vaginatus Gom. It may suggest that there exists a relationship between extracellular polysaccharides and recovery of the activity of photosystem II (PS II) after rehydration.  相似文献   

19.
Harel Y  Ohad I  Kaplan A 《Plant physiology》2004,136(2):3070-3079
Filamentous cyanobacteria are the main primary producers in biological desert sand crusts. The cells are exposed to extreme environmental conditions including temperature, light, and diurnal desiccation/rehydration cycles. We have studied the kinetics of activation of photosynthesis during rehydration of the cyanobacteria, primarily Microcoleus sp., within crust samples collected in the Negev desert, Israel. We also investigated their susceptibility to photoinhibition. Activation of the photosynthetic apparatus, measured by fluorescence kinetics, thermoluminescence, and low temperature fluorescence emission spectra, did not require de novo protein synthesis. Over 50% of the photosystem II (PSII) activity, assembled phycobilisomes, and photosystem I (PSI) antennae were detected within less than 5 min of rehydration. Energy transfer to PSII and PSI by the respective antennae was fully established within 10 to 20 min of rehydration. The activation of a fraction of PSII population (about 20%-30%) was light and temperature-dependent but did not require electron flow to plastoquinone [was not inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea]. The cyanobacteria within the crusts are remarkably resistant to photoinhibition even in the absence of protein synthesis. The rate of PSII repair increased with light intensity and with time of exposure. Consequently, the extent of photoinhibition in high-light-exposed crusts reached a constant, relatively low, level. This is in contrast to model organisms such as Synechocystis sp. strain PCC 6803 where PSII activity declined continuously over the entire exposure to high illumination. Ability of the crust's organisms to rapidly activate photosynthesis upon rehydration and withstand photoinhibition under high light intensity may partly explain their ability to survive in this ecosystem.  相似文献   

20.
 较系统地研究了抽穗期超高产杂交稻‘华安3号’(`X075’×`紫恢100’)冠层顶部5片叶片的光合功能。结果表明,‘华安3号’剑叶的光系统Ⅱ(PSII)光化学最大效率(Fv/Fm)、开放的PSⅡ反应中心捕获激发能效率(Fv′/Fm′)、PSⅡ电子传递量子效率(ΦPSⅡ)、光化学猝灭系数(qP)、表观电子传递效率(ETR)、光合色素尤其是叶绿素(Chl)和类胡萝卜素(Car)中的新黄素、黄体素和β-胡萝卜素(β-Car)的含量等均优于其下的各叶,而PSⅡ的激发压力(1-qP)低于其它叶片。经对叶片低温(77K)荧光发射光谱的Gaussian解析,与其它各叶片相比,剑叶PSⅡ核心天线复合物CP47和光系统Ⅰ(PSⅠ)的含量较高,而非活性的PSⅡ捕光色素蛋白复合体(LHCⅡ)聚集态含量较少。研究证明:1)水稻在决定籽粒产量的生育后期,其干物质的积累主要是由冠层最上面的3片叶的光合作用所提供;2)在叶片衰老过程中,光合反应中心的衰老早于天线系统;3)杂交稻的光保护途径之一,可能在于光抑制条件下通过增加PSⅠ含量及其对光能的吸收并刺激环式电子传递高速运转,从而对光合器起保护作用;4)水稻叶片在衰老过程中,可能通过部分Chl b还原为Chl a,以降低LHCⅡ的含量,从而减少对光能的捕获,达到降低光抑制的伤害。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号