首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
2.
The dynamics and fate of terrestrial organic matter (OM) under elevated atmospheric CO2 and nitrogen (N) fertilization are important aspects of long‐term carbon sequestration. Despite numerous studies, questions still remain as to whether the chemical composition of OM may alter with these environmental changes. In this study, we employed molecular‐level methods to investigate the composition and degradation of various OM components in the forest floor (O horizon) and mineral soil (0–15 cm) from the Duke forest free air CO2 enrichment (FACE) experiment. We measured microbial responses to elevated CO2 and N fertilization in the mineral soil using phospholipid fatty acid (PLFA) profiles. Increased fresh carbon inputs into the forest floor under elevated CO2 were observed at the molecular‐level by two degradation parameters of plant‐derived steroids and cutin‐derived compounds. The ratios of fungal to bacterial PLFAs and Gram‐negative to Gram‐positive bacterial PLFAs decreased in the mineral soil with N fertilization, indicating an altered soil microbial community composition. Moreover, the acid to aldehyde ratios of lignin‐derived phenols increased with N fertilization, suggesting enhanced lignin degradation in the mineral soil. 1H nuclear magnetic resonance (NMR) spectra of soil humic substances revealed an enrichment of leaf‐derived alkyl structures with both elevated CO2 and N fertilization. We suggest that microbial decomposition of SOM constituents such as lignin and hydrolysable lipids was promoted under both elevated CO2 and N fertilization, which led to the enrichment of plant‐derived recalcitrant structures (such as alkyl carbon) in the soil.  相似文献   

3.
Carbon dioxide has been rapidly accumulating in the atmosphere and is expected to continue to do so. This accumulation is presumed to have important direct effects on plant growth. The interacting affects of a small increase in CO2 concentration (466 p.p.m., approximately 30% increase from current ambient conditions), nitrogen fertilization and fungal endophyte (Neotyphodium lolii) infection on the growth and chemical composition of perennial ryegrass (Lolium perenne) were investigated. It was found that dry mass production was approximately 50% greater under elevated CO2 than under ambient CO2, but only in conditions of high soil N. High molecular weight carbohydrates and total carbohydrates (LMW + HMW CHO) depended on an interaction between CO2 and endophyte infection. Infected plants contained significantly more carbohydrate than endophyte-free plants, and the difference was greatest in ambient CO2 conditions. Protein concentrations were also influenced by the interaction between CO2 and endophyte-infection. Endophyte-free plants had 40% lower concentrations of soluble protein under elevated CO2 than under ambient CO2, but this CO2 effect on soluble protein was largely absent in endophyte-infected plants. CO2, endophyte-infection and nitrogen interacted to influence the total chlorophyll concentration of the grass such that chlorophyll concentration was always lower in elevated CO2 but this decline was much greater in endophyte-free plants, particularly in conditions of high soil N. In the endophyte-infected plants, the concentrations of the pyrrolopyrazine alkaloid peramine depended on the interaction between CO2 and N fertilization such that peramine concentrations declined with increasing N at ambient CO2 but remained roughly constant across N levels at elevated CO2. A similar pattern was seen for the ergot alkaloid ergovaline. The biochemical responses of perennial ryegrass to elevated CO2 are clearly modified by the presence of endophytic fungi.  相似文献   

4.
We investigated the effects of spring barley growth on nitrogen (N) transformations and rhizosphere microbial processes in a controlled system under elevated carbon dioxide (CO2) at two levels of N fertilization (applied with 15N labelling). After 25 d, elevated CO2 (twice ambient) increased plant growth (dry weight, DW) by 141% at low‐N fertilization and by 60% at high‐N fertilization, but its positive effect on the root‐to‐shoot ratio was only significant at low‐N input. As a result of this plant response, elevated CO2 caused a greater soil CO2 efflux, rhizosphere soil DW, and soil microbial biomass under N‐limiting conditions than under high N availability. Elevated CO2 also caused a significant (P < 0.001) increase in the N recovered by the plant from both the labelled (Nf) and unlabelled (Ns + Nuf) N pools. The dynamics of N in the system as affected by elevated CO2 were driven principally by mineralization–immobilization turnover, with little loss by denitrification. Under N‐limiting conditions, there is evidence to suggest enhanced nutrient release from soil organic matter (SOM) pools—a process which could be defined as priming. The results of our experiment did not indicate a direct plant‐mediated effect of elevated CO2 on nitrous oxide (N2O) fluxes or denitrification activity.  相似文献   

5.
Elevation of atmospheric CO2 concentration is predicted to increase net primary production, which could lead to additional C sequestration in terrestrial ecosystems. Soil C input was determined under ambient and Free Atmospheric Carbon dioxide Enrichment (FACE) conditions for Lolium perenne L. and Trifolium repens L. grown for four years in a sandy‐loam soil. The 13C content of the soil organic matter C had been increased by 5‰ compared to the native soil by prior cropping to corn (Zea mays) for > 20 years. Both species received low or high amounts of N fertilizer in separate plots. The total accumulated above‐ground biomass produced by L. perenne during the 4‐year period was strongly dependent on the amount of N fertilizer applied but did not respond to increased CO2. In contrast, the total accumulated above‐ground biomass of T. repens doubled under elevated CO2 but remained independent of N fertilizer rate. The C:N ratio of above‐ground biomass for both species increased under elevated CO2 whereas only the C:N ratio of L. perenne roots increased under elevated CO2. Root biomass of L. perenne doubled under elevated CO2 and again under high N fertilization. Total soil C was unaffected by CO2 treatment but dependent on species. After 4 years and for both crops, the fraction of new C (F‐value) under ambient conditions was higher (P= 0.076) than under FACE conditions: 0.43 vs. 0.38. Soil under L. perenne showed an increase in total soil organic matter whereas N fertilization or elevated CO2 had no effect on total soil organic matter content for both systems. The net amount of C sequestered in 4 years was unaffected by the CO2 concentration (overall average of 8.5 g C kg?1 soil). There was a significant species effect and more new C was sequestered under highly fertilized L. perenne. The amount of new C sequestered in the soil was primarily dependent on plant species and the response of root biomass to CO2 and N fertilization. Therefore, in this FACE study net soil C sequestration was largely depended on how the species responded to N rather than to elevated CO2.  相似文献   

6.
Industrialisation has elevated atmospheric levels of CO2 from original 280 ppm to current levels at 400 ppm, which is estimated to double by 2050. Although high atmospheric CO2 levels affect insect interactions with host plants, the impact of global change on plant defences in response to insect attack is not completely understood. Recent studies have made advances in elucidating the mechanisms of the effects of high CO2 levels in plant–insect interactions. New studies have proposed that gene regulation and phytohormones regulate resource allocation from photosynthesis to plant defences against insects. Biochemical and molecular studies demonstrated that both defensive hormones jasmonic acid (JA) and ethylene (ET) participate in modulating chemical defences against herbivores in plants grown under elevated CO2 atmosphere rather than changes in C:N ratio. High atmospheric CO2 levels increase vulnerability to insect damage by down‐regulating both inducive and constitutive chemical defences regulated by JA and ET. However, elevated CO2 levels increase the JA antagonistic hormone salicylic acid that increases other chemical defences. How plants grown under elevated CO2 environment allocate primary metabolites from photosynthesis to secondary metabolism would help to understand innate defences and prevent future herbivory in field crops. We present evidence demonstrating that changes in chemical defences in plants grown under elevated CO2 environment are hormonal regulated and reject the C:N hypothesis. In addition, we discuss current knowledge of the mechanisms that regulate plants defences against insects in elevated CO2 atmospheres.  相似文献   

7.
Field experiments in managed grassland have shown that the response of vegetative growth to elevated CO2 is nitrogen‐dependent in grasses, but independent in N2‐fixing legumes. In the present study, we tested whether this is also true for reproduction. We evaluated reproductive growth, flowering phenology, seed development, reproductive success and seed germination in the grass Lolium perenne L. and the legume Trifolium repens L., growing in monocultures in a free air carbon dioxide enrichment (FACE) system at ambient (35 Pa) and elevated (60 Pa) partial pressure of CO2 and two levels of nitrogen fertilization (14 and 56 g N m?2 a?1). In both species, elevated CO2 had no significant effect on sexual reproduction. In L. perenne, reproduction was mainly nitrogen‐dependent. The weak interactions between CO2 and mineral N supply (13% more flowers and 8% more grains per spike at high N, 7% less flowers and 8% less grains at low N) were not significant. Under elevated CO2, grain maturation was slightly enhanced and grain weight tended to decrease. No influence could be ascertained in the date of anthesis, the temporal pattern of grain growth, the rate of grain abortion and germination. Trifolium repens, grown under CO2 enrichment at both levels of N fertilization, flowered 10 d earlier, tended to form more inflorescences per ground area and more flowers (8–12%) and seeds (>18%) per inflorescence than at ambient CO2. The temporal pattern of seed growth was about the same in all treatments; embryo development, however, was accelerated in fumigated plants. The number of aborted seeds per pod, seed size, thousand‐seed weight and germinability did not show any influence of CO2. Fumigated plants at high N were attacked slightly more frequently by seed‐eating weevils, which lowered the seed output per pod. In summary, the reproductive response of L. perenne and T. repens to CO2 enrichment on the flower and inflorescence level was far weaker than expected from the results on vegetative growth.  相似文献   

8.
1. Elevated CO2 can alter plant physiology and morphology, and these changes are expected to impact diet quality for insect herbivores. While the plastic responses of insect herbivores have been well studied, less is known about the propensity of insects to adapt to such changes. Genetic variation in insect responses to elevated CO2 and genetic interactions between insects and their host plants may exist and provide the necessary raw material for adaptation. 2. We used clonal lines of Rhopalosiphum padi (L.) aphids to examine genotype‐specific responses to elevated CO2. We used the host plant Schedonorus arundinaceus (tall fescue; Schreb), which is capable of asexual reproduction, to investigate host plant genotype‐specific effects and possible host plant‐by‐insect genotype interactions. The abundance and density of three R. padi genotypes on three tall fescue genotypes under three concentrations of CO2 (ambient, 700, and 1000 ppm) in a controlled greenhouse environment were examined. 3. Aphid abundance decreased in the 700 ppm CO2 concentration, but increased in the 1000 ppm concentration relative to ambient. The effect of CO2 on aphid density was dependent on host plant genotype; the density of aphids in high CO2 decreased for two plant genotypes but was unchanged in one. No interaction between aphid genotype and elevated CO2 was found, nor did we find significant genotype‐by‐genotype interactions. 4. This study suggests that the density of R. padi aphids feeding on tall fescue may decrease under elevated CO2 for some plant genotypes. The likely impact of genotype‐specific responses on future changes in the genetic structure of plant and insect populations is discussed.  相似文献   

9.
Anthropogenic nitrogen (N) deposition effects on soil organic carbon (C) decomposition remain controversial, while the role of plant species composition in mediating effects of N deposition on soil organic C decomposition and long‐term soil C sequestration is virtually unknown. Here we provide evidence from a 5‐year grassland field experiment in Minnesota that under elevated atmospheric CO2 concentration (560 ppm), plant species determine whether N deposition inhibits the decomposition of soil organic matter via inter‐specific variation in root lignin concentration. Plant species producing lignin‐rich litter increased stabilization of soil C older than 5 years, but only in combination with elevated N inputs (4 g m?2 year?1). Our results suggest that N deposition will increase soil C sequestration in those ecosystems where vegetation composition and/or elevated atmospheric CO2 cause high litter lignin inputs to soils.  相似文献   

10.
Rising global carbon dioxide levels may lead to profound changes in plant composition, regardless of the degree of global warming that may result from the accumulation of this greenhouse gas. We studied the interaction of a CO2 doubling and two levels of nitrogen fertilizer on the growth and chemical composition of tall fescue (Festuca arundinacea Schreber cv. KY‐31) when infected and uninfected with the mutualistic fungal endophyte Neotyphodium coenophialum Morgan‐Jones and Gams. Two‐year‐old plants were harvested to 5 cm every 4 weeks, and after 12 weeks of growth plants grown in twice ambient CO2 concentrations: photosynthesized 15% more; produced tillers at a faster rate; produced 53% more dry matter (DM) yield under low N conditions and 61% more DM under high N conditions; the % organic matter (OM) was little changed except under elevated CO2 and high N when %OM increased by 3%; lignin decreased by 14%; crude protein (CP) concentrations (as %DM) declined by 21%; the soluble CP fraction (as %CP) increased by 13%; the acid detergent insoluble CP fraction (as %CP) increased by 12%, and in vitro neutral detergent fiber digestibility declined by 5% under high N conditions but not under low N. Plants infected with the endophytic fungus: photosynthesized 16% faster in high N compared with under low N; flowered earlier than uninfected plants; had 28% less lignin in high N compared with under low N; and had much smaller reductions in CP concentration (as %DM) and smaller increases in the soluble CP fraction (as %CP) and the acid detergent insoluble CP fraction (as %CP) under elevated CO2. Such large and varied changes in plant quality are likely to have large and significant effects on the herbivore populations that feed from these plants.  相似文献   

11.
Both endophytic and mycorrhizal fungi interact with plants to form symbiosis in which the fungal partners rely on, and sometimes compete for, carbon (C) sources from their hosts. Changes in photosynthesis in host plants caused by atmospheric carbon dioxide (CO2) enrichment may, therefore, influence those mutualistic interactions, potentially modifying plant nutrient acquisition and interactions with other coexisting plant species. However, few studies have so far examined the interactive controls of endophytes and mycorrhizae over plant responses to atmospheric CO2 enrichment. Using Festuca arundinacea Schreb and Plantago lanceolata L. as model plants, we examined the effects of elevated CO2 on mycorrhizae and endophyte (Neotyphodium coenophialum) and plant nitrogen (N) acquisition in two microcosm experiments, and determined whether and how mycorrhizae and endophytes mediate interactions between their host plant species. Endophyte‐free and endophyte‐infected F. arundinacea varieties, P. lanceolata L., and their combination with or without mycorrhizal inocula were grown under ambient (400 μmol mol−1) and elevated CO2 (ambient + 330 μmol mol−1). A 15N isotope tracer was used to quantify the mycorrhiza‐mediated plant acquisition of N from soil. Elevated CO2 stimulated the growth of P. lanceolata greater than F. arundinacea, increasing the shoot biomass ratio of P. lanceolata to F. arundinacea in all the mixtures. Elevated CO2 also increased mycorrhizal root colonization of P. lanceolata, but had no impact on that of F. arundinacea. Mycorrhizae increased the shoot biomass ratio of P. lanceolata to F. arundinacea under elevated CO2. In the absence of endophytes, both elevated CO2 and mycorrhizae enhanced 15N and total N uptake of P. lanceolata but had either no or even negative effects on N acquisition of F. arundinacea, altering N distribution between these two species in the mixture. The presence of endophytes in F. arundinacea, however, reduced the CO2 effect on N acquisition in P. lanceolata, although it did not affect growth responses of their host plants to elevated CO2. These results suggest that mycorrhizal fungi and endophytes might interactively affect the responses of their host plants and their coexisting species to elevated CO2.  相似文献   

12.
Effects of the arbuscular mycorrhizal (AM) fungus Rhizophagus irregularis on plant growth, carbon (C) and nitrogen (N) accumulation, and partitioning was investigated in Triticum aestivum L. plants grown under elevated CO2 in a pot experiment. Wheat plants inoculated or not inoculated with the AM fungus were grown in two glasshouse cells with different CO2 concentrations (400 and 700 ppm) for 10 weeks. A 15N isotope labeling technique was used to trace plant N uptake. Results showed that elevated CO2 increased AM fungal colonization. Under CO2 elevation, AM plants had higher C concentration and higher plant biomass than the non-AM plants. CO2 elevation did not affect C and N partitioning in plant organs, while AM symbiosis increased C and N allocation into the roots. In addition, plant C and N accumulation, 15N recovery rate, and N use efficiency (NUE) were significantly higher in AM plants than in non-AM controls under CO2 enrichment. It is concluded that AM symbiosis favors C and N partitioning in roots, increases C accumulation and N uptake, and leads to greater NUE in wheat plants grown at elevated CO2.  相似文献   

13.
We examined the response of mycorrhizal fungi to free-air CO2 enrichment (FACE) and nitrogen (N) fertilization in a warm temperate forest to better understand potential influences over plant nutrient uptake and soil carbon (C) storage. In particular, we hypothesized that mycorrhizal fungi and glomalin would become more prevalent under elevated CO2 but decrease under N fertilization. In addition, we predicted that N fertilization would mitigate any positive effects of elevated CO2 on mycorrhizal abundance. Overall, we observed a 14% increase in ectomycorrhizal (ECM) root colonization under CO2 enrichment, which implies that elevated CO2 results in greater C investments in these fungi. Arbuscular mycorrhizal (AM) hyphal length and glomalin stocks did not respond substantially to CO2 enrichment, and effects of CO2 on AM root colonization varied by date. Nitrogen effects on AM fungi were not consistent with our hypothesis, as we found an increase in AM colonization under N fertilization. Lastly, neither glomalin concentrations nor ECM colonization responded significantly to N fertilization or to an N-by-CO2 interaction. A longer duration of N fertilization may be required to detect effects on these parameters.  相似文献   

14.
Rising atmospheric CO2 levels can dilute the nitrogen (N) resource in plant tissue, which is disadvantageous to many herbivorous insects. Aphids appear to be an exception that warrants further study. The effects of elevated CO2 (750 ppm vs. 390 ppm) were evaluated on N assimilation and transamination by two Medicago truncatula genotypes, a N‐fixing‐deficient mutant (dnf1) and its wild‐type control (Jemalong), with and without pea aphid (Acyrthosiphon pisum) infestation. Elevated CO2 increased population abundance and feeding efficiency of aphids fed on Jemalong, but reduced those on dnf1. Without aphid infestation, elevated CO2 increased photosynthetic rate, chlorophyll content, nodule number, biomass, and pod number for Jemalong, but only increased pod number and chlorophyll content for dnf1. Furthermore, aphid infested Jemalong plants had enhanced activities of N assimilation‐related enzymes (glutamine synthetase, Glutamate synthase) and transamination‐related enzymes (glutamate oxalate transaminase, glutamine phenylpyruvate transaminase), which presumably increased amino acid concentration in leaves and phloem sap under elevated CO2. In contrast, aphid infested dnf1 plants had decreased activities of N assimilation‐related enzymes and transmination‐related enzymes and amino acid concentrations under elevated CO2. Furthermore, elevated CO2 up‐regulated expression of genes relevant to amino acid metabolism in bacteriocytes of aphids associated with Jemalong, but down‐regulated those associated with dnf1. Our results suggest that pea aphids actively elicit host responses that promote amino acid metabolism in both the host plant and in its bacteriocytes to favor the population growth of the aphid under elevated CO2.  相似文献   

15.
The world's ecosystems are subjected to various anthropogenic global change agents, such as enrichment of atmospheric CO2 concentrations, nitrogen (N) deposition, and changes in precipitation regimes. Despite the increasing appreciation that the consequences of impending global change can be better understood if varying agents are studied in concert, there is a paucity of multi‐factor long‐term studies, particularly on belowground processes. Herein, we address this gap by examining the responses of soil food webs and biodiversity to enrichment of CO2, elevated N, and summer drought in a long‐term grassland study at Cedar Creek, Minnesota, USA (BioCON experiment). We use structural equation modeling (SEM), various abiotic and biotic explanatory variables, and data on soil microorganisms, protozoa, nematodes, and soil microarthropods to identify the impacts of multiple global change effects on drivers belowground. We found that long‐term (13‐year) changes in CO2 and N availability resulted in modest alterations of soil biotic food webs and biodiversity via several mechanisms, encompassing soil water availability, plant productivity, and – most importantly – changes in rhizodeposition. Four years of manipulation of summer drought exerted surprisingly minor effects, only detrimentally affecting belowground herbivores and ciliate protists at elevated N. Elevated CO2 increased microbial biomass and the density of ciliates, microarthropod detritivores, and gamasid mites, most likely by fueling soil food webs with labile C. Moreover, beneficial bottom‐up effects of elevated CO2 compensated for detrimental elevated N effects on soil microarthropod taxa richness. In contrast, nematode taxa richness was lowest at elevated CO2 and elevated N. Thus, enrichment of atmospheric CO2 concentrations and N deposition may result in taxonomically and functionally altered, potentially simplified, soil communities. Detrimental effects of N deposition on soil biodiversity underscore recent reports on plant community simplification. This is of particular concern, as soils house a considerable fraction of global biodiversity and ecosystem functions.  相似文献   

16.
Photosynthetic stimulation by elevated [CO2] is largely regulated by nitrogen and phosphorus availability in the soil. During a 6 year Free Air CO2 Enrichment (FACE) experiment with poplar trees in two short rotations, inorganic forms of soil nitrogen, extractable phosphorus, microbial and total nitrogen were assessed. Moreover, in situ and potential nitrogen mineralization, as well as enzymatic activities, were determined as measures of nutrient cycling. The aim of this study was to evaluate the effects of elevated [CO2] and fertilization on: (1) N mineralization and immobilization processes; (2) soil nutrient availability; and (3) soil enzyme activity, as an indication of microbial and plant nutrient acquisition activity. Independent of any treatment, total soil N increased by 23% in the plantation after 6 years due to afforestation. Nitrification was the main process influencing inorganic N availability in soil, while ammonification being null or even negative. Ammonium was mostly affected by microbial immobilization and positively related to total N and microbial biomass N. Elevated [CO2] negatively influenced nitrification under unfertilised treatment by 44% and consequently nitrate availability by 30% on average. Microbial N immobilization was stimulated by [CO2] enrichment and probably enhanced the transformation of large amounts of N into organic forms less accessible to plants. The significant enhancement of enzyme activities under elevated [CO2] reflected an increase in nutrient acquisition activity in the soil, as well as an increase of fungal population. Nitrogen fertilization did not influence N availability and cycling, but acted as a negative feed-back on phosphorus availability under elevated CO2.  相似文献   

17.
Interactions between the root‐knot nematode Meloidogyne incognita and three isogenic tomato (Lycopersicon esculentum) genotypes were examined when plants were grown under ambient (370 ppm) and elevated (750 ppm) CO2. We tested the hypothesis that, defence‐recessive genotypes tend to allocate ‘extra’ carbon (relative to nitrogen) to growth under elevated CO2, whereas defence‐dominated genotypes allocate extra carbon to defence, and thereby increases the defence against nematodes. For all three genotypes, elevated CO2 increased height, biomass, and root and leaf total non‐structural carbohydrates (TNC):N ratio, and decreased amino acids and proteins in leaves. The activity of anti‐oxidant enzymes (superoxide dismutase and catalase) was enhanced by nematode infection in defence‐recessive genotypes. Furthermore, elevated CO2 and nematode infection did not qualitatively change the volatile organic compounds (VOC) emitted from plants. Elevated CO2 increased the VOC emission rate only for defence‐dominated genotypes that were not infected with nematodes. Elevated CO2 increased the number of nematode‐induced galls on defence‐dominated genotypes but not on wild‐types or defence‐recessive genotypes roots. Our results suggest that CO2 enrichment may not only increase plant C : N ratio but can disrupt the allocation of plant resources between growth and defence in some genetically modified plants and thereby reduce their resistance to nematodes.  相似文献   

18.
1. The performance of foliage feeders tends to decrease under elevated CO2, but the responses of phloem‐feeding insects have been much more equivocal. As phloem tissues are less accessible than whole‐plant tissues, much less is known about how phloem composition is altered under elevated CO2 and the mechanisms driving changes in aphid performance. 2. In this study, the plant mechanisms underlying the performance of Rhopalosiphum padi aphids on Hordeum vulgare (barley) grown under ambient (390 ppm) and elevated (700 ppm) CO2 were examined. We used aphid stylectomy to sample pure phloem from plants in CO2‐controlled conditions and high‐performance liquid chromatography to analyse phloem samples for amino acid concentrations. 3. Aphid abundance significantly increased by 127% under elevated CO2. Consequently, plant biomass decreased under elevated CO2 in trials with herbivores present, possibly due to the increased herbivore load, but increased when aphids were absent. The intrinsic rate of population increase (rm) was significantly higher under elevated CO2; however, there were no statistically significant effects on aphid fecundity or development time. The concentration of individual amino acids tended to increase, although these increases were statistically significant in only a few cases. A principal components analysis revealed that the relative abundance (mol %) of those amino acids considered essential for aphids tended to increase under elevated CO2. 4. These results indicate that CO2 may affect nutrient translocation in plants in ways that are contrary to predictions about nitrogen metabolite responses to CO2. Such plant biochemical responses may underlie observations of improved phloem feeder performance under elevated CO2.  相似文献   

19.
20.
Soil CO2 efflux (Fsoil) is the largest source of carbon from forests and reflects primary productivity as well as how carbon is allocated within forest ecosystems. Through early stages of stand development, both elevated [CO2] and availability of soil nitrogen (N; sum of mineralization, deposition, and fixation) have been shown to increase gross primary productivity, but the long‐term effects of these factors on Fsoil are less clear. Expanding on previous studies at the Duke Free‐Air CO2 Enrichment (FACE) site, we quantified the effects of elevated [CO2] and N fertilization on Fsoil using daily measurements from automated chambers over 10 years. Consistent with previous results, compared to ambient unfertilized plots, annual Fsoil increased under elevated [CO2] (ca. 17%) and decreased with N (ca. 21%). N fertilization under elevated [CO2] reduced Fsoil to values similar to untreated plots. Over the study period, base respiration rates increased with leaf productivity, but declined after productivity saturated. Despite treatment‐induced differences in aboveground biomass, soil temperature and water content were similar among treatments. Interannually, low soil water content decreased annual Fsoil from potential values – estimated based on temperature alone assuming nonlimiting soil water content – by ca. 0.7% per 1.0% reduction in relative extractable water. This effect was only slightly ameliorated by elevated [CO2]. Variability in soil N availability among plots accounted for the spatial variability in Fsoil, showing a decrease of ca. 114 g C m?2 yr?1 per 1 g m?2 increase in soil N availability, with consistently higher Fsoil in elevated [CO2] plots ca. 127 g C per 100 ppm [CO2] over the +200 ppm enrichment. Altogether, reflecting increased belowground carbon partitioning in response to greater plant nutritional needs, the effects of elevated [CO2] and N fertilization on Fsoil in this stand are sustained beyond the early stages of stand development and through stabilization of annual foliage production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号