首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Our research group has extensively studied retinal regeneration in adult Xenopus laevis. However, X. laevis does not represent a suitable model for multigenerational genetics and genomic approaches. Instead, Xenopus tropicalis is considered as the ideal model for these studies, although little is known about retinal regeneration in X. tropicalis. In the present study, we showed that a complete retina regenerates at approximately 30 days after whole retinal removal. The regenerating retina was derived from the stem/progenitor cells in the ciliary marginal zone (CMZ), indicating a novel mode of vertebrate retinal regeneration, which has not been previously reported. In a previous study, we showed that in X. laevis, retinal regeneration occurs primarily through the transdifferentiation of retinal pigmented epithelial (RPE) cells. RPE cells migrate to the retinal vascular membrane and reform a new epithelium, which then differentiates into the retina. In X. tropicalis, RPE cells also migrated to the vascular membrane, but transdifferentiation was not evident. Using two tissue culture models of RPE tissues, it was shown that in X. laevis RPE culture neuronal differentiation and reconstruction of the retinal three‐dimensional (3‐D) structure were clearly observed, while in X. tropicalis RPE culture neither ßIII tubulin‐positive cells nor 3‐D retinal structure were seen. These results indicate that the two Xenopus species are excellent models to clarify the cellular and molecular mechanisms of retinal regeneration, as these animals have contrasting modes of regeneration; one mode primarily involves RPE cells and the other mode involves stem/progenitor cells in the CMZ. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 74: 739–756, 2014  相似文献   

2.
    
Primary open‐angle glaucoma is a leading cause of irreversible blindness, often associated with increased intraocular pressure. Extracellular vesicles (EVs) carry a specific composition of proteins, lipids and nucleotides have been considered as essential mediators of cell‐cell communication. Their potential impact for crosstalk between tissues responsible for aqueous humour production and out‐flow is largely unknown. The study objective was to investigate the effects of EVs derived from non‐pigmented ciliary epithelium (NPCE) primary cells on the expression of Wnt proteins in a human primary trabecular meshwork (TM) cells and define the mechanism underlying exosome‐mediated regulation that signalling pathway. Consistent with the results in TM cell line, EVs released by both primary NPCE cells and NPCE cell line showed diminished pGSK3β phosphorylation and decreased cytosolic levels of β‐catenin in primary TM cells. At the molecular level, we showed that NPCE exosome treatment downregulated the expression of positive GSKβ regulator‐AKT protein but increased the levels of GSKβ negative regulator‐PP2A protein in TM cells. NPCE exosome protein analysis revealed 584 miRNAs and 182 proteins involved in the regulation of TM cellular processes, including WNT/β‐catenin signalling pathway, cell adhesion and extracellular matrix deposition. We found that negative modulator of Wnt signalling miR‐29b was abundant in NPCE exosomal samples and treatment of TM cells with NPCE EVs significantly decreased COL3A1 expression. Suggesting that miR‐29b can be responsible for decreased levels of WNT/β‐catenin pathway. Overall, this study highlights a potential role of EVs derived from NPCE cells in modulating ECM proteins and TM canonical Wnt signalling.  相似文献   

3.
    
The role of extracellular vesicles (EVs) as signal mediators has been described in many biological fields. How many EVs are needed to deliver the desired physiological signal is yet unclear. Using a normal trabecular meshwork (NTM) cell culture exposed to non‐pigmented ciliary epithelium (NPCE)–derived EVs, a relevant model for studying the human ocular drainage system, we addressed the EVs dose–response effects on the Wnt signaling. The objective of the study was to investigate the dosing effects of NPCE‐derived EVs on TM Wnt signaling. EVs were isolated by PEG 8000 method from NPCE and RPE cells (used as controls) conditioned media. Concentrations were determined by Tunable Resistive Pulse Sensing method. Various exosomes concentration were incubated with TM cells, for the determination of mRNA (β‐Catenin, Axin2 and LEF1) and protein (β‐Catenin, GSK‐3β) expression using real‐time quantitative PCR and Western blot, respectively. Exposure of NTM cells for 8 hrs to low EVs concentrations was associated with a significant decreased expression of β‐Catenin, GSK‐3β, as opposed to exposure to high exosomal concentrations. Pro‐MMP9 and MMP9 activities were significantly enhanced in NTM cells treated with high EV concentrations of (X10) as compared to low EV concentrations of either NPCE‐ or RPE‐derived EVs and to untreated control. Our data support the concept that EVs biological effects are concentration‐dependent at their target site. Specifically in the present study, we described a general dose–response at the gene and MMPs activity and a different dose–response regarding key canonical Wnt proteins expression.  相似文献   

4.
    
The present research aims to determine whether the application of non-pigmented ciliary epithelium cells derived extracellular vesicles to human trabecular meshwork cells affects the formation and secretion of collagen type I to the extracellular matrix formation. Following the extraction of non-pigmented ciliary epithelium derived extracellular vesicles by a precipitation method, their size and concentration were determined using tunable resistive pulse sensing technology. Extracellular vesicles were incubated with trabecular meshwork cells for 3 days. Morphological changes of collagen type I in the extracellular matrix of trabecular meshwork cells were visualized using confocal microscopy and scanning electron microscopy. A Sirius Red assay was used to determine the total amount of collagen. Finally, collagen type I expression levels in the extracellular matrix of trabecular meshwork cells were quantified by cell western analysis. We found that non-pigmented ciliary epithelium extracellular vesicles were very effective at preventing collagen fibres formation by the trabecular meshwork cells, and their secretion to the extracellular matrix was significantly reduced (P < .001). Morphological changes in the extracellular matrix of trabecular meshwork cells were observed. Our study indicates that non-pigmented ciliary epithelium extracellular vesicles can be used to control collagen type I fibrillogenesis in trabecular meshwork cells. These fibrils net-like structure is responsible for remodelling the extracellular matrix. Moreover, we suggest that targeting collagen type I fibril assembly may be a viable treatment for primary open-angle glaucoma abnormal matrix deposition of the extracellular matrix.  相似文献   

5.
B.J. Crawford 《Tissue & cell》1983,15(6):993-1005
In clonal culture differentiated chick retinal pigmented epithelial (RPE) cells form a monolayer which shows little or no cellular division. The cells usually rest on a basal and reticular lamina and are polarized with their apical surface towards the medium. The apical surface is characterized by apical protrusions, an extensive apical web of microfilaments and junctional complexes which join the apical-lateral borders. A PA/S positive material with a felt-like appearance from the serum component of the medium coats the surfaces of the tissue culture plates. A similar material is found on any membrane filter which has been exposed to medium containing serum. When such a filter brought in contact with the upper surfaces of the RPE cells, the apical surface characteristics are lost, the cells often accumulate Alcian Blue positive material between the cells and the filter and secrete a reticular and a basal lamina, i.e. they establish a second basal surface. Once this has occurred, the cells appear to either detach from the plate and reverse their polarity, or undergo division forming two cell layers. In the latter case new apical surfaces are created between the cell layers but the cells appear to join to form circular structures rather than sheets. These results suggest that contact with this felt-like material initiates formation of a basal surface. They further suggest that where the apical surface has been converted to a basal one the cell attempts to restore the apical surface either by separating from the plate and reversing its polarity or by creating circular structures and developing new apices oriented toward the center of the circle.  相似文献   

6.
An electron microscopic study of the ciliary epithelium of respiratory tracts was carried out in children (members of the same family) with Kartagener syndrome, which is a variant of ciliary dyskinesia. It was shown that in the case of both mobile cilia and ciliary dyskinesia in man, centrioles are formed during formation of the ciliary basal bodies predominantly de novo, involving deuterosomes. A wide spectrum of pathological changes was described in literature, such as the absence of dynein arms in the axoneme and disorganization of axoneme structure. In addition to these changes in the ciliary system, we found integration of several ciliary axonemes by the same plasma membrane, running of microtubules from the plasma membrane as bundles, different orientation of basal legs, etc.__________Translated from Ontogenez, Vol. 36, No. 3, 2005, pp. 190–198.Original Russian Text Copyright © 2005 by Domaratskii, Uvakina, Volkov, Onishchenko.  相似文献   

7.
    
Glaucoma is a major cause of vision impairment, which arises from the sustained and progressive apoptosis of retinal ganglion cells (RGC), with ocular hypertension being a major risk or co-morbidity factor. Because RGC death often continues after normalization of ocular hypertension, growth factor-mediated protection of compromised neurons may be useful. However, the therapeutic use of nerve growth factor (NGF) has not proven effective at delaying RGC death in glaucoma. We postulated that one cause for the failure of NGF may be related to its binding to two receptors, TrkA and p75. These receptors have distinct cellular distribution in the retina and in neurons they induce complex and sometimes opposing activities. Here, we show in an in vivo therapeutic model of glaucoma that a selective agonist of the pro-survival TrkA receptor was effective at preventing RGC death. RGC loss was fully prevented by combining the selective agonist of TrkA with intraocular pressure-lowering drugs. In contrast, neither NGF nor an antagonist of the pro-apoptotic p75 receptor protected RGCs. These results further a neurotrophic rationale for glaucoma.  相似文献   

8.
9.
    
The retinal pigment epithelium is uniquely suited to gene therapy that uses lipid-mediated DNA transfer due to its high phagocytic activity in situ. We compared the relative efficacy of phagocytosis on the uptake of labeled plasmid vectors by retinal pigment epithelial and ciliary epithelial cells in vitro. Relative levels of endocytosis were then compared with the efficiency of marker transgene expression in these cells. Human retinal pigment epithelial and ciliary epithelial cells from a single donor were isolated and expanded in vitro. Polyplex-mediated transfections were performed using a rhodamine-labeled expression vector for green fluorescent protein. Rhodamine-labeled endosomes were examined by fluorescence microscopy at different time points. Rhodamine labeling and green fluorescent protein expression were analyzed by flow cytometry 48 h after transfection. These gene transfer studies showed that expression of transgenes does occur in both human retinal pigment epithelial and ciliary epithelial cells in vitro. Endocytosis of labeled plasmid vectors occurs at a significantly higher number and density in retinal pigment epithelial cells than in ciliary epithelial cells (P < 0.04). However, the efficiency of marker transgene expression is similar in the two cell types. These studies demonstrate that the higher intrinsic phagocytic activity does not enhance the efficacy of transgene expression in retinal pigment epithelial cells in vitro. Both human retinal pigment epithelial and ciliary epithelial cells are competent recipients for lipid-mediated gene transfer, and transgene expression occurs at similar levels in both cell types.  相似文献   

10.
We acquire information from the outside world through our eyes which contain the retina, the photosensitive component of the central nervous system. Once the adult mammalian retina is damaged, the retinal neuronal death causes a severe loss of visual function. It has been believed that the adult mammalian retina had no regenerative capacity. However, the identification of neuronal progenitor cells in the retina sheds some light on cellular therapies for damaged retinal regeneration. In this review, we highlight three potential stem/progenitor cells in the eye, the ciliary body epithelium cells, the iris pigmented epithelium cells, and Müller glia. In order to make them prime candidates for the possible treatment of retinal diseases, it is important to understand their basic characters. In addition, we discuss the key signaling molecules that function extracellularly and determine whether neuronal progenitors remain quiescent, proliferate, or differentiate. Finally, we introduce a secreted protein, Tsukushi, which is a possible candidate as a niche molecule for retinal stem/progenitor cells.  相似文献   

11.
    
In clonal culture, colonies of 3–4 week old chick retinal pigmented epithelial cells exhibit Alcian Blue positive extracellular matrix (ECM) material on the surface of the cells. Alcian blue positive ECM is located between undifferentiated cells at the edges of the disc-shaped colonies and beneath the differentiated cells in the colony center. The latter material is associated with the basement membrane. The staining properties suggest that glycosaminoglycans (GAG) are present in these regions. Extraction of GAG from homogenates of colonies, followed by electrophoresis on cellulose acetate strips, results in three bands with mobilities similar to those of hyaluronic acid, heparan sulfate, and chondroitin sulfate, respectively. All three bands label with [3H]glucosamine, and the last two also label with [35S]sulfate. The composition appeared to differ when colonies were grown in different media. Digestion of the GAG preparations with various enzymes suggests that bands II and III represent heparan sulfate and chondroitin sulfate, respectively, in colonies grown in Ham's F10g medium. The composition of band I is as yet undetermined. In minimal Eagle's medium (MEM), bands I and III consisted of hyaluronic acid and chondroitin sulfate, respectively, while band II had properties suggestive of a copolymer of heparan sulfate and an unidentified GAG. Cells release only one [3H]glucosamine-labelled GAG into the medium. This material has a mobility similar to hyaluronic acid and is digested by Streptomyces hyaluronidase, suggesting that it is hyaluronic acid. Staining with Alcian Blue at different pH suggests that it may represent the material associated with the upper surface of the cells. Some of the ECM located between the undifferentiated cells and associated with the basement membrane in the differentiated regions of the colonies stains with Alcian Blue at pH 1.0 and 0.2 suggesting that it may contain GAGs found in bands I and II. Colonies treated with medium containing 6-diazo-5-oxo-L-norleucine (DON), an inhibitor of GAG synthesis, for 48 hr showed a reduced Alcian Blue staining of the ECM in the undifferentiated regions. After 72 hr of treatment with DON, the undifferentiated cells had detached from the plate, whereas the differentiated cells remained intact. The results suggest that the GAG may be involved in cellular adhesion, particularly of the undifferentiated cells.  相似文献   

12.
    
Glaucoma, one of the leading causes of irreversible blindness, is commonly associated with elevated intraocular pressure due to impaired aqueous humour (AH) drainage through the trabecular meshwork. The aetiological mechanisms contributing to impaired AH outflow, however, are poorly understood. Here, we identified the secreted form of vasorin, a transmembrane glycoprotein, as a common constituent of human AH by mass spectrometry and immunoblotting analysis. ELISA assay revealed a significant but marginal decrease in vasorin levels in the AH of primary open‐angle glaucoma patients compared to non‐glaucoma cataract patients. Human trabecular meshwork (HTM) cells were confirmed to express vasorin, which has been shown to possess anti‐apoptotic and anti‐TGF‐β activities. Treatment of HTM cells with vasorin induced actin stress fibres and focal adhesions and suppressed TGF‐β2‐induced SMAD2/3 activation in HTM cells. Additionally, cobalt chloride‐induced hypoxia stimulated a robust elevation in vasorin expression, and vasorin suppressed TNF‐α‐induced cell death in HTM cells. Taken together, these findings reveal the importance of vasorin in maintenance of cell survival, inhibition of TGF‐β induced biological responses in TM cells, and the decreasing trend in vasorin levels in the AH of glaucoma patients suggests a plausible role for vasorin in the pathobiology of ocular hypertension and glaucoma.  相似文献   

13.
14.
    
Interactions between neurons and their targets of innervation influence many aspects of neural development. To examine how synaptic activity interacts with neurotrophic signaling, we determined the effects of blocking neuromuscular transmission on survival and axonal outgrowth of ciliary neurons from the embryonic chicken ciliary ganglion. Ciliary neurons undergo a period of cell loss due to programmed cell death between embryonic Days (E) 8 and 14 and they innervate the striated muscle of the iris. The nicotinic antagonist d‐tubocurarine (dTC) induces an increase in branching measured by counting neurofilament‐positive voxels (NF‐VU) in the iris between E14‐17 while reducing ciliary neuron survival. Blocking ganglionic transmission with dihyro‐β‐erythroidin and α‐methyllycacontine does not mimic dTC. At E8, many trophic factors stimulate neurite outgrowth and branching of neurons placed in cell culture; however, at E13, only GDNF stimulates branching selectively in cultured ciliary neurons. The GDNF‐induced branching at E13 could be inhibited by BDNF. Blocking ret signaling in vivo with a dominant negative (dn)ret decreases survival of ciliary and choroid neurons at E14 and prevents dTC induced increases in NF‐VU in the iris at E17. Blocking TRKB signaling with dn TRKB increases NF‐VU in the iris at E17 and decreases neuronal survival at E17, but not at E14. Thus, RET promotes survival during programmed cell death in the ciliary ganglion and contributes to promoting branching when synaptic transmission is blocked while TRKB inhibits branching and promotes maintenance of neuronal survival. These studies highlight the multifunctional nature of trophic molecule function during neuronal development. © 2012 Wiley Periodicals, Inc. Develop Neurobiol, 2013  相似文献   

15.
Summary Distribution and organization of the extracellular glycoproteins, fibronectin and laminin, in clonal cultures of chick retinal pigmented epithelial cells have been investigated using indirect immunofluorescence microscopy. Fibronectin is located on the apical and basal cell surfaces and between the cells in the undifferentiated regions of the colony (outer edge and stratified region). It seems to run parallel to intracellular microfilament bundles and to be associated with them across the cell membrane. In the differentiated region of thecolony (center), it is located exclusively on the basal cell surface and seems to be primarily associated with the collagen bundles of the basement membrane. The locations suggest that it may be necessary to stabilizing the sheet of differentiated cells in the colony center. In all regions except the outer edge of the colony, laminin is associated with the basal cell surfaces where it forms a meshwork of short, fine strands. The laminin has a totally different staining pattern from the fibronectin and does not seem to be associated with collagen bundles. The location suggests that laminin may be present in the basal lamina and may be involved in adhesion of the cells to the substratum. This work was supported by Medical Research Council of Canada (MA-6337).  相似文献   

16.
Summary In this report we compare attachment, morphology, and growth of retinal pigmented epithelial (RPE) cells isolated by either EDTA or dispase digestion and plated onto either uncoated substrata (plastic or glass) or substrata derivatized by covalent conjugation of proteins of reconstituted basement membrane gel. We show that the derivatized substrata promote better initial attachment and subsequent cell growth than the uncoated substrata. These effects are independent of the method of dissociation of cells from the tissue. Cell morphology, however, is strongly affected by the method used for tissue dispersion. The dispase-dissociated cells are very flat, display a circumferential arrangement of microfilaments and elaborate extensive arrays of vinculin-containing cell-to-cell junctions. In contrast, EDTA-dissociated cells are much less spread, display straight microfilament bundles criss-crossing the cytoplasm and have less extensive cell-to-cell junctions. The protein-derivatized substrata also promote maintenance of differentiated traits such as pigmentation, by the RPE cells. Supported by Medical Research Council grant MA-9713 and by a grant from the R P Eye Research Foundation.  相似文献   

17.
The hedgehog (hh) genes encode secreted signaling proteins that have important developmental functions in vertebrates and invertebrates. In Drosophila, expression of hh coordinates retinal development by propagating a wave of photoreceptor differentiation across the eye primordium. Here we report that two vertebrate hh genes, sonic hedgehog (shh) and tiggy-winkle hedgehog (twhh), may perform similar functions in the developing zebrafish. Both shh and twhh are expressed in the embryonic zebrafish retinal pigmented epithelium (RPE), initially in a discrete ventral patch which then expands outward in advance of an expanding wave of photoreceptor recruitment in the subjacent neural retina. A gene encoding a receptor for the hedgehog protein, ptc-2, is expressed by retinal neuroepithelial cells. Injection of a cocktail of antisense (αshh/αtwhh) oligonucleotides reduces expression of both hh genes in the RPE and slows or arrests the progression of rod and cone photoreceptor differentiation. Zebrafish strains known to have mutations in Hh signaling pathway genes similarly exhibit retardation of photoreceptor differentiation. We propose that hedgehog genes may play a role in propagating photoreceptor differentiation across the developing eye of the zebrafish.  相似文献   

18.
The neural retina of adult goldfish can regenerate from an intrinsic source of proliferative neuronal progenitor cells, but it is not known whether the retina can regenerate by transdifferentiation of the retinal pigmented epithelium (RPE), a phenomenon demonstrated in adult newts. In this study, we asked whether following surgical removal of the neural retina in adult goldfish the RPE was capable of autonomously transdifferentiating and generating new neural retina. The retina was prelabeled by injecting the fluorescent dye Fluoro-Gold (FG) into the eye prior to surgical removal; this procedure ensured that residual retina was labeled with FG and could therefore be distinguished from unlabeled, regenerated retina. To examine the time course of retinal regeneration, and to identify regenerated retinal neurons, the thymidine analogue bromodeoxyuridine was injected intraocularly, and retinas were examined up to 2 months later. We found that the RPE did not transdifferentiate; instead, retinas regenerated only when pieces of residual neural retina were left intact. Under these circumstances, newly regenerated cells derived from proliferating cells intrinsic to the residual neural retina. When retinas were completely removed, as was evident from a lack of FG labeling, there was no retinal regeneration. © 1995 John Wiley & Sons, Inc.  相似文献   

19.
The melanosome, an organelle specialized for melanin synthesis, is one of the lysosome-related organelles. Its lumen is reported to be acidified by vacuolar-type H+-ATPase (V-ATPase). Mammalian V-ATPase exhibits structural diversity in its subunit isoforms; with regard to membrane intrinsic subunit a, four isoforms (a1–a4) have been found to be localized to distinct subcellular compartments. In this study, we have shown that the a3 isoform is co-localized with a melanosome marker protein, Pmel17, in mouse melanocytes. Acidotropic probes (LysoSensor and DAMP) accumulate in non-pigmented Pmel17-positive melanosomes, and DAMP accumulation is sensitive to bafilomycin A1, a specific inhibitor of V-ATPase. However, none of the subunit a isoforms is associated with highly pigmented mature melanosomes, in which the acidotropic probes are also not accumulated. oc/oc mice, which have a null mutation at the a3 locus, show no obvious defects in melanogenesis. In the mutant melanocytes, the expression of the a2 isoform is modestly elevated, and a considerable fraction of this isoform is localized to premature melanosomes. These observations suggest that the V-ATPase keeps the lumen of premature melanosomes acidic, whereas melanosomal acidification is less significant in mature melanosomes. Ge-Hong Sun-Wada and Yoh Wada contributed equally to this study. This study was supported in part by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science, and Technology of Japan and by the Hayashi and Noda Foundations.  相似文献   

20.
Summary— Sampling for nasal or bronchial ciliated cells requires the use of anaesthetic agents, but such drugs may interfere with the morphological or functional results. Lidocaine is the most frequently used local anaesthetic. In order to study the morphological and functional effects of lidocaine hydrochloride, we designed an experimental study on ciliated cells from guinea pig and bovine trachea. On guinea pig tracheal specimens, different lidocaine concentrations (0.05, 0.25 and 1%) were tested. Tracheal rings were immersed in either culture medium alone (control) or in different lidocaine concentrations. Measurements of ciliary beat frequency (CBF) were performed by the stroboscopic method. Tracheal rings were consecutively incubated in culture medium alone and a second set of measurements was performed. Tracheal rings were studied by light microscopy after incubation in either 1% lidocaine or in culture medium alone. On bovine tracheal specimens, a coton wool swab impregnated with different lidocaine concentrations (0, 0.25, 1, 2.5 and 5%) was placed in contact with the tracheal mucosa. Three different kinds of samples were collected: the first one was used to study CBF, the second one (0.1 and 5%) was studied by scanning electron microscope (SEM) and the third (0.1 and 5%) by transmission electron microscopy (TEM). The results on guinea pig specimens show a significant but reversible CBF diminution for concentrations of 0.25 and 1% lidocaine and cellular lesions for the concentration of 1%. On bovine specimens a diminution in CBF for concentrations of 2.5 and 5% lidocaine was shown and the SEM study demonstrated obvious lesions on the epithelial surface treated with the 5% concentration. The TEM study showed morphological alterations on respiratory epithelium (deciliated areas, cytoplasmic vacuoles and mitochondrial swelling) for 5% lidocaine concentration. However the axonemal structure of cilia was normal for control and 5% concentration. We concluded that in vitro lidocaine can inhibit the CBF and that high concentrations of lidocaine can damage the respiratory epithelium but without modifications of the axonemal ultrastructure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号