首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Frost and heat events can be challenging for sessile organisms that cannot escape thermal extremes. However, adverse effects of thermal stress on fitness may be reduced by pre‐exposure to cold or heat, a process known as acclimation. To understand the ecological and evolutionary implications of acclimation, we investigated (1) the reduction in performance due to stress pre‐exposure, (2) the magnitude of increased leaf resistance to subsequent stress, (3) the costs of acclimation and (4) the genes differing in expression due to stress pre‐exposure. Plants of Arabidopsis lyrata were raised under three treatments of pre‐exposure: bouts of frost, bouts of heat or constant temperature. Resistance of leaves to subsequent frost and heat stress was then measured by electrolyte leakage. RNA‐seq analysis was performed to examine the genes differentially expressed between stress‐pre‐exposed and control plants. Pre‐exposure to stress during growth decreased plant size and increased leaf resistance to subsequent stress independent of whether pre‐exposure was to frost or heat. But the highest increase in leaf resistance to frost was found after pre‐exposure to frost (as a trend) and in leaf resistance to heat after pre‐exposure to heat. No evidence for costs of acclimation was detected. RNA‐sequencing suggested that acclimation by frost and heat pre‐exposure was caused by distinct mechanisms: modification of the chloroplast membrane and modification of the cell wall and membrane, respectively. Our results suggest that thermal resistance is a labile complex of traits, strongly affected by the previously experienced stress environment, with undetermined costs.  相似文献   

2.
The long‐term survival of species and populations depends on their ability to adjust phenotypic values to environmental conditions. In particular, the capability of dealing with environmental stress to buffer detrimental effects on fitness is considered to be of pivotal importance. Resistance traits are readily modulated by a wide range of environmental factors. In the present study, Drosophila melanogaster Meigen is used to investigate plastic responses to temperature and photoperiod in stress resistance traits. The results reveal that stress resistance traits (cold, heat, starvation and desiccation resistance) are affected by the factors temperature and sex predominantly. Cooler temperatures compared with warmer temperatures increase cold tolerance, desiccation and starvation resistance, whereas they reduce heat tolerance. Except for heat resistance, females are more stress‐resistant than males. Stress resistance traits are also affected by photoperiod. Shorter photoperiods decrease cold tolerance, whereas longer photoperiods enhance desiccation resistance. Overall, thermal effects are pervasive throughout all measured resistance traits, whereas photoperiodic effects are of limited importance in the directly developing (i.e. nondiapausing) flies used here, suggesting that pronounced photoperiodic effects on stress resistance traits may be largely limited to, and triggered by, diapause‐inducing effects.  相似文献   

3.
Abstract Chill‐susceptible insects are able to improve their survival of acute cold exposure over both the short term (i.e. hardening at a relatively severe temperature) and longer term (i.e. acclimation responses at milder temperatures over a longer time frame). However, the mechanistic overlap of these responses is not clear. Four larval stages of four different strains of Drosophila melanogaster are used to test whether low temperature acclimation (10 °C for 48 h) improves the acute cold tolerance (LT90, ~2 h) of larvae, and whether acclimated larvae still show hardening responses after brief exposures to nonlethal cold or heat, or a combination of the two. Acclimation results in increased cold tolerance in three of four strains, with variation among instars. However, if acclimation is followed by hardening pre‐treatments, there is no improvement in acute cold survival. It is concluded that short‐term thermal responses (e.g. hardening) may be of more ecological relevance to short‐lived life stages such as larvae, and that the mechanisms of low temperature hardening and acclimation in D. melanogaster may be antagonistic, rather than complementary.  相似文献   

4.
Ecotherms adjust their physiology to environmental temperatures. Long‐term exposures to heat or cold typically induce acclimation responses that generate directional, but reversible shifts in thermal tolerance and performance. However, less is known about how short exposure in different life stages will affect the adult phenotype. In the present study, we compared the effects of long‐term temperature exposure to 15, 19 and 31 °C with that of brief (16 h) exposure periods at the same temperatures in Drosophila melanogaster eggs, larvae, pupae, or adults, respectively. The acclimation responses are evaluated using activity measurements at 11, 15, 19, 27, 31 and 33 °C and by measuring upper and lower thermal limits (CTmax and CTmin) in 5‐day‐old adult males. As expected, long‐term cold exposure reduces relative CTmin, whereas long‐term heat exposure increases relative CTmax. By contrast, we find little effect on thermal limits when using short‐term exposures at different life stages. Long‐term exposures to 31 and 15 °C both suppressed activity relative to the 19 °C control, suggesting that development at high and low temperatures may lead to reduced activity later in life. Short‐term cold exposure early in development reduces activity in the adult stage, whereas the effects of short‐term heat exposure on behaviour are dependent on life stage and test temperature. Together, our results highlight how the thermal sensitivity of the trait measured determines the ability to detect acclimation responses.  相似文献   

5.
Theory predicts that inbreeding depression should be more pronounced under environmental stress due to an increase in the expression of recessive deleterious alleles. If so, inbred populations may be especially vulnerable to environmental change. Against this background, we here investigate effects of inbreeding, temperature stress and its interactions with inbreeding in the tropical butterfly Bicyclus anynana. We use a full‐factorial design with three levels of inbreeding (F = 0/0.25/0.38) and three temperature treatments (2 h exposure to 1, 27 or 39 °C). Despite using relatively low levels of inbreeding significant inbreeding depression was found in pupal mass, pupal time, thorax mass, abdomen fat content, egg hatching success and fecundity. However, stress resistance traits (heat tolerance, immune function) were not affected by inbreeding and interactions with temperature treatments were virtually absent. We thus found no support for an increased sensitivity of inbred individuals to environmental stress, and suspect that such patterns are restricted to harsher conditions. Our temperature treatments evidently imposed stress, significantly reducing longevity, fecundity, egg hatching success and haemocyte numbers, while fat content, protein content and lysozyme activity remained unaffected. Males and females differed in all traits measured except pupal time, protein content and phenoloxidase (PO) activity. Correlation analyses revealed, among others, a trade‐off between PO and lysozyme activity, and negative correlations between fat content and several other traits. We stress that more data are needed on the effects of inbreeding, temperature variation and sexual differences on insect immune function before more general conclusions can be drawn.  相似文献   

6.
Plastic adjustments of physiological tolerance to a particular stressor can result in fitness benefits for resistance that might manifest not only in that same environment but also be advantageous when faced with alternative environmental stressors, a phenomenon termed ‘cross‐tolerance’. The nature and magnitude of cross‐tolerance responses can provide important insights into the underlying genetic architecture, potential constraints on or versatility of an organism's stress responses. In this study, we tested for cross‐tolerance to a suite of abiotic factors that likely contribute to setting insect population dynamics and geographic range limits: heat, cold, desiccation and starvation resistance in adult Ceratitis rosa following acclimation to all these isolated individual conditions prior to stress assays. Traits of stress resistance scored included critical thermal (activity) limits, chill coma recovery time (CCRT), heat knockdown time (HKDT), desiccation and starvation resistance. In agreement with other studies, we found that acclimation to one stress typically increased resistance for that same stress experienced later in life. A more novel outcome, however, is that here we also found substantial evidence for cross‐tolerance. For example, we found an improvement in heat tolerance (critical thermal maxima, CTmax) following starvation or desiccation hardening and improved desiccation resistance following cold acclimation, indicating pronounced cross‐tolerance to these environmental stressors for the traits examined. We also found that two different traits of the same stress resistance differed in their responsiveness to the same stress conditions (e.g. HKDT was less cross‐resistant than CTmax). The results of this study have two major implications that are of broader importance: (i) that these traits likely co‐evolved to cope with diverse or simultaneous stressors, and (ii) that a set of common underlying physiological mechanisms might exist between apparently divergent stress responses in this species. This species may prove to be a valuable model for future work on the evolutionary and mechanistic basis of cross‐tolerance.  相似文献   

7.
Daily and seasonal fluctuations in temperature present significant challenges for the survival of many ectothermic species that can be tempered via thermal acclimation. In the present study, we use multiple naturally derived genotypes of Drosophila melanogaster to determine the persistence of beneficial short‐term thermal acclimation on subsequent survival after cold shock. We found that the benefit of short‐term acclimation persisted for 2 h in most genotypes after a rapid cold hardening treatment. Genotype did not directly influence the persistence of short‐term acclimation benefits, indicating that environmental variation may be more important for the persistence of acclimation benefits rather than genetic capacity for acclimation. The present study extends the current understanding of the limits and importance of short‐term acclimation events, providing greater detail on the timing of the loss of short‐term acclimation benefits in a genetically variable natural population.  相似文献   

8.
Understanding how thermal selection affects phenotypic distributions across different time scales will allow us to predict the effect of climate change on the fitness of ectotherms. We tested how seasonal temperature variation affects basal levels of cold tolerance and two types of phenotypic plasticity in Drosophila melanogaster. Developmental acclimation occurs as developmental stages of an organism are exposed to seasonal changes in temperature and its effect is irreversible, while reversible short‐term acclimation occurs daily in response to diurnal changes in temperature. We collected wild flies from a temperate population across seasons and measured two cold tolerance metrics (chill‐coma recovery and cold stress survival) and their responses to developmental and short‐term acclimation. Chill‐coma recovery responded to seasonal shifts in temperature, and phenotypic plasticity following both short‐term and developmental acclimation improved cold tolerance. This improvement indicated that both types of plasticity are adaptive, and that plasticity can compensate for genetic variation in basal cold tolerance during warmer parts of the season when flies tend to be less cold tolerant. We also observed a significantly stronger trade‐off between basal cold tolerance and short‐term acclimation during warmer months. For the longer‐term developmental acclimation, a trade‐off persisted regardless of season. A relationship between the two types of plasticity may provide additional insight into why some measures of thermal tolerance are more sensitive to seasonal variation than others.  相似文献   

9.
Organisms inhabiting the intertidal zone have been used to study natural ecophysiological responses and adaptations to thermal stress because these organisms are routinely exposed to high‐temperature conditions for hours at a time. While intertidal organisms may be inherently better at withstanding temperature stress due to regular exposure and acclimation, they could be more vulnerable to temperature stress, already living near the edge of their thermal limits. Strong gradients in thermal stress across the intertidal zone present an opportunity to test whether thermal tolerance is a plastic or canalized trait in intertidal organisms. Here, we studied the intertidal pool‐dwelling calcified alga, Ellisolandia elongata, under near‐future temperature regimes, and the dependence of its thermal acclimatization response on environmental history. Two timescales of environmental history were tested during this experiment. The intertidal pool of origin was representative of long‐term environmental history over the alga's life (including settlement and development), while the pool it was transplanted into accounted for recent environmental history (acclimation over many months). Unexpectedly, neither long‐term nor short‐term environmental history, nor ambient conditions, affected photosynthetic rates in E. elongata. Individuals were plastic in their photosynthetic response to laboratory temperature treatments (mean 13.2°C, 15.7°C, and 17.7°C). Further, replicate ramets from the same individual were not always consistent in their photosynthetic performance from one experimental time point to another or between treatments and exhibited no clear trend in variability over experimental time. High variability in climate change responses between individuals may indicate the potential for resilience to future conditions and, thus, may play a compensatory role at the population or species level over time.  相似文献   

10.
Thermal phenotypic plasticity, otherwise known as acclimation, plays an essential role in how organisms respond to short‐term temperature changes. Plasticity buffers the impact of harmful temperature changes; therefore, understanding variation in plasticity in natural populations is crucial for understanding how species will respond to the changing climate. However, very few studies have examined patterns of phenotypic plasticity among populations, especially among ant populations. Considering that this intraspecies variation can provide insight into adaptive variation in populations, the goal of this study was to quantify the short‐term acclimation ability and thermal tolerance of several populations of the winter ant, Prenolepis imparis. We tested for correlations between thermal plasticity and thermal tolerance, elevation, and body size. We characterized the thermal environment both above and below ground for several populations distributed across different elevations within California, USA. In addition, we measured the short‐term acclimation ability and thermal tolerance of those populations. To measure thermal tolerance, we used chill‐coma recovery time (CCRT) and knockdown time as indicators of cold and heat tolerance, respectively. Short‐term phenotypic plasticity was assessed by calculating acclimation capacity using CCRT and knockdown time after exposure to both high and low temperatures. We found that several populations displayed different chill‐coma recovery times and a few displayed different heat knockdown times, and that the acclimation capacities of cold and heat tolerance differed among most populations. The high‐elevation populations displayed increased tolerance to the cold (faster CCRT) and greater plasticity. For high‐temperature tolerance, we found heat tolerance was not associated with altitude; instead, greater tolerance to the heat was correlated with increased plasticity at higher temperatures. These current findings provide insight into thermal adaptation and factors that contribute to phenotypic diversity by revealing physiological variance among populations.  相似文献   

11.
Ongoing climate change is a major threat to biodiversity. However, although many species clearly suffer from ongoing climate change, others benefit from it, for example, by showing range expansions. However, which specific features determine a species’ vulnerability to climate change? Phenotypic plasticity, which has been described as the first line of defence against environmental change, may be of utmost importance here. Against this background, we here compare plasticity in stress tolerance in 3 copper butterfly species, which differ arguably in their vulnerability to climate change. Specifically, we investigated heat, cold and desiccation resistance after acclimatization to different temperatures in the adult stage. We demonstrate that acclimation at a higher temperature increased heat but decreased cold tolerance and desiccation resistance. Contrary to our predictions, species did not show pronounced variation in stress resistance, though plastic capacities in temperature stress resistance did vary across species. Overall, our results seemed to reflect population—rather than species‐specific patterns. We conclude that the geographical origin of the populations used should be considered even in comparative studies. However, our results suggest that, in the 3 species studied here, vulnerability to climate change is not in the first place determined by stress resistance in the adult stage. As entomological studies focus all too often on adults only, we argue that more research effort should be dedicated to other developmental stages when trying to understand insect responses to environmental change.  相似文献   

12.
Insect thermal tolerance shows a range of responses to thermal history depending on the duration and severity of exposure. However, few studies have investigated these effects under relatively modest temperature variation or the interactions between short‐ and longer‐term exposures. In the present study, using a full‐factorial design, 1 week‐long acclimation responses of critical thermal minimum (CTmin) and critical thermal maximum (CTmax) to temperatures of 20, 25 and 30 °C are investigated, as well as their interactions with short‐term (2 h) sub‐lethal temperature exposures to these same conditions (20, 25 and 30 °C), in two fruit fly species Ceratitis capitata (Wiedemann) and Ceratitis rosa Karsch from South Africa. Flies generally improve heat tolerance with high temperature acclimation and resist low temperatures better after acclimation to cooler conditions. However, in several cases, significant interaction effects are evident for CTmax and CTmin between short‐ and long‐term temperature treatments. Furthermore, to better comprehend the flies' responses to natural microclimate conditions, the effects of variation in heating and cooling rates on CTmax and CTmin are explored. Slower heating rates result in higher CTmax, whereas slower cooling rates elicit lower CTmin, although more variation is detected in CTmin than in CTmax (approximately 1.2 versus 0.5 °C). Critical thermal limits estimated under conditions that most closely approximate natural diurnal temperature fluctuations (rate: 0.06 °C min?1) indicate a CTmax of approximately 42 °C and a CTmin of approximately 6 °C for these species in the wild, although some variation between these species has been found previously in CTmax. In conclusion, the results suggest critical thermal limits of adult fruit flies are moderated by temperature variation at both short and long time scales and may comprise both reversible and irreversible components.  相似文献   

13.
Genetic variation for resistance to a high temperature stress under saturated humidity was examined within and among three Drosophila buzzatii populations from Australia. Further, the acclimation of this species to high temperatures was tested by prelreating flies for a shorter, sublethal, time period under conditions that lead to expression of heat shock proteins. Genetic variation for temperature resistance was present among lines for flies either pretreated to high temperature or not. Pro-treating increased survival, with the benefit significantly higher if pretreating was performed 24 h rather than 96 h before exposure to the potentially lethal stress. For (lies pretreated at both times, resistance to heat stress was even greater. The lack of a significant treatment by line interaction term suggested that all lines were similarly plastic for acclimation following previous exposure(s) to a high temperature. Significantly more males survived the heat stress than females, and, within each sex, larger flies were generally more heat resistant than smaller ones. Additionally, the lines from the population that naturally encounters the highest temperatures were generally more resistant to high temperature stress.  相似文献   

14.
A fundamental question in life‐history evolution is how organisms cope with fluctuating environments, including variation between stressful and benign conditions. For short‐lived organisms, environments commonly vary between generations. Using a novel experimental design, we exposed wild‐derived Drosophila melanogaster to three different selection regimes: one where generations alternated between starvation and benign conditions, and starvation was always preceded by early exposure to cold; another where starvation and benign conditions alternated in the same way, but cold shock sometimes preceded starvation and sometimes benign conditions; and a third where conditions were always benign. Using six replicate populations per selection regime, we found that selected flies increased their starvation resistance, most strongly for the regime where cold and starvation were reliably combined, and this occurred without decreased fecundity or extended developmental time. The selected flies became stress resistant, displayed a pronounced increase in early life food intake and resource storage. In contrast to previous experiments selecting for increased starvation resistance in D. melanogaster, we did not find increased storage of lipids as the main response, but instead that, in particular for females, storage of carbohydrates was more pronounced. We argue that faster mobilization of carbohydrates is advantageous in fluctuating environments and conclude that the phenotype that evolved in our experiment corresponds to a compromise between the requirements of stressful and benign environments.  相似文献   

15.
We aim at studying adaptation to genetic and environmental stress and its evolutionary implications at different levels of biological organization. Stress influences cellular processes, individual physiology, genetic variation at the population level, and the process of natural selection. To investigate these highly connected levels of stress effects, it is advisable - if not critical - to integrate approaches from ecology, evolution, physiology, molecular biology and genetics. To investigate the mechanisms of stress resistance, how resistance evolves, and what factors contribute to and constrain its evolution, we use the well-defined model systems ofDrosophila species, representing both cosmopolitan species such asD. melanogaster with a known genome map, and more specialized and ecologically well described species such as the cactophilicD. buzzatii. Various climate-related stresses are used as model stresses including desiccation, starvation, cold and heat. Genetic stress or genetic load is modelled by studying the consequences of inbreeding, the accumulation of (slightly) deleterious mutations, hybridization or the loss of genetic variability. We present here a research plan and preliminary results combining various approaches: molecular techniques such as microarrays, quantitative trait loci (QTL) analyses, quantitative PCR, ELISA or Western blotting are combined with population studies of resistance to climatic and genetic stress in natural populations collected across climatic gradients as well as in selection lines maintained in the laboratory.  相似文献   

16.
Resistance to a short term exposure to a high temperature stress was examined in eggs, larvae and pupae of Drosophila buzzfltii from seven localities. Across development, pupae were most resistant, followed by eggs, and then first and third-instar larvae. Variation among populations for resistance to heat stress was significant in all life stages. However, there was much less variation among populations where measured as eggs and pupae than for both first and third instar larvae. Older larvae showed large changes both in viability and developmental time, while exposure of young larvae to heat stress led to a decline in viability without delayed development. Populations that had the shortest developmental time at 25oC were relatively the most resistant to heat stress as larvae. High relative resistance at one preadult life stage was not necessarily associated with relatively high resistance at another, or with previous measurements of resistance for adults from these populations. Comparison of populations that were more similar in their pattern of change in resistance across development suggested a relationship with the climate of origin. The possibility that developmental variation in the expression of heat shock proteins may cause variation in resistance to thermal stress for different life stages is discussed.  相似文献   

17.
The optimal temperature at which an organism grows and develops is commonly correlated with latitude and elevation; however, the maximum temperature for physiological performance often is not. This makes performance at temperatures between the optimum and the maximum of particular interest. Temperature can influence long‐term performance (growth and development), as well as short‐term performance (heat shock protein) responses differentially. In the present study, two populations of the clouded sulphur butterfly Colias eriphyle Edwards that differ in elevation, thermal regime and optimal and maximum temperatures are studied to quantify their responses to repeated, sub‐lethal heat treatments early in development (second instar). Heat treatments accelerate development during the second to fourth instars in both populations initially, although this effect disappears by pupation. Heat treatment decreases pupal mass in the lower elevation population, suggesting that repeated exposure to high temperatures early in development may reduce final size and fecundity in this population. Heat shock protein gene (hsp70) expression levels in the lower elevation (1633 m a.s.l.) population are highest 24 h after the start of the heat treatment and then the fall to pre‐exposure levels by 36–72 h, suggesting a rapid response to stressful temperatures. By contrast, heat treatment has no significant effect on pupal mass in the higher elevation (2347 m a.s.l.) population. This population has higher levels of hsp70 expression overall but constant expression levels, suggesting that the temperature treatments used are insufficient to elicit a heat stress response. Overall, the effects of repeated exposure to sub‐lethal high temperatures early in development on growth, final size and gene expression differ between populations that differ in thermal sensitivity.  相似文献   

18.
The olive fruit fly Bactrocera (Dacus) oleae Gmelin is a major olive pest in Greece and other Mediterranean countries. Its population density and respective olive infestation is usually low in many areas of northern Greece during summer months. To some extent, this may be due to the prevailing high temperature and low relative humidity conditions. In the present work the effects of short term exposure to high temperatures on the survival and egg production of B. oleae pre‐imaginal stages and adults were studied under laboratory conditions. Different larval instars within infested green olive fruits, adults and pupae and were exposed for 2 h to a series of different high constant temperatures ranging from 34 to 42°C. Subsequently, survival percentages of pre‐imaginal stages and adults as well as the number of eggs laid by females previously exposed to high temperatures were determined. At temperatures up to 38°C high survival percentages of larvae and adults were observed, whereas pupae displayed a relatively increased heat tolerance up to 40°C. Female longevity and egg production were substantially reduced after heat stress. Prior acclimation at 33°C for 1 and 3 days resulted in increased adult survival following heat stress. We discuss the results with respect to the ability of the fly to survive and reproduce under high summer temperatures.  相似文献   

19.
Haberlea rhodopensis Friv. is unique with its ability to survive two extreme environmental stresses—desiccation to air-dry state and subzero temperatures. In contrast to desiccation tolerance, the mechanisms of freezing tolerance of resurrection plants are scarcely investigated. In the present study, the role of antioxidant defense in the acquisition of cold acclimation and freezing tolerance in this resurrection plant was investigated comparing the results of two sets of experiments—short term freezing stress after cold acclimation in controlled conditions and long term freezing stress as a part of seasonal temperature fluctuations in an outdoor ex situ experiment. Significant enhancement in flavonoids and anthocyanin content was observed only as a result of freezing-induced desiccation. The total amount of polyphenols increased upon cold acclimation and it was similar to the control in post freezing stress and freezing-induced desiccation. The main role of phenylethanoid glucoside, myconoside and hispidulin 8-C-(2-O-syringoyl-b-glucopyranoside) in cold acclimation and freezing tolerance was elucidated. The treatments under controlled conditions in a growth chamber showed enhancement in antioxidant enzymes activity upon cold acclimation but it declined after subsequent exposure to −10 °C. Although it varied under ex situ conditions, the activity of antioxidant enzymes was high, indicating their important role in overcoming oxidative stress under all treatments. In addition, the activity of specific isoenzymes was upregulated as compared to the control plants, which could be more useful for stress counteraction compared to changes in the total enzyme activity, due to the action of these isoforms in the specific cellular compartments.Supplementary informationThe online version contains supplementary material available at 10.1007/s12298-021-00998-0.  相似文献   

20.
Photosynthesis is one of the most important metabolic processes of algae; which is altered as a stress response. During mass cultivation of algae, temperature rise and high light are major factors that affect biomass productivity. High temperature affects photosystem II (PSII) complex irreversibly, damaging intermolecular interactions in it. However, the impact of high temperature on photosynthesis is highly variable among different algal species, depending on the prior acclimation to environmental conditions they were exposed to. The acclimation plays an important role in combating high temperature stress via regulation of photosynthetic responses. Chlorophyll a fluorescence is a highly sensitive, non‐destructive and reliable tool for such measurements of photosynthetic parameters, which provides information about algal photosynthetic performance under given conditions. To understand the effect of heat stress on the responses of high light acclimated alga Chlorella saccharophila, chlorophyll a fluorescence transients were measured after heat exposure at 40°C. Our study demonstrates that rise in temperature for short duration; during open field cultivation reversibly affects the efficiency of PSII in light acclimated alga C. saccharophila. The effects of heat stress on chlorophyll a fluorescence in this alga, grown under high light (max‐1600 μmol photons m?2 s?1) are presented here; they are used to infer changes in photosynthetic process during its exposure to heat, as well as their recovery after 72 h. We speculate that heat resistance may have been acquired due to prior exposures to high light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号