首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Eublastoids are a large clade of blastoids; stemmed blastozoan echinoderms diagnosed by their conservative body plan (three basals, four deltoid plates and five radial plates), lancet plate supporting the ambulacra, and hydrospire respiratory structures. Although Eublastoidea was a highly successful clade in the middle and late Palaeozoic it is absent from early echinoderm radiations seen in the Cambrian and Ordovician record. Here we provide a re‐evaluation of Macurdablastus uniplicatus Broadhead from the Ordovician, using detailed morphological assessment based on advanced synchrotron tomography and phylogenetic analysis. Macurdablastus uniplicatus falls outside Eublastoidea because of the morphological differences in lancet plate and respiratory structures. The oldest recorded eublastoid is thus middle Silurian in age. The re‐evaluation of the morphology of Macurdablastus provides a basis for revising blastoid phylogeny and classification.  相似文献   

2.
Zamora S  Rahman IA  Smith AB 《PloS one》2012,7(6):e38296
Echinoderms are unique in being pentaradiate, having diverged from the ancestral bilaterian body plan more radically than any other animal phylum. This transformation arises during ontogeny, as echinoderm larvae are initially bilateral, then pass through an asymmetric phase, before giving rise to the pentaradiate adult. Many fossil echinoderms are radial and a few are asymmetric, but until now none have been described that show the original bilaterian stage in echinoderm evolution. Here we report new fossils from the early middle Cambrian of southern Europe that are the first echinoderms with a fully bilaterian body plan as adults. Morphologically they are intermediate between two of the most basal classes, the Ctenocystoidea and Cincta. This provides a root for all echinoderms and confirms that the earliest members were deposit feeders not suspension feeders.  相似文献   

3.
Echinoderms are unique among animal phyla in having a pentaradial body plan, and their fossil record provides critical data on how this novel organization came about by revealing intermediate stages. Here, we report a spiral-plated animal from the early Cambrian of Morocco that is the most primitive pentaradial echinoderm yet discovered. It is intermediate between helicoplacoids (a bizarre group of spiral-bodied echinoderms) and crown-group pentaradiate echinoderms. By filling an important gap, this fossil reveals the common pattern that underpins the body plans of the two major echinoderm clades (pelmatozoans and eleutherozoans), showing that differential growth played an important role in their divergence. It also adds to the striking disparity of novel body plans appearing in the Cambrian explosion.  相似文献   

4.
THE EARLY RADIATION AND PHYLOGENY OF ECHINODERMS   总被引:3,自引:0,他引:3  
1. Living echinoderms are characterized by an extensive water vascular system developed from the larval left hydrocoel, a complex, multi-plated endoskeleton with stereom structure, and pentamery. Fossil evidence shows that stereom evolved before pentamery, but both were acquired during the Lower Cambrian. 2. Cladistic analysis of Lower Cambrian genera reveals very few characters in common between carpoids and true echinoderms, and that the split between them was the first fundamental evolutionary dichotomy within the Dexiothetica. 3. Helicoplacoids are stem group echinoderms with spiral plating and three ambulacra arranged radially around a lateral mouth. They are the most primitive echinoderms and the first to show a radial arrangement of the water vascular and ambulacral systems. Unlike later echinoderms, their skeleton shows no dorsal/ventral (aboral/oral) differentiation. They were probably sedentary suspension feeders. 4. Camptostroma is the most primitive known pentaradiate echinoderm and, in our view, possibly a common ancestor of all living groups. It had a short conical dorsal (aboral) surface with imbricate plating, a ridged lateral wall and a slightly domed ventral (oral) surface with five curved ambulacra in a 2-1-2 arrangement inherited from the triradiate pattern of the helicoplacoids. Interambulacral areas bore epispires and the CD interambulacrum contained the anus, hydropore and/or gonopore. All parts of the theca had plates in at least two layers. 5. All other echinoderms belong to one of two monophyletic subphyla, the Pelmatozoa and the Eleutherozoa. 6. Stromatocystites is the earliest known eleutherozoan and differs from Camptostroma in having a test with only one layer of plates and having lost the dorsal elongation. In Stromatocystites the dorsal surface is flat and the plating tesselate. Stromatocystites was an unattached, low-level suspension feeder. 7. The lepidocystoids are the earliest known pelmatozoans. They differ from Camptostroma in having an attached dorsal stalk which retained the primitive imbricate plating, and by developing erect feeding structures along the ambulacra. In Kinzercystis, the ambulacra are confined to the thecal surface and erect, biserial brachioles arise alternately on either side. Lepidocystis has a similar arrangement except that, the distal part of each ambulacrum extends beyond the edge of the theca as a free arm. 8. Pelmatozoans diverged more or less immediately into crinoids, with multiple free arms composed of uniserial plates, and cystoids sensu lato, which retained brachioles. Gogia (Lower to Middle Cambrian) is the most primitive known cystoid and differs from Kinzercystis principally in having all plating tesselate, while Echmatocrinus (Middle Cambrian) is the most primitive known crinoid and differs from Lepidocystis in lacking brachioles and in having more than five free arms with uniserial plates. 9. Post Lower Cambrian differentiation of pelmatozoan groups proceeded rapidly, exploiting the primitive suspension-feeding mode of life. Maximum morphological diversity was reached in the Ordovician, but thereafter crinoids progressively displaced cystoid groups and reached their peak diversity during the Carboniferous. The eleutherozoans were slower to diversify, but by the Arenig the earliest ‘sea-stars’ (in reality, advanced members of the eleutherozoan stem group) had reversed their living orientation and had begun to exploit a deposit-feeding mode of life. These in turn led to the ophiuroids, echinoids and holothuroids. 10. The basic echinoderm ambulacrum was already present in the helicoplacoids. It had biserial, alternate flooring plates and complexly plated sheets of cover plates on either side. The radial water vessel lay in the floor of the ambulacrum, external to the body cavity, and gave rise ventrally to short, lateral branches (fore-runners of tube feet) that were used to open the cover plate sheets, and dorsally was connected to internal compensation sacs which acted as fluid reservoirs (and were preadapted for a role in gaseous exchange). Plating on the cover plate sheets was organized and reflected the positions of the lateral branches from the radial water vessel. In Camptostroma, the cover plate sheets had biserially aligned rows of cover plates associated with the lateral branches. 11. Brachioles arose by extension of the lateral branches of the radial water vessel and associated serially aligned cover plates found in Camptostroma. They bear a single alternate series of cover plates. In Lepidocystis the ambulacra extended beyond the edge of the oral surface as true arms. Brachial plates of arms are homologues of primary ambulacral flooring plates, and arms bear multiple series of cover plates. Uniserial ambulacral plating is a derived condition and evolved independently in crinoids, paracrinoids and isorophid edrioasteroids. Pinnules in crinoids arose independently in inadunates and camerates by a progressively more unequal branching of the arms. Thus all parts of the subvective system in crinoids are internally homologous, whereas in cystoids, brachioles and arms (or ambulacra) are not homologous structures. 12. The position of the hydropore is the best reference point in orientating echinoderms. Carpenter's system of identifying ambulacra by letters, arranged clock-wise in oral view with the A ambulacrum opposite the hydropore, is consistent in all echinoderm classes. In all Lower Cambrian pentaradiate echinoderms the anus, gonopore and hydropore lie in the CD interambulacrum and this is accepted as the primitive arrangement. In helicoplacoids we tentatively suggest that the A ambulacrum spiralled down from the mouth while the two ambulacra that spiralled up represent the B + C and D + E ambulacra combined. 13. The pelmatozoan stem arose from a polyplated stalk, via a meric stem to a true column with holomeric (single piece) columnals. This happened independently in the crinoids and the cystoids. 14. Our analysis of echinoderm phylogeny leads us to recommend the following changes to the higher level classification of echinoderms: The phylum Echinodermata includes only those groups with radial symmetry superimposed upon a fundamental larval asymmetry. It has a stem group that contains the triradiate helicoplacoids and a crown group to which all other (pentaradiate) echinoderms belong. The crown group contains two monophyletic subphyla, the Pelmatozoa and the Eleutherozoa, and the Pelmatozoa contains two superclasses, the Crinoidea which are extant and the Cystoidea, which are extinct.  相似文献   

5.
SUMMARY Even though echinoderms are members of the Bilateria, the location of their anterior/posterior axis has remained enigmatic. Here we propose a novel solution to the problem employing three lines of evidence: the expression of a posterior class Hox gene in the coeloms of the nascent adult body plan within the larva; the anatomy of certain early fossil echinoderms; and finally the relation between endoskeletal plate morphology and the associated coelomic tissues. All three lines of evidence converge on the same answer, namely that the location of the adult mouth is anterior, and the anterior/posterior axis runs from the mouth through the adult coelomic compartments. This axis then orients the animal such that there is but a single plane of symmetry dividing the animal into left and right halves. We tentatively hypothesize that this plane of symmetry is positioned along the dorsal/ventral axis. These axis identifications lead to the conclusion that the five ambulacra are not primary body axes, but instead are outgrowths from the central anterior/posterior axis. These identifications also shed insight into several other evolutionary mysteries of various echinoderm clades such as the independent evolution of bilateral symmetry in irregular echinoids, but do not elucidate the underlying mechanisms of the adult coelomic architecture.  相似文献   

6.
The echinoderms are deuterostomes that superimpose radial symmetry upon bilateral larval morphology. Consequently, they are not the first animals that come to mind when the concepts of segmentation and terminal addition are being discussed. However, it has long been recognized that echinoderms have serial elements along their radii formed in accordance with the ocular plate rule (OPR). The OPR is a special case of terminal growth, forming elements of the ambulacra that define the rays in echinoderms. New elements are added at the terminus of the ray, which may or may not be marked by a calcified element called the terminal plate (the "ocular" of sea urchins). The OPR operates in every echinoderm, from the occasionally bizarre fossils of the Cambrian to the most familiar extant taxa. Using the OPR and other criteria of recognition, echinoderm body wall can be divided into two main regions: extraxial components are associated with the somatocoels, axial components (formed in accordance with the OPR) with the hydrocoel. We compare patterns of development in axial regions of echinoderms with those found in the anterior-posterior axes of the earliest echinoderms as well as other invertebrates. Although axial and extraxial skeletons appear to be composed of the same biomineral matrix, the genes involved in patterning these two skeletal components are likely distinct. During development of the axial skeleton, for instance, the genes engrailed and orthodenticle are expressed in spatial and temporal patterns consistent with the OPR. Other genes such as distal-less seem to demarcate early ontogenetic boundaries between the axial rudiment and the extraxial larval body. There is a complex and pervasive reorganization of gene expression domains to produce the highly divergent morphologies seen in the Echinodermata. We integrate morphological and genetic information, particularly with respect to the origins of radial symmetry in the rudiment, and the concomitant development of the rays.  相似文献   

7.
How the radial body plan of echinoderms is related to the bilateral body plan of their deuterostome relatives, the hemichordates and the chordates, has been a long-standing problem. Now, using direct development in a sea urchin, I show that the first radially arranged structures, the five primary podia, form from a dorsal and a ventral hydrocoele at the oral end of the archenteron. There is a bilateral plane of symmetry through the podia, the mouth, the archenteron and the blastopore. This adult bilateral plane is thus homologous with the bilateral plane of bilateral metazoans and a relationship between the radial and bilateral body plans is identified. I conclude that echinoderms retain and use the bilateral patterning genes of the common deuterostome ancestor. Homologies with the early echinoderms of the Cambrian era and between the dorsal hydrocoele, the chordate notochord and the proboscis coelom of hemichordates become evident.  相似文献   

8.
Evolution of the echinoderm Hox gene cluster   总被引:1,自引:0,他引:1  
SUMMARY Extant echinoderms are members of an ancient and highly derived deuterostome phylum. The composition and arrangement of their Hox gene clusters are consequently of interest not only from the perspective of evolution of development, but also in terms of metazoan phylogeny and body plan evolution. Over the last decade numerous workers have reported partial Hox gene sequences from a variety of echinoderms. In this paper we used a combined methods approach to analyze phylogenetic relationships between 68 echinoderm Hox homeodomain fragments, from species of five extant classes—two asteroids, one crinoid, one ophiuroid, one holothuroid, and three echinoids. This analysis strengthens Mito and Endo's (2000) proposition that the ancestral echinoderm's Hox gene cluster contained at least eleven genes, including at least four posterior paralogous group genes. However, representatives of all paralogous groups are not known from all echinoderm classes. In particular, these data suggest that echinoids may have lost a posterior group Hox gene subsequent to the divergence of the echinoderm classes. Evolution of the highly derived echinoderm body plan may have been accompanied by class-specific duplication, diversification and loss of Hox genes.  相似文献   

9.
Annelids are a phylum of segmented bilaterian animals that have become important components of ecosystems spanning terrestrial realms to the deep sea. Annelids are remarkably diverse, possessing high taxonomic diversity and exceptional morphological disparity, and have evolved numerous feeding strategies and ecologies. Their interrelationships and evolution have been the source of much controversy over the past century with the composition of the annelid crown group, the relationship of major groups and the body plan of the ancestral annelid having undergone major recent revisions. There is a convincing body of molecular evidence that polychaetes form a paraphyletic grade and that clitellates are derived polychaetes. The earliest stem group annelids from Cambrian Lagerstätten are errant, epibenthic polychaetes, confirming that biramous parapodia, head appendages and diverse, simple chaetae are primitive for annelids. Current evidence from molecular clocks and the fossil record suggest that crown group annelids are a Late Cambrian – Ordovician radiation, with clitellates radiating in the Late Palaeozoic. Their body fossil record is largely confined to deposits showing exceptional preservation and is punctuated by the acquisition of hard parts in major groups. The discovery of an Ordovician fossil with soft tissues has shown that machaeridians are in fact a clade of crown polychaetes. They were in existence for more than 200 million years and possess unique calcitic dorsal armour, allowing their mode of life and phylogeny to be interpreted in the context of the annelid body plan. We identify a novel clade of machaeridians, the Cuniculepadida, which exhibit a series of adaptations for burrowing.  相似文献   

10.
《Palaeoworld》2015,24(4):393-399
All living echinoderms have a pentaradial symmetry that is unique within the Bilateria. However, the Cambrian origin of echinoderm radial/pentaradiate symmetry is a long-standing problem. During the Cambrian (542–488 Ma), gogiids were the most common stalked echinoderm characterized by an “irregularly” plated body. Based on recently discovered material from the Balang Formation (Cambrian Series 2), eastern Guizhou, China, three unusual, partially disarticulated specimens of Guizhoueocrinus have clear evidence for a helical body plan. This helical plating is only evident in partially disarticulated specimens, thus a crypto-helical body construction is present. Crypto-helical construction in a gogiid raises the possibility of a phylogenetic connection among helicoplacoids, gogiids, and Helicocystis. The crypto-helical body construction may be an important evolutionary innovation among pre-radiate echinoderms.  相似文献   

11.
Over the past 25 years, new techniques, new discoveries, and new ideas have profoundly impacted our understanding of deuterostome interrelationships and, ultimately, deuterostome evolution. During the late 1980s and early 1990s morphological cladistic analyses made predictions about both taxonomic history and homology, predictions that would be tested independent of the morphological characters themselves with the advent of molecular systematics, the rise of evolutionary developmental biology, and continued exploration of the fossil record. Thanks to these three areas of inquiry, we have gone from scenarios where animals like mobile enteropneust hemichordates and chordates were derived from sessile filter-feeding animals like modern lophophorates, echinoderms, and pterobranch hemichordates, to a new perspective where hemichordates are recognized as the nearest living relative of the echinoderms, and that vagile gill-bearing animals like Cambrian vetulicolians are seen—at least by some—as close to the deuterostome last common ancestor, with both sessility and filter-feeding convergent features of deuterostomes (e.g., echinoderm) and non-deuterostomes (e.g., lophophorates) alike. Although much of the backbone of the new deuterostome phylogeny is supported by multiple independent data sets, as are statements of homology of several different morphological characters, in particular the homology of gill slits across Deuterostomia, nonetheless, the next quarter century of study on this remarkable group of animals promises to be as equally illuminating and exciting as the past quarter century.  相似文献   

12.
Inferring the development of the earliest echinoderms is critical to uncovering the evolutionary assembly of the phylum-level body plan but has long proven problematic because early ontogenetic stages are rarely preserved as fossils. Here, we use synchrotron tomography to describe a new early post-metamorphic blastoid echinoderm from the Carboniferous (approx. 323 Ma) of China. The resulting three-dimensional reconstruction reveals a U-shaped tubular structure in the fossil interior, which is interpreted as the digestive tract. Comparisons with the developing gut of modern crinoids demonstrate that crinoids are an imperfect analogue for many extinct groups. Furthermore, consideration of our findings in a phylogenetic context allows us to reconstruct the evolution and development of the digestive system in echinoderms more broadly; there was a transition from a straight to a simple curved gut early in the phylum''s evolution, but additional loops and coils of the digestive tract (as seen in crinoids) were not acquired until much later.  相似文献   

13.
刺细胞动物是一类具有刺细胞的水生无脊椎动物,分布在世界各地的海洋和淡水中.作为后生动物最早分化出的一支,刺细胞动物对研究后生动物的起源和早期演化具有极其重要的意义,也为研究后生动物系统发育、地层对比和古地理恢复等方面提供了重要的科研线索.本文简要介绍了刺细胞动物早期(埃迪卡拉纪至寒武纪苗岭世)的化石记录和研究现状,将刺...  相似文献   

14.
Of the major deuterostome groups, the echinoderms with their multiple forms and complex development are arguably the most mysterious. Although larval echinoderms are bilaterally symmetric, the adult body seems to abandon the larval body plan and to develop independently a new structure with different symmetries. The prevalent pentamer structure, the asymmetry of Lovén's rule and the variable location of the periproct and madrepore present enormous difficulties in homologizing structures across the major clades, despite the excellent fossil record. This irregularity in body forms seems to place echinoderms outside the other deuterostomes. Here I propose that the predominant five-ray structure is derived from a hexamer structure that is grounded directly in the structure of the bilaterally symmetric larva. This hypothesis implies that the adult echinoderm body can be derived directly from the larval bilateral symmetry and thus firmly ranks even the adult echinoderms among the bilaterians. In order to test the hypothesis rigorously, a model is developed in which one ray is missing between rays IV-V (Lovén's schema) or rays C-D (Carpenter's schema). The model is used to make predictions, which are tested and verified for the process of metamorphosis and for the morphology of recent and fossil forms. The theory provides fundamental insight into the M-plane and the Ubisch', Lovén's, and Carpenter's planes and generalizes them for all echinoderms. The theory also makes robust predictions about the evolution of the pentamer structure and its developmental basis.  相似文献   

15.
SUMMARY Echinoderms have a unique ontogeny and adult structure, and, among Bilateria, are the phylum that has diverged most radically in appearance from the ancestral body plan. Embryology and gene expression studies suggest how this transformation may have occurred while paleontological data provide direct evidence for the order in which these events took place. Comparing echinoderm ontogeny and genetic developmental signalling patterns with those of their sister group, the hemichordates, suggests that an evolutionary switch from posterior facultative to anterior obligate larval attachment proved the critical trigger. This necessitated introduction of a phase of torsion in development to bring the mouth into a more appropriate orientation for filter feeding, which in turn rotated the axis of the developing adult 90° out of alignment with Hox and other body patterning genes. As a result the developing echinoderm rudiment came to receive a complex mosaic of anterior–posterior signalling, and extensive co-option of signalling pathways was able to take place. The fossil record shows that early (pre-radiate) echinoderms were much more hemichordate-like, with a muscular post-anal stalk and facultative attachment, and probably developed maintaining continuity with larval axes, as in hemichordates, although left-right asymmetry was more highly developed. Anterior attachment and torsion, however, were clearly part of the developmental pattern of helicoplacoids and (to a much greater extent) in subsequent pentaradiate forms.  相似文献   

16.
Biomineralized skeletons are widespread in animals, and their origins can be traced to the latest Ediacaran or early Cambrian fossil record, in virtually all animal groups. The origin of animal skeletons is inextricably linked with the diversification of animal body plans and the dramatic changes in ecology and geosphere–biosphere interactions across the Ediacaran–Cambrian transition. This apparent independent acquisition of skeletons across diverse animal clades has been proposed to have been driven by co‐option of a conserved ancestral genetic toolkit in different lineages at the same time. This ‘biomineralization toolkit’ hypothesis makes predictions of the early evolution of the skeleton, predictions tested herein through a critical review of the evidence from both the fossil record and development of skeletons in extant organisms. Furthermore, the distribution of skeletons is here plotted against a time‐calibrated animal phylogeny, and the nature of the deep ancestors of biomineralizing animals interpolated using ancestral state reconstruction. All these lines of evidence point towards multiple instances of the evolution of biomineralization through the co‐option of an inherited organic skeleton and genetic toolkit followed by the stepwise acquisition of more complex skeletal tissues under tighter biological control. This not only supports the ‘biomineralization toolkit’ hypothesis but also provides a model for describing the evolution of complex biological systems across the Ediacaran–Cambrian transition.  相似文献   

17.
18.
All organisms are formed of more or less independent elements, modules. Paleontology deals with morphological modules preserved in the fossil state and allows their evolution within taxa of different levels to be reconstructed. Modularity provides organisms with the ability to evolve, since changes in one module does not influence others, nor disturb the integrity of organism. Each organism may have unique modules represented by a single copy and serial modules developing according to a certain symmetry type. Serial terminal growth is characteristic of ambulacra of echinoderms, in which it is combined with alternating appearance of structures on the right and left of the symmetry plane. The morphology of the solute Maennilia estonica, which has been investigated in detail, shows that the growth model for the brachiola is similar to the model for ambulacra of sea urchins, but without an ocular plate. Probably, the hydrocoel initially induced the appearance of a skeleton necessary for its activity and organized its development according to its own model of terminal growth. Subsequently, the axial skeleton appearing following this pattern could have organized the growth of adjacent parts of the extraxial skeleton following the same model to form a united module. The fusion of modules could have resulted from heterochronies. Extant and extinct material connected with the change in the anteroposterior axis in evolutionary and ontogenetic development of echinoderms provides a prominent example of heterochronies. Heterochronies were the mechanism connecting characters into an integrated ensemble of the body plan. Archaic diversity reflects an attempt to create a new body plan. Various manifestations of archaic diversity show that the emergence of a new higher taxon is connected with the combination of a number of characters united in an integrated complex forming the body plan which is stable from the moment of appearance due to strict recursive relationships between its modules rather than with the acquisition of an individual character, even if it is very important.  相似文献   

19.
The fossil record indicates that Myzostomida, an enigmatic group of marine worms, traditionally considered as annelids, have exhibited a symbiotic relationship with echinoderms, especially crinoids, for nearly 350 million years. All known extant myzostomids are associated with echinoderms and infest their integument, gonads, celom, or digestive system. Using nuclear (18S rDNA) and mitochondrial (16S and COI) DNA sequence data from 37 myzostomid species representing nine genera, we report here the first molecular phylogeny of the Myzostomida and investigate the evolution of their various symbiotic associations. Our analyses indicate that the two orders Proboscidea and Pharyngidea do not constitute natural groupings. Character reconstruction analyses strongly suggest that (1) the ancestor of all extant myzostomids was an ectocommensal that first infested crinoids, and then asteroids and ophiuroids, and (2) parasitism in myzostomids emerged multiple times independently.  相似文献   

20.
The earliest evolution of the animals remains a taxing biological problem, as all extant clades are highly derived and the fossil record is not usually considered to be helpful. The rise of the bilaterian animals recorded in the fossil record, commonly known as the ‘Cambrian explosion’, is one of the most significant moments in evolutionary history, and was an event that transformed first marine and then terrestrial environments. We review the phylogeny of early animals and other opisthokonts, and the affinities of the earliest large complex fossils, the so‐called ‘Ediacaran’ taxa. We conclude, based on a variety of lines of evidence, that their affinities most likely lie in various stem groups to large metazoan groupings; a new grouping, the Apoikozoa, is erected to encompass Metazoa and Choanoflagellata. The earliest reasonable fossil evidence for total‐group bilaterians comes from undisputed complex trace fossils that are younger than about 560 Ma, and these diversify greatly as the Ediacaran–Cambrian boundary is crossed a few million years later. It is generally considered that as the bilaterians diversified after this time, their burrowing behaviour destroyed the cyanobacterial mat‐dominated substrates that the enigmatic Ediacaran taxa were associated with, the so‐called ‘Cambrian substrate revolution’, leading to the loss of almost all Ediacara‐aspect diversity in the Cambrian. Why, though, did the energetically expensive and functionally complex burrowing mode of life so typical of later bilaterians arise? Here we propose a much more positive relationship between late‐Ediacaran ecologies and the rise of the bilaterians, with the largely static Ediacaran taxa acting as points of concentration of organic matter both above and below the sediment surface. The breaking of the uniformity of organic carbon availability would have signalled a decisive shift away from the essentially static and monotonous earlier Ediacaran world into the dynamic and burrowing world of the Cambrian. The Ediacaran biota thus played an enabling role in bilaterian evolution similar to that proposed for the Savannah environment for human evolution and bipedality. Rather than being obliterated by the rise of the bilaterians, the subtle remnants of Ediacara‐style taxa within the Cambrian suggest that they remained significant components of Phanerozoic communities, even though at some point their enabling role for bilaterian evolution was presumably taken over by bilaterians or other metazoans. Bilaterian evolution was thus an essentially benthic event that only later impacted the planktonic environment and the style of organic export to the sea floor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号