首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Effects of flooding on survival and growth of three different types of Nuttall oak (Quercus texana Buckl.) seedlings were observed at the end of third and fifth growing seasons at Yazoo National Wildlife Refuge, Mississippi, U.S.A. Three types of seedlings were planted in January 1995 in a split‐plot design, with four replications at each of two elevations on floodprone, former cropland in Sharkey clay soil. The lower of the two planting elevations was inundated for 21 days during the first growing season, whereas the higher elevation did not flood during the 5‐year period of this study. The three types of 1‐0 seedlings were bareroot seedlings, seedlings grown in containers (3.8 × 21–cm plastic seedling cones), and container‐grown seedlings inoculated with vegetative mycelia of Pisolithus tinctorius (Pers.) Coker. Survival of all the three seedling types was greatest at the lower, intermittently flooded elevation, indicating that drought and related effects on plant competition were more limiting to seedling survival than flooding. At the lower elevation, survival of mycorrhizal‐inoculated container seedlings was greater than that of noninoculated container seedlings. Survival among bareroot seedlings and inoculated container seedlings was not significantly different at either elevation. At the higher, nonflooded elevation, however, bareroot seedling survival was greater than the survival of container seedlings without inoculation. Differences were significant among the inoculated and the noninoculated container seedlings, with higher survival of inoculated seedlings at both elevations, though differences were only significant in year 3. At the end of the fifth year, height of bareroot seedlings was significantly greater than the heights of both types of container‐grown seedlings at both planting elevations. Because seedlings grown in the plastic seedlings cones did not survive better than the bareroot seedlings at either planting elevation, the bareroot stock appear to be the economically superior choice for regeneration in Sharkey soil.  相似文献   

2.
In semiarid south Texas, land conversion has reduced thornscrub forests by greater than 95%, and stressors, including competition with invasive grasses, mammalian herbivory, and drought, threaten the success of restoration efforts. This study assessed the effectiveness of multiple restoration treatments aimed at improving survival and growth of thornscrub forest seedlings planted in old agricultural fields. In January 2013, we treated greater than 1,100 seedlings with grass‐specific herbicide, herbivore exclosures, and shelter tubes, used separately or combined. We further evaluated the effects of shelter tube duration (0, 6, 12, and 18 months). For each seedling, we quantified surrounding invasive grass cover, browse intensity, height, and basal diameter every 4 months until September 2014. Herbicide application decreased invasive grass cover approximately 5‐fold and increased seedling survival (23%) and basal diameter (26%). Shelter tube application for 12 and 18 months increased seedling survival (10%) and height (43 and 74%, respectively), whereas seedlings treated with tubes for only 6 months performed similar to those left untreated. Exclosures had no impact on seedling survival but increased seedling height (23%) and basal diameter (26%). We found no significant interactive effects of treatments. Overall, herbicide most effectively increased seedling survival and basal diameter growth, whereas shelter tubes proved most useful for promoting height growth. Combined, these treatments increased implementation and maintenance costs 2‐fold, but minimized seedling mortality and maximized restoration potential. These findings highlight the necessity of post‐planting seedling management to reduce stress from invasive grasses, mammalian herbivory, and drought and improve restoration potential in semiarid thornscrub forests.  相似文献   

3.
In the present paper, an experiment was conducted to study the effects of soil moisture content on dry nursery seedling quality in Guangzhou in 1995. Through comparing the difference of dry nursery seedlings and wet nursery seedlings, we found a close relationship between soil moisture content and seedling growth. The seedling emergence of dry nursery seedling was more even, tidy and faster, and the survival rate was higher than that of wet nursery seedling. Dry nursery seedlings had small plant stature, slow leaf stretching speed and low individual seedling dry weight, but had high dry/fresh weight ratio. This was abeneficial factor for seedlings to recover from transplanting shock more quickly. As com-pared with the wet nursery seedlings, dry nursery seedlings had poor rooting ability,but had more vigorous white roots and fewer rust roots. It was the possibly important reasonfor dry nursery seedlings to form strong“explosive force”.  相似文献   

4.
In semiarid environments, surface soil properties play a major role in ecosystem dynamics, through their influence on processes such as runoff, infiltration, seed germination, and seedling establishment. Surface soil properties usually show a high degree of spatial heterogeneity in semiarid areas, but direct tests to evaluate the consequences of this heterogeneity on seedling establishment are limited. Using a combination of spatial analysis by distance indices (SADIE) and principal components analysis (PCA) we quantified the spatiotemporal patterns of seedling survival of a Mediterranean native shrub (Pistacia lentiscus) during the first 3 years after planting on a semiarid degraded site in southeastern Spain. We used a variation partitioning method to identify environmental variables associated with seedling survival patterns. Three years after planting, only 36% of the seedlings survived. During the first summer, one-third of the seedlings died, with secondary major mortality in the 3rd summer after planting. The spatial pattern of survival became strongly clumped by the end of the first summer, with clearly defined patches (areas of high survival) and gaps (areas of low survival). The intensity of this pattern increased after subsequent high-mortality periods. Of the 14 variables, the ones most strongly coupled to seedling survival were bare soil cover, sand content, and soil compaction. These findings contribute to our understanding of the linkages between the spatial heterogeneity of abiotic factors and the response of plant populations in semiarid degraded ecosystems and can be used to optimize restoration practices in these areas.  相似文献   

5.
Planting tree seedlings in small patches (islands) has been proposed as a method to facilitate forest recovery that is less expensive than planting large areas and better simulates the nucleation process of recovery. We planted seedlings of four tree species at 12 formerly agricultural sites in southern Costa Rica in two designs: plantation (entire 50 × 50 m area planted) and island (six patches of three sizes). We monitored seedling survival, height, and canopy area over 3 years. To elucidate mechanisms influencing survival and growth, we measured soil and foliar nutrients, soil compaction, and photosynthesis. Survival of all species was similar in the two planting designs. Seedling height and canopy area were greater in plantations than islands at most sites, and more seedlings in islands decreased in height due to damage incurred during plot maintenance. Survival, height, and canopy area were both site‐ and species‐specific with the two N‐fixing species (Inga edulis and Erythrina poeppigiana) greater than the other species (Terminalia amazonia and Vochysia guatemalensis). Foliar N was higher in Terminalia and Vochysia in sites where Inga growth was greater. Soil nutrients, however, explained a small amount of the large differences in growth across sites. Leaf mass per area was higher in islands, and P use efficiency was higher in plantations. Our results show advantages (good seedling survival, cheaper) and disadvantages (more seedling damage, slightly lower growth) to the island planting design. Our study highlights the importance of replicating restoration strategies at several sites to make widespread management recommendations.  相似文献   

6.
Shrubs are often considered competitive barriers for seedlings planted in reforestation programs, although they can facilitate tree recruitment, especially in ecosystems under high abiotic stress. An alternative reforestation technique using pioneer shrubs as nurse‐plants for Olea europaea ssp. cuspidata was tested in exclosures in northern Ethiopia. Seedlings were planted in three different microhabitats, and their survival was monitored. The microhabitats were bare soil patches between shrubs, patches under the dominant shrub Acacia etbaica, and patches under Euclea racemosa, an evergreen shrub, which supports the majority of naturally established Olea recruits. The ability of shrubs to offer protection against browsing goats was tested experimentally. Controlled shading was used to determine whether solar irradiation causes seedling mortality in environments without water stress. Data were analyzed using Kaplan–Meier survival analysis, Kruskal–Wallis analysis of variance (ANOVA), and one‐way ANOVA. Olea survival was significantly higher and shoot damage by goats was lower when planted under shrub cover compared to bare soil patches, particularly under Euclea canopies, although high shade levels reduced seedling performance. Reduction of solar radiation by shrub canopies and thus control of soil–water evaporation and seedling transpiration most likely controlled the observed facilitation. Planting under shrubs may increase seedling survival and assist regeneration of dry Afromontane vegetation. Preserving pioneers also reduces soil erosion and conserves biodiversity. Excluding livestock is essential for Olea woodland restoration and allows persistent but morphologically modified Olea shrubs to develop vigorous regrowth. Facilitative processes are guiding principles for assisted forest restoration, but above‐average rains may be critical to restore higher biomass levels in semiarid areas.  相似文献   

7.
Improvement of physical-chemical soil quality is a key step for carrying out revegetation programs of degraded lands in Mediterranean semiarid areas. Organic residue addition may restore the quality of these areas. A field experiment was conducted in a silt-loam soil (Typic Petrocalcid) from a degraded semiarid Mediterranean area to evaluate the effect of the addition of a composted urban residue on soil aggregate stability, bulk density and chemical properties and on the establishment of Pistacia lentiscus and Retama sphaerocarpa seedlings. The composted residue was applied at a rate of 6.7 kg m(-2) before planting. The nutrient content (NPK), total organic C and water soluble C were increased and bulk density was decreased, in the rhizosphere soil of both shrub species, by the composted residue. The addition of composted residue significantly increased the soil aggregate stability by about 22% for both shrub species. The beneficial effect of the composted residue on soil quality still persisted 18 months after addition. Eighteen months after planting, the addition of composted residue to soil had increased significantly the production of shoot biomass by P. lentiscus and R. sphaerocarpa, by about 160% and 320% respectively, compared to control values. Composted residue addition to soil can be considered an effective preparation method of a degraded area for carrying out successful revegetation programs with Mediterranean shrubs under semiarid conditions.  相似文献   

8.
Restoration requires techniques similar to those used in agriculture to improve germination and seedling vigor. We treated 6‐year‐old (collected in 2003, S‐2003) and 1‐month‐old (S‐2009) seeds of Dodonaea viscosa with hydropriming (HP). Seeds were made permeable with hot water prior to hydration for 24 or 48 hours (HP‐24 and HP‐48, respectively) followed by dehydration. The resulting seedlings exposed to both HP treatments were sown in a lava field in soil mixed with hydrogel (HG) under the shade projected by five vegetation patches. The effects of these treatments on germination, seedling field survival, and growth were assessed. HP‐24 in S‐2009 and HP‐48 in S‐2003 increased the germination percentage from 22.5 and 31.7% in control seeds (permeable seeds) to 63.3 and 98.3%, respectively. The seedlings‐2009 (from S‐2009) with HG maintained high survival in all vegetation patches. Seedlings‐2003, however, had low survival. The lack of HG was negatively related to the photon flux in each patch. Survival of seedlings‐2009 increased with HG of up to 398.41 µmol m?2 s?1; after which survival decreased. During the rainy season, HP enhanced seedling growth, except the basal diameters and number of leaves in the seedlings‐2003 with HP‐24. During the dry season, the effects of HG and HP were similar for all the seedlings. In the following rainy season, the priming effect was lost while HG continued to promote seedling growth. The combined use of HP and HG and the shade projected by the patches resulted in a successful vegetation recovery strategy.  相似文献   

9.
We investigated how the application of composted sewage sludge to tailings affects the physiological response of woody plants growing on abandoned coal-mining sites. Twenty seedlings ofBetula schmidtii were transplanted to pots containing various combinations of artificial soil plus nursery soil, tailings, composted soil, or tailings amended with composted soil. Dry weights, shoot to root ratios, relative growth rates (RGR), chlorophyll content and fluorescence, and carbohydrate concentrations were assessed at the end of the experiment. Growth responses differed significantly among soil types. For example, dry weights were greatest for seedlings grown in composted soil and smallest for plants raised in pure tailings. Shoot to root ratios were higher for seedlings in composted soil compared with those in either tailings or nursery soil. Leaf chlorophyll content was twice as high for seedlings from composted soil than for those in the nursery soil or tailings; chlorophyll fluorescence (Fv/Fm) was lower for seedlings in either nursery soil or tailings than for those in composted soil. In contrast, plants grown in either nursery soil or tailings had higher starch concentrations in their stems, whereas the carbohydrate allocation of seedlings in composted soil was highest in the leaves, followed by stems and roots. Overall, the carbohydrate content was highest in the leaves, except for seedlings treated with tailings. Therefore, we believe that composted soil can improve the physiological and biochemical properties of trees growing in tailings when appropriate nutrients are supplemented.  相似文献   

10.
Reduced recruitment of blue oak (Quercus douglasii) seedlings in California grasslands and woodlands may result from shifts in seasonal soil water availability coincident with replacement of the native perennial herbaceous community by Mediterranean annuals. We used a combination of container and field experiments to examine the interrelationships between soil water potential, herbaceous neighborhood composition, and blue oak seedling shoot emergence and growth. Neighborhoods of exotic annuals depleted soil moisture more rapidly than neighborhoods of a perennial grass or "no-neighbor" controls. Although effects of neighborhood composition on oak seedling root elongation were not statistically significant, seedling shoot emergence was significantly inhibited in the annual neighborhoods where soil water was rapidly depleted. Seedling water status directly reflected soil water potential, which also determined the extent and duration of oak seedling growth during the first year. End-of-season seedling height significantly influenced survival and growth in subsequent years. While growth and survival of blue oak seedlings may be initially constrained by competition with herbaceous species, subsequent competition with adult blue oak trees may further contribute to reduced sapling recruitment.  相似文献   

11.
本试验于1995年晚季初步研究了水、旱育秧方式和不同插植密度下根系活力的变化趋势及与地上部生长发育的关系。结果表明:(1)旱育秧苗根系活力明显高于水育秧,根系活力与白根数、地上部苗体干/鲜重比值呈显著正相关,与褐根数、苗高、叶龄和百苗干、鲜物重呈负相关。(2)旱育单苗移植处理的根系活力在水稻整个生育过程中均高于旱育多苗移植处理,水秧单苗和多苗移植处理。生育后期根系活力与主茎功能叶片叶绿素含量和叶面积系数分别呈极显著正相关和正相关,旱育秧苗的这些特性有利于移植后叶片与分蘖的快速形成及生育后期延缓叶片衰老,提高籽粒充实度。同时提出,在水肥管理上应适当加大后期穗肥比例,改善光照条件和土壤的通气排水状况,以便充分发挥旱育稀植秧苗的增产优势。  相似文献   

12.
The effects of three levels of relative humidity (40%, 65%, and 90%) and two types of containers (clay and plastic) on the seedling growth of three F1 hybrid annuals were determined after 14 days of controlled-environment treatment. Forty percent relative humidity was severely limiting to the seedling growth of ‘Blue Blazer’ ageratum (Ageratum houstonianum Mill.), ‘Pink Cascade’ petunia (Petunia hybrida Vilm.), and ‘Double Eagle’ marigold (Tagetes erecta L.). Raising the relative humidity to 65% resulted in striking increases in fresh weight, dry weight, and leaf area, especially when clay containers were used. Height of the main shoot was increased significantly at 65% relative humidity but node number was influenced only slightly. Increasing the relative humidity further to 90% had no significant effect on fresh weight, dry weight, or percent dry weight for any of the three species, in either container. Leaf area was increased significantly at 90% only in ageratum seedlings grown in clay pots. Each species responded differently to the type of container used. The fresh weight and dry weight of petunia seedlings were significantly greater in plastic pots at every level of humidity while those of marigold seedlings were unaffected by the type of container used. Ageratum seedlings, on the other hand, had significantly greater fresh weights and dry weights in clay pots only at 90% relative humidity.  相似文献   

13.
Fire is the most important disturbance factor in Cypress (Austrocedrus chilensis) forests in Patagonia, Argentina. This ecosystem recovers poorly after fire, and direct sowing could be a potentially useful restoration practice. To evaluate the effect of season of sowing, post‐fire plant cover (PC), and climatic variability on seedling emergence and survival, three direct sowing studies were established in two burned cypress stands: Trevelin (xeric conditions) and El Bolsón (mesic conditions). Two studies were conducted in winter (2000 and 2001) and one in spring (2001). Precipitation was higher than the mean during the 2000–2001 growing season and lower during 2001–2002. At both sites, emergence and survival were much higher for winter‐ than for spring‐sown seedlings. In the xeric stand, emergence and survival of winter‐sown seedlings increased with medium and high PC values, after the humid and dry summers, respectively. However, most spring‐sown seedlings did not emerge, and those that did were short‐lived. Because of the more favorable growing conditions in the mesic stand, PC had no effect on emergence and only favored first year survival of winter‐sown seedlings after the dry summer. Spring‐sown seedlings showed no association with PC in the mesic site, probably because the first summer was exceptionally humid. We speculate that shading plants exert a positive effect on cypress seedling establishment, likely by reducing the stress from high temperatures and low water availability. Sowing of small patches under the protection of understory vegetation could be useful in restoring burned cypress stands.  相似文献   

14.
In herbaceous dominated patches and ecosystems, tree establishment is influenced partly by the ability of woody seedlings to survive and grow in direct competition with herbaceous vegetation. We studied the importance of season long wet and dry spells on the competitive interactions between herbaceous vegetation and oak seedlings along a light and nitrogen gradient in an infertile secondary successional grassland in central North America. We conducted a field experiment in which seedlings of bur oak (Quercus macrocarpa) and northern pin oak (Q. ellipsoidalis) were exposed to two levels of light (full sun and 80% shade), three levels of nitrogen input (0, 5, 15 g m–1 yr–1), and three levels of water input (low, medium and high). In addition, seedlings were grown with and without the presence of surrounding herbaceous vegetation under both light and all three water levels. Seedling survival, growth, and rate of photosynthesis were significantly affected by competition with herbaceous vegetation and these effects varied along the multiple resource gradient. Overall, seedling survival of both species was significantly greater in wetter and shaded plots and when surrounding herbaceous vegetation was removed and was lower in nitrogen enriched plots. We found that soil water was significantly affected by varying inputs of water, light, and the presence or absence of herbaceous vegetation, and that seedling survival and rate of photosynthesis were highly correlated with available soil water. Our findings show that the impact of season long wet and dry spells on tree seedling success in grasslands can be affected by light and soil nitrogen availability.  相似文献   

15.
To better understand how the Cross Timbers ecotone between U.S. eastern deciduous forest and tallgrass prairie is organized and maintained, I set out seedlings of Shumard oak (Quercus shumardii) for 1 year with treatments of water addition, trenching in pots to reduce belowground competition, burning, and patch type. I found that (1) seedlings in pots survived twice as much as those without pots and seedlings in unburned areas survived up to four times as much as those in burned areas; (2) seedlings in pots grew twice as fast as those planted directly in the soil without a pot; and (3) whereas adding water, planting in a pot, and planting under shrubs all increased leaf chlorophyll absorption, it was when the seedling was watered, under a shrub, or in a pot that chlorophyll increases were 2‐fold. Results suggest these management and restoration strategies to increase Cross Timbers oak establishment: first reduce belowground competition by the resident grasses; second, do not burn; and third, use shrubs as a facilitating tool. Adding water to tree seedlings should be used as a management tool only after others have been tried and failed. Finally, an ecotone conceptual vegetation model is presented both to incorporate the results and to explain how ecotones may be managed, restored, and maintained.  相似文献   

16.
Abstract A comparison of a composted organic amendment, a controlled‐release fertilizer, and induced mycorrhizal inoculation as affecting the establishment and nutrition of bareroot Jeffrey pine (Pinus jeffreyi Grev. & Balf.) was conducted on a Sierra Nevada surface mine. The soil amendments were applied at outplanting to the backfill of augered planting holes, with a low rate of 8 g and a high rate of 16 g per seedling for the fertilizer, Gromax 21‐6‐2 + Minors, whereas a single rate of 2.0 L was used for organic matter. Colonization by Pisolithus tinctorius (Pers.) Coker & Couch was induced by coating the root systems with basidiospores suspended in a gel carrier. The organic amendment especially, but also mycorrhizal inoculation, caused substantial seedling mortality, whereas survival was unaffected by controlled‐release fertilization. Gromax applied at the high rate produced a 74% increase in shoot volume after three growing seasons, whereas the organic amendment reduced volume by 28%. Growth was unaffected by mycorrhizal treatment. The growth response to the 16‐g Gromax application probably reflected enhanced N, P, and K nutrition and decreased concentrations of potentially toxic metallic elements, including Mn and Al among others, as revealed through foliar analysis. Because they were accompanied by growth reduction, nutritional responses to the organic amendment, which involved both macronutrients and trace elements, were of little consequence. Impaired water relations may account for the poor response to this amendment. Likewise, nutritional responses to mycorrhizal inoculation produced no discernible benefit in terms of seedling performance. An inoculation procedure that failed to induce substantially greater P. tinctorius colonization in inoculated than uninoculated seedlings, and that may have also impaired water relations, likely explains this result. Overall, these findings indicate that further research is needed before either the organic amendment or the mycorrhizal inoculation procedure used here can be used in forest restoration efforts on dry sites.  相似文献   

17.
With the proliferation of old fields and the decline of native grasslands in North America, non-indigenous grasses, which tend to colonize and dominate North American old fields, have become progressively more abundant. These new grasses can differ from native grasses in a number of ways, including root and shoot morphology (e.g., density of root mat, height of shoots), growth phenology (e.g., cool season vs. warm season growth), and plant–soil–water relations due to differences in photosynthetic physiology (C3 vs. C4). Woody plants have been slow to colonize some old fields in the prairie-forest border area of North America and it is hypothesized that non-indigenous grasses may be contributing to the poor establishment success of woody plants in this region, possibly through more intense competition for resources. To test this hypothesis, a multi-factorial field experiment was conducted in which water, nitrogen, and grass functional group (non-indigenous C3 and native C4 species) were manipulated in a study of survival of oak seedlings. The grass type variously affected some of the different growth measurements, however, the effects of grass type on seedling growth were small compared to the effects on seedling survival. The results showed that when grown under dry conditions, seedlings growing in non-indigenous grasses experienced up to a 50% reduction in survival compared to those growing in native grasses under the same conditions. Analyses of root and shoot competition showed that the cause for the reduced survival in the non-indigenous grasses was due primarily to underground processes. The findings confirmed our initial hypothesis that non-indigenous grasses are likely contributing to the poor establishment success of woody plants in these old fields. However, the explanation for the reduced oak seedling survival in non-indigenous grasses does not appear to be due to reduced resource availability since soil water levels did not differ between non-indigenous and native grass plots and other resource levels measured (light, NO3, and NH4) were higher in non-indigenous grass plots under dry conditions. An alternative explanation is that the non-indigenous grasses modify the soil environment in ways that, under dry conditions, are deleterious to emerging oak seedlings. Since current climate projections for the upper Midwest are for hotter and drier summers, the results suggest that the resistance of these old fields to oak encroachment will likely increase in the future.  相似文献   

18.
Planting woody vegetation is frequently a first step towards the restoration of degraded drylands. Seedling establishment on unfertile soils may be favoured by applying organic amendments such as biosolids. But the outcome of such a practice is strongly dependent on the type of amendment and the application rate used. High application rates may have deleterious effects on plant performance and compromise plantation success. Thus amendment type and dose should be carefully selected to optimise benefits and minimize risks. In this study, we evaluated the effect of two organic amendments (composted and air-dried sewage sludge) applied at 5 doses (0, 15, 30, 45 and 60 Mg ha?1) on soil properties and on the performance of 1-year-old Pinus halepensis seedlings planted in a dry Mediterranean degraded area. Soil organic matter, electrical conductivity and nutrient availability increased with the application rate, but the magnitude of this increase depended on the type of amendment and the time. Organic amendments improved N and P status and promoted seedling growth. Nevertheless, at the higher application rates they showed a negative impact on seedling survival 1 and 3 years after application. Drought effects intensified by root competition with extant vegetation and reduced water availability within the planting hole were the main causes attributed to the higher mortality. Low to moderate doses showed the best combination of seedling survival and growth and can thus be recommended to promote the establishment of P. halepensis in dry Mediterranean areas.  相似文献   

19.
Restoration opportunities provided by an emerging carbon market have largely focused on large‐scale woodland restoration projects. Gondwana Link is one such project operating in a 1000‐km corridor in south‐western Australia. We identified environmental factors affecting the success of woody‐species restoration at a dry‐woodland Gondwana Link site, Peniup, by relating the emergence and survival of 1522 seedlings to abiotic and biotic variables, including soil conditions and weed cover. We found soil conditions were highly variable across the site and, together with the dry Mediterranean‐climate summer, affected seedling emergence and summer survival. Seedling emergence was higher in sandy soils, but summer survival was higher in clay soils. Most of the seedlings that emerged and survived the summer were in either the Fabales or Myrtaceae family. We concluded that attempts to analyse restoration outcomes that do not consider how the influence of primary abiotic and biotic factors changes over time may mask the mechanisms driving seedling establishment.  相似文献   

20.
Invasive non‐native species can create especially problematic restoration barriers in subtropical and tropical dry forests. Native dry forests in Hawaii presently cover less than 10% of their original area. Many sites that historically supported dry forest are now completely dominated by non‐native species, particularly grasses. Within a grass‐dominated site in leeward Hawaii, we explored the mechanisms by which non‐native Pennisetum setaceum, African fountain grass, limits seedlings of native species. We planted 1,800 seedlings of five native trees, three native shrubs, and two native vines into a factorial field experiment to examine the effects of grass removal (bulldozed vs. clipped plus herbicide vs. control), shade (60% shade vs. full sun), and water (supplemental vs. ambient) on seedling survival, growth, and physiology. Both grass removal and shade independently increased survival and growth, as well as soil moisture. Seedling survival and relative growth rate were also significantly dependent on soil moisture. These results suggest that altering soil moisture may be one of the primary mechanisms by which grasses limit native seedlings. Grass removal increased foliar nitrogen content of seedlings, which resulted in an increase in leaf‐level photosynthesis and intrinsic water use efficiency. Thus in the absence of grasses, native species showed increased productivity and resource acquisition. We conclude that the combination of grass removal and shading may be an effective approach to the restoration of degraded tropical dry forests in Hawaii and other ecologically similar ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号