首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Li  Chunhuan  Yu  Hailong  Xu  Yixin  Zhu  Wanwan  Wang  Pan  Huang  Juying 《Plant Ecology》2022,223(4):407-421

Leaf functional traits are important for characterizing plant nutrient strategies. The C:N:P stoichiometric balance in soils and plants, which could indicate types of nutrient limitation, is altered under changing precipitation patterns. However, whether such alterations affect leaf functional traits remains unclear. We conducted a three-year simulated precipitation experiment in a desert steppe in northwestern China to determine changes in leaf photosynthetic traits and nutrient conservation traits in five plant species and tested the relationships of these traits with soil and leaf C:N:P stoichiometry. The five species showed few changes in their leaf traits under drought conditions, but they adjusted these traits (especially P traits) under extremely wet conditions (50% increase in precipitation). Improved leaf photosynthetic N and P use, lowered leaf P uptake, and enhanced leaf N resorption might help Lespedeza potaninii to rely less on soil nutrients in extremely wet environments than other species do. Leaf photosynthetic traits were regulated primarily by soil and leaf C:N:P stoichiometry. Leaf nutrient conservation traits were controlled by both leaf C:N:P stoichiometry and soil properties (i.e., enzyme activity and microbial biomass), a condition especially true for P traits. The results suggest that precipitation-induced alteration in the C:N:P stoichiometric balance might have important influences on plant nutrient use strategies and even on the nutrient cycling of desert steppes.

  相似文献   

2.
《Aquatic Botany》2004,78(3):197-216
Worldwide, seagrasses provide important habitats in coastal ecosystems, but seagrass meadows are often degraded or destroyed by cultural eutrophication. Presently, there are no available tools for early assessment of nutrient over-enrichment; direct measurements of water column nutrients are ineffective since the nutrients typical of early enrichment are rapidly taken up by plants within the ecosystem. We investigated whether, in a gradient of nutrient availability but prior to actual habitat loss, eelgrass (Zostera marina L.) plant morphology and tissue nutrients might reflect environmental nutrient availability. Eelgrass responses to nitrogen along estuarine gradients were assessed; two of these plant responses were combined to create an early indicator of nutrient over-enrichment. Eelgrass plant morphology and leaf tissue nitrogen (N) were measured along nutrient gradients in three New England estuaries: Great Bay Estuary (NH), Narragansett Bay (RI) and Waquoit Bay (MA). Eelgrass leaf N was significantly higher in up-estuary sampling stations than stations down-estuary, reflecting environmental nitrogen gradients. Leaf N content showed high variance, however, limiting its ability to discriminate the early stages of eutrophication. To find a stronger indicator, plant morphological characteristics such as number of leaves per shoot, blade width, and leaf and sheath length were examined, but they only weakly correlated with leaf tissue N. Area normalized leaf mass (mg dry weight cm−2), however, exhibited a strong and consistently negative relationship with leaf tissue N and a significant response to the estuarine nutrient gradients. We found the ratio of leaf N to leaf mass to be a more sensitive and consistent indicator of early eutrophication than either characteristic alone. We suggest the use of this ratio as a nutrient pollution indicator (NPI).  相似文献   

3.
刘冬  张剑  包雅兰  赵海燕  陈涛 《生态学报》2020,40(11):3804-3812
土壤水分是影响干旱区植物养分吸收和利用策略的关键因子之一。研究不同水分梯度叶片与土壤生态化学计量特征,有助于揭示植物对环境变化的响应特征及生态适应性。通过野外调查与实验分析,对敦煌阳关不同水分梯度芦苇叶片与土壤碳(C)、氮(N)、磷(P)生态化学计量特征及其关系进行了研究。结果表明:(1)随土壤含水率升高,叶片C、N、P含量降低,叶片C/N、C/P、N/P升高。(2)随土壤含水率升高,土壤有机碳(OC)、总氮(TN)、总磷(TP)含量及土壤N/P升高,土壤C/N降低,土壤C/P先升后降。(3)低水分梯度叶片N、C/N与土壤N、C/N显著负相关(P0.05),叶片C、P、C/P、N/P与土壤C、P、C/P、N/P无显著相关性(P0.05);高、中水分梯度叶片C、N、P与土壤C、N、P化学计量特征相关性均不显著(P0.05)。低水分梯度叶片受干旱胁迫和土壤养分制约,且能够保持较高的叶养分含量,体现了干旱区湿地植物异质生境下独特的养分调节机制。  相似文献   

4.
Zaraninge is a former forest reserve which is now included as part of the Saadani National Park in Bagamoyo District Coast Region. The influence of soil mineral nutrients (N, P, K, Mg and Na) on the pattern of plant species distributions was determined, and transect method was used for data collection. Plant species composition and abundance followed variation in soil nutrient gradients within Zaraninge Forest. Canonical correspondence analysis of soil and plant data showed that calcium, magnesium and phosphorus were the mineral nutrients that significantly influenced the distribution plant species (P < 0.05) while other nutrients had no significant effects. Data from this study provide evidence of the existing variation in soil nutrient saturation gradients to which plant species distribution responds within the forest. A successful conservation of Zaraninge Forest biodiversity requires protecting the soil which is the necessary habitat for the plant species.  相似文献   

5.
Global changes in nutrient deposition rates are likely to have profound effects on plant communities, particularly in the nutrient‐limited systems of the tropics. We studied the effects of increased nutrient availability on the seedlings of six tree species in montane forests of southern Ecuador in situ. After five years of continued N, P, or N+P addition, naturally grown seedlings of each of the two most common species at each elevation (1000, 2000, and 3000 m asl) were harvested for analyses of leaf morphology, nutrient content, herbivory, and tissue biomass allocation. Most species showed increased foliar N and P concentrations after addition of each respective element. Leaf tissue N:P ratios of >20 in the control plants of all species suggest that P is more growth‐limiting in these forests than N. Leaf morphological responses to nutrient addition were species and nutrient specific, with some species (Hedyosmum purparescens, Graffenrieda emarginata) exhibiting increased specific leaf area (SLA), and others (Graffenrieda harlingii) increased leaf area ratios (LAR). Pouteria torta (1000 m) had lower SLA and LAR after P addition. Increased herbivory was only evident in G. emarginata (after N and N+P addition). Only the species from 3000 m asl modified biomass allocation after nutrient addition. In general, N and N+P addition more strongly affected the species studied at the upper elevations, whereas P addition had a similar range of effects on the species at all elevations. We conclude that the responses of the studied tropical montane forest tree seedlings to chronic N and P addition are highly species‐specific and that successful adaptation to increased nutrient availability will depend on species‐specific morphological and physiological plasticity.  相似文献   

6.
In evergreen broad-leaved forests (EBLFs) in Tiantong National Forest Park, Eastern China, we studied the soil chemistry and plant leaf nutrient concentration along a chronosequence of secondary forest succession. Soil total N, P and leaf N, P concentration of the most abundant plant species increased with forest succession. We further examined leaf lifespan, leaf nutrient characteristics and root–shoot attributes of Pinus massoniana Lamb, the early-successional species, Schima superba Gardn. et Champ, the mid-successional species, and Castanopsis fargesii Franch, the late-successional species. These species showed both intraspecific and interspecific variability along succession. Leaf N concentration of the three dominant species increased while N resorption tended to decrease with succession; leaf P and P resorption didn’t show a consistent trend along forest succession. Compared with the other two species, C. fargesii had the shortest leaf lifespan, largest decay rate and the highest taproot diameter to shoot base diameter ratio while P. massoniana had the highest root–shoot biomass ratio and taproot length to shoot height ratio. Overall, P. massoniana used ‘conservative consumption’ nutrient use strategy in the infertile soil conditions while C. fargesii took up nutrients in the way of ‘resource spending’ when nutrient supply increased. The attributes of S. superba were intermediate between the other two species, which may contribute to its coexistence with other species in a wide range of soil conditions.  相似文献   

7.
《新西兰生态学杂志》2011,34(3):306-310
Leaf lifespan varies widely among plant species, from a few weeks to >40 years. This variation is associated with differences in plant form and function, and the distribution of species along resource gradients. Longer leaf lifespans increase the residence time of nutrients and are one mechanism by which plants conserve nutrients; consequently, leaf lifespan should increase within species with declining soil nutrient availability. The Franz Josef chronosequence is a series of post-glacial surfaces along which soil fertility declines strongly with increasing soil age. We used this fertility gradient to test whether leaf lifespans of six common indigenous woody species increased as soil nutrient availability declined. Leaf lifespan varied from 12.4 months in Coprosma foetidissima (Rubiaceae) to 47.1 months in Pseudopanax crassifolius (Araliaceae). These leaf lifespans sample 12% of the full range of leaf lifespans reported globally and occupy a relatively conservative portion of global leaf trait space. Contrary to our expectations, leaf lifespan of two species (Pseudopanax crassifolius and Prumnopitys ferruginea) decreased by 44?61% with increasing soil age and there were no other relationships between soil age and leaf lifespan. Across all species, leaf nutrient residence times increased by 85% for N and 90% for P with declining soil fertility, but this was caused by increased nutrient resorption efficiency rather than by increased leaf longevity. These data demonstrate that plants increase leaf nutrient resorption efficiency rather than leaf lifespan as a within-species response to long-term declines in soil fertility.  相似文献   

8.
Nitrogen (N) and phosphorus (P) concentrations and N: P ratios between leaves and roots of Nitraria tangutorum along aridity gradients were studied. N. tangutorum was relatively limited by N in April (mean leaf N: P ratio = 11.13) and by P in August (mean leaf N: P ratio = 38.78). N and P in both leaves and roots were highly correlated across sampling sites. In April both leaf and root N and P concentrations increased along aridity gradients. Mean leaf N: P ratios changed slightly, but mean root N: P ratios increased with increasing aridity gradients. We suggest that leaf N: P ratios can indicate nutrient status at different plant growth stages, and root N: P ratios can signify if the amount of soil nutrients is insufficient.  相似文献   

9.
陕西省3种主要树种叶片、凋落物和土壤N、P化学计量特征   总被引:5,自引:0,他引:5  
以陕西省29个县(市)39个样点的刺槐、辽东栎和油松林为研究对象,分析比较不同树种乔木叶片、凋落物与土壤N、P化学计量特征及其与经纬度、海拔、年均温度和年降水等环境因子间关系的异同以及三者之间可能存在的关系,以期为认识陕西省主要森林树种养分限制状况、制定合理的植被管理和恢复措施提供理论依据。结果表明:3树种叶片N、P含量及比值均为刺槐辽东栎油松,与叶片相比,凋落物中N、P含量变化幅度较小,为刺槐辽东栎油松,N∶P比值为油松辽东栎刺槐。10—20 cm与0—10 cm土层相比,3树种中除辽东栎中P含量差异不显著外,其它指标N、P含量及N∶P比值均显著下降(P0.05)。刺槐、辽东栎和油松叶片N、P含量与土壤N、P含量均没有显著相关性,以刺槐、辽东栎和油松3种植物叶片为总体来说,P含量与土壤P含量显著正相关(P0.05)。叶片N、P含量均大致表现出随着年均温度和年降水的增加而增加,随着经纬度的增加而降低的趋势,这一点在刺槐叶中最为明显。凋落物N含量随着年均温度和年降水的增加而增加,随着纬度和经度的增加而降低;P含量随着年降水和经度的增加而降低;N∶P比值随着年均温度和年降水的增加而增加,随着纬度的增加而降低。研究区内,土壤N、P含量随着纬度、海拔的增加和年均温度、年降水、经度的降低而增加,N∶P比值则呈相反的趋势。3树种土壤N、P含量及N∶P比值中,P含量比N含量受环境影响更大,且0—10 cm和10—20 cm土层N、P含量及N∶P比值与各环境因子的关系基本一致。  相似文献   

10.
Understanding the geographic patterns and potential drivers of leaf stoichiometry is critical for modelling the nutrient fluxes of ecosystems and to predict the responses of ecosystems to global changes. This study aimed to explore the altitudinal patterns and potential drivers of leaf C∶N∶P stoichiometry. We measured the concentrations of leaf C, N and P in 175 plant species as well as soil nutrient concentrations along an altitudinal transect (500–2300 m) on the northern slope of Changbai Mountain, China to explore the response of leaf C∶N∶P stoichiometry to plant growth form (PGF), climate and soil. Leaf C, N, P and C∶N∶P ratios showed significant altitudinal trends. In general, leaf C and C∶N∶P ratios increased while leaf N and P decreased with elevation. Woody and herbaceous species showed different responses to altitudinal gradients. Trees had the largest variation in leaf C, C∶N and C∶P ratios, while herbs showed the largest variation in leaf N, P and N∶P ratio. PGF, climate and soil jointly regulated leaf stoichiometry, explaining 17.6% to 52.1% of the variation in the six leaf stoichiometric traits. PGF was more important in explaining leaf stoichiometry variation than soil and climate. Our findings will help to elucidate the altitudinal patterns of leaf stoichiometry and to model ecosystem nutrient cycling.  相似文献   

11.
We investigated the influence of landscape-level variation in soil fertility and topographic position on leaf litter nutrient dynamics in a tropical rain forest in Costa Rica. We sampled across the three main edaphic conditions (ultisol slope, ultisol plateau, and inceptisol) to determine the effect of soil nutrients on leaf litter nutrient concentrations while controlling for topography, and to examine topographic effects while controlling for soil nutrients. Both leaf litter macronutrient [phosphorus (P), nitrogen (N), sulfur (S), calcium (Ca), potassium (K), magnesium (Mg)] and micronutrient concentrations were quantified throughout a 4-year period. Leaf litter [P], [N] and [K] varied significantly among soil types. The variation in [P], [N], and [K] was explained by soil fertility alone. Leaf litter [S], [Ca], and [Mg] did not vary among the three soil types. Macronutrient (P, K, Mg, S, Ca) concentrations in the leaf litter were much less variable than those of Fe and Al. Lower variability in essential plant nutrients suggests a great deal of plant control over the amount of nutrients resorbed before senescense. Leaf litter macronutrient concentrations varied significantly over the 4-year period, but the temporal variation did not differ among the three edaphic types as anticipated. Hence, although the magnitude of nutrient fluxes may be controlled by local factors such as soil fertility, temporal patterns are likely regulated by a common environmental variable such as precipitation or temperature.  相似文献   

12.
Besides water relations, nutrient allocation, and stoichiometric traits are fundamental feature of shrubs. Knowledge concerning the nutrient stoichiometry of xerophytes is essential to predicting the biogeochemical cycling in desert ecosystems as well as to understanding the homoeostasis and variability of nutrient traits in desert plants. Here, we focused on the temperate desert species Reaumuria soongorica and collected samples from plant organs and soil over 28 different locations that covered a wide distributional gradient of this species. Carbon (C), nitrogen (N), and phosphorus (P) concentrations and their stoichiometry were determined and subsequently compared with geographic, climatic, and edaphic factors. The mean leaf C, N, and P concentrations and C/N, C/P, and N/P ratios were 371.6 mg g−1, 10.6 mg g−1, 0.73 mg g−1, and 59.7, 837.9, 15.7, respectively. Stem and root C concentrations were higher than leaf C, while leaf N was higher than stem and root N. Phosphorus concentration and N/P did not differ among plant organs. Significant differences were found between root C/N and leaf C/N as well as between root C/P and leaf C/P. Leaf nutrient traits respond to geographic and climatic factors, while nutrient concentrations of stems and roots are mostly affected by soil P and pH. We show that stoichiometric patterns in different plant organs had different responses to environmental variables. Studies of species-specific nutrient stoichiometry can help clarify plant–environment relationships and nutrient cycling patterns in desert ecosystems.  相似文献   

13.
The variation in nutrient resorption has been studied at different taxonomic levels and geographic ranges. However, the variable traits of nutrient resorption at the individual species level across its distribution are poorly understood. We examined the variability and environmental controls of leaf nutrient resorption of Quercus variabilis, a widely distributed species of important ecological and economic value in China. The mean resorption efficiency was highest for phosphorus (P), followed by potassium (K), nitrogen (N), sulphur (S), magnesium (Mg) and carbon (C). Resorption efficiencies and proficiencies were strongly affected by climate and respective nutrients concentrations in soils and green leaves, but had little association with leaf mass per area. Climate factors, especially growing season length, were dominant drivers of nutrient resorption efficiencies, except for C, which was strongly related to green leaf C status. In contrast, green leaf nutritional status was the primary controlling factor of leaf nutrient proficiencies, except for C. Resorption efficiencies of N, P, K and S increased significantly with latitude, and were negatively related to growing season length and mean annual temperature. In turn, N, P, K and S in senesced leaves decreased with latitude, likely due to their efficient resorption response to variation in climate, but increased for Mg and did not change for C. Our results indicate that the nutrient resorption efficiency and proficiency of Q. variabilis differed strongly among nutrients, as well as growing environments. Our findings provide important insights into understanding the nutrient conservation strategy at the individual species level and its possible influence on nutrient cycling.  相似文献   

14.
以贵州8年、16年、28年生杉木人工林为研究对象,分析植物-凋落叶-土壤的C、N、P化学计量特征及其内在联系,探讨林龄对杉木人工林生态化学计量的影响,为杉木人工林可持续经营提供参考。结果表明:(1)杉木人工林植物-凋落叶-土壤均呈高C低N、P元素格局,两两组分间差异显著(P0.05);成熟叶C/N(38.58)、C/P(376.67)偏低,其养分利用效率较低;与成熟叶相比,凋落叶N、P偏低,C/N、C/P偏高;土壤C/P、N/P偏低,C/N较高,说明土壤P素分解较快而N保存较好,反映了凋落叶分解不利。(2)成熟叶C、P以及根、凋落叶、土壤的C、N、P、C/N、C/P、N/P均受林龄的显著影响;从8年到28年,C、N、P含量在植物体呈先增后减趋势,而在土壤中相反,呈先减后增趋势,但在凋落物中C、P显著减小,且C/P,N/P显著增加,反映杉木林早期对养分需求旺盛,随年龄增大需求减小,凋落物分解受制于P素,加剧中幼期杉木生态系统养分供需矛盾。(3)成熟叶与凋落叶N、C/N、N/P之间显著正相关,凋落叶养分源自成熟叶;成熟叶重吸收率P(0.518—0.645)N(0.292—0.488),即对P的利用效率高于N。凋落叶与土壤C、C/N之间显著负相关,表明土壤C、N来源于凋落叶分解,但凋落叶分解缓慢,导致大量元素滞留于凋落叶,土壤损耗元素得不到补给,两者间养分循环缓慢。土壤与根C、P、C/N、C/P、N/P之间均显著正相关,土壤与成熟叶的C、N、P均不相关,表明土壤养分是杉木生长养分的主要来源,但土壤C、N、P含量对成熟叶C、N、P含量影响不大。  相似文献   

15.
Understanding how patterns of leaf nutrient traits respond to groundwater depth is crucial for modeling the nutrient cycling of desert riparian ecosystems and forecasting the responses of ecosystems to global changes. In this study, we measured leaf nutrients along a transect across a groundwater depth gradient in the downstream Heihe River to explore the response of leaf nutrient traits to groundwater depth and soil properties. We found that leaf nutrient traits of dominant species showed different responses to groundwater depth gradient. Leaf C, leaf N, leaf P, and leaf K decreased significantly with groundwater depth, whereas patterns of leaf C/N and leaf N/P followed quadratic relationships with groundwater depth. Meanwhile, leaf C/P did not vary significantly along the groundwater depth gradient. Variations in leaf nutrient traits were associated with soil properties (e.g., soil bulk density, soil pH). Groundwater depth and soil pH jointly regulated the variation of leaf nutrient traits; however, groundwater depth explained the variation of leaf nutrient traits better than did soil pH. At the local scale in the typical desert riparian ecosystem, the dominant species was characterized by low leaf C, leaf N, and leaf P, but high leaf N/P and leaf C/P, indicating that desert riparian plants might be more limited by P than N in the growing season. Our observations will help to reveal specific adaptation patterns in relation to the groundwater depth gradient for dominant desert riparian species, provide insights into adaptive trends of leaf nutrient traits, and add information relevant to understanding the adaptive strategies of desert riparian forest vegetation to moisture gradients.  相似文献   

16.
Tao  Ye  Qiu  Dong  Gong  Yan-Ming  Liu  Hui-Liang  Zhang  Jing  Yin  Ben-Feng  Lu  Hai-Ying  Zhou  Xiao-Bing B.  Zhang  Yuan-Ming 《Journal of plant research》2022,135(1):55-67

Ephemeral plants are a crucial vegetation component in temperate deserts of Central Asia, and play an important role in biogeochemical cycle and biodiversity maintenance in desert ecosystems. However, the nitrogen (N) and phosphorus (P) status and interrelations of leaf-root-soil of ephemeral plants remain unclear. A total of 194 leaf-root-soil samples of eight ephemeral species at 37 sites in the Gurbantunggut Desert, China were collected, and then the corresponding N and P concentrations, and the N:P ratio were measured. Results showed that soil parameters presented no significant difference among the eight species. The total soil N:P was only 0.116 (geomean), indicating limited soil N, while the available soil N:P (4.896, geomean) was significantly larger than the total N:P. The leaf N (averagely 30.995 mg g?1) and P (averagely 1.523 mg g?1) concentrations were 2.64–8.46 and 0.93–3.99 times higher than the root N (averagely 8.014 mg g?1) and P (averagely 0.802 mg g?1) concentrations, respectively. Thus, leaf N:P (averagely 21.499) was 1.410–2.957 times higher than root N:P (averagely 11.803). Meanwhile, significant interspecific differences existed in plant stoichiometric traits. At the across-species level, N content scaled as the 3/4-power of P content in both leaves and roots. Leaf and root N:P ratios were mainly influenced by P; however, the leaf-to-root N or P ratio was dominated by roots. Leaf and root N, P contents and N:P were generally unrelated to soil nutrients, and the former presented lower variation than the latter, indicating a strong stoichiometric homeostasis for ephemerals. These results demonstrate that regardless of soil nutrient supply capacity in this region, the fast-growing ephemeral plants have formed a specific leaf-root-soil stoichiometric relation and nutrient use strategy adapting to the extreme desert environment.

  相似文献   

17.
Leaf functional traits are widely used to detect and explain adaptations that enable plants to live under various environmental conditions. This study aims to determine the difference in leaf functional traits among four forest types of Pinus massoniana coniferous and broad‐leaved mixed forests by leaf morphological, nutrients, and stoichiometric traits in the subtropical mountain, Southeastern China. Our study indicated that the evergreen conifer species of P. massoniana had higher leaf dry matter content (LDMC), leaf C content, C/N and C/P ratios, while the three deciduous broad‐leaved species of L. formosana, Q. tissima, and P. strobilacea had higher specific leaf area (SLA), leaf N, leaf P nutrient contents, and N/P ratio in the three mixed forest types. The results showed that the species of P. massoniana has adapted to the nutrient‐poor environment by increasing their leaf dry matter for higher construction costs thereby reducing water loss and reflects a resource conservation strategy. In contrast, the three species of L. formosana, Q. tissima, and P. strobilacea exhibited an optimized resource acquisition strategy rather than resource conservation strategy in the subtropical mountain of southeastern China. Regarding the four forest types, the three mixed forest types displayed increased plant leaf nutrient contents when compared to the pure P. massoniana forest, especially the P. massonianaL. formosana mixed forest type (PLM). Overall, variation in leaf functional traits among different forest types may play an adaptive role in the successful survival of plants under diverse environments because leaf functional traits can lead to significant effects on leaf function, especially for their acquisition of nutrients and use of light. The results of this study are beneficial to reveal the changes in plant leaf functional traits at the regional scale, which will provide a foundation for predicting changes in leaf traits and adaptation in the future environment.  相似文献   

18.
Studies dealing with changes in the plant internal nutrient cycling in response to natural, long-term P-fertility gradients are scarce. In this short report, we show some evidence on how leaf P dynamics can be drastically altered when plants typical from nutrient-poor sites grow in long-term P-enriched soils. The study was conducted in two natural populations of the Mediterranean evergreen shrub Pistacia lentiscus L.: one in a P-poor site and the other in a P-rich site. Soil texture and N, P, and organic matter contents were measured at each site. Leaf N and P concentrations were also measured in current-year, 1-year-old, and 2-year-old leaves, and in the senesced leaves. In the P-poor site, leaf P and N decreased as the leaves aged. This occurs because of nutrient reabsorption to other plant organs and/or dilution of nutrients by carbon compounds. In contrast, the leaves from the P-rich site acummulated P (but not N) during leaf lifespan. Consequently, P concentration in senesced leaves was very high in the P-rich site. These results show that, in long-lived perennials living in the field, long-term P enrichment can switch the normal process of P resorption during leaf aging to P accretion in the leaf. P accumulation in the leaves, which are periodically shed, might constitute a simple P excretion mechanism for plants typical from P-poor soils.  相似文献   

19.
探讨植物比叶面积(SLA)与叶片碳(C)、氮(N)、磷(P)化学计量学关系,能够反映植物为获取最大光合生产所采取的内部调控机制,共同体现植物的适应策略。利用生长于同一土壤与气候环境中培育的刨花楠(Machilus pauhoi)1年生苗木,对其SLA与叶片C、N、P含量进行测定,并对SLA与叶片C、N、P化学计量学特征及其与种源地环境因子的关系进行分析。结果表明:(1)叶片养分含量的变异系数大小排序为CNP;SLA与叶片N、P含量呈显著的正相关,与叶片C∶N及C∶P呈极显著的负相关。(2)SLA与经度、年均温、年降水量呈显著负相关;叶片C、N、P含量也受种源地环境因子影响,其中以海拔最为重要。研究结果有助于理解刨花楠苗木的生存适应对策,对探究刨花楠对养分的资源利用效率等具有重要意义。  相似文献   

20.
为揭示植被恢复过程中生态系统的养分循环机制及植物的生存策略, 根据亚热带森林群落演替过程, 采用空间代替时间方法, 以湘中丘陵区地域相邻、环境条件基本一致的檵木(Loropetalum chinensis) +南烛(Vaccinium bracteatu) +杜鹃(Rhododendron mariesii)灌草丛(LVR)、檵木+杉木(Cunninghamia lanceolata) +白栎(Quercus fabri)灌木林(LCQ)、马尾松(Pinus massoniana) +柯(Lithocarpus glaber) +檵木针阔混交林(PLL)、柯+红淡比(Cleyera japonica) +青冈(Cyclobalanopsis Glauca)常绿阔叶林(LCC)作为一个恢复系列, 设置固定样地, 采集植物叶片、未分解层凋落物和0-30 cm土壤样品, 测定有机碳(C)、全氮(N)、全磷(P)含量及其化学计量比, 运用异速生长关系、养分利用效率和再吸收效率分析植物对环境变化的响应和养分利用策略。结果表明: (1)随着植被恢复, 叶片C:N、C:P、N:P显著下降, 而叶片C、N、P含量和土壤C、N含量、C:P、N:P显著增加, 其中LCC植物叶片C、N含量, 土壤C、N含量及其N:P, PLL植物叶片P含量, 土壤C:P显著高于其他3个恢复阶段, 各恢复阶段植物叶片N:P > 20, 植物生长受P限制; 凋落物C、N、P含量及其化学计量比波动较大。(2)凋落物与叶片、土壤的化学计量特征之间的相关关系较弱, 叶片与土壤的化学计量特征之间具有显著相关关系, 其中叶片C、N、P含量与土壤C、N含量、C:N (除叶片C、N含量外)、C:P、N:P呈显著正相关关系; 叶片C:N与土壤C、N含量、C:P、N:P, 叶片C:P与土壤C含量、C:N、C:P, 叶片N:P与土壤C:N呈显著负相关关系。(3)植被恢复过程中, 叶片N、P之间具有显著异速生长关系, 异速生长指数为1.45, 叶片N、P的利用效率下降, 对N、P的再吸收效率增加, LCC叶片N利用效率最低, PLL叶片P利用效率最低而N、P再吸收效率最高。(4)叶片N含量内稳态弱, 而P含量具有较高的内稳态, 在土壤低P限制下植物能保持P平衡。植被恢复显著影响叶片、凋落物、土壤C、N、P含量及其化学计量比, 叶片与土壤之间C、N、P含量及化学计量比呈显著相关关系, 植物通过降低养分利用效率和提高养分再吸收效率适应土壤养分的变化, 叶片-凋落物-土壤系统的N、P循环随着植被恢复逐渐达到“化学计量平衡”。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号