首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isolated cell walls from maize (Zea mays L.) roots exhibited ionically and covalently bound NAD-specific malate dehydrogenase activity. The enzyme catalyses a rapid reduction of oxaloacetate and much slower oxidation of malate. The kinetic and regulatory properties of the cell wall enzyme solubilized with 1 M NaCl were different from those published for soluble, mitochondrial or plasma membrane malate dehydrogenase with respect to their ATP, Pi, and pH dependence. Isoelectric focusing of ionically-bound proteins and specific staining for malate dehydrogenase revealed characteristic isoforms present in cell wall isolate, different from those present in plasma membranes and crude homogenate. Much greater activity of cell wall-associated malate dehydrogenase was detected in the intensively growing lateral roots compared to primary root with decreased growth rates. Presence of Zn2+ and Cu2+ in the assay medium inhibited the activity of the wall-associated malate dehydrogenase. Exposure of maize plants to excess concentrations of Zn2+ and Cu2+ in the hydroponic solution inhibited lateral root growth, decreased malate dehydrogenase activity and changed isoform profiles. The results presented show that cell wall malate dehydrogenase is truly a wall-bound enzyme, and not an artefact of cytoplasmic contamination, involved in the developmental processes, and detoxification of heavy metals.  相似文献   

2.
ASR1 is a plant‐specific, highly charged, low molecular weight polypeptide. Purified ASR1 was shown to posses sequence specific Zn2+‐dependent DNA binding activity (Kalifa et al. Biochemical Journal 381, 373–378, 2004). Steady‐state levels of tomato Asr1 mRNA and protein are transiently increased following exposure of plants to polyethylene glycol, NaCl or abscisic acid. The biological role of ASR1 could not be deduced from sequence analyses or sequence homologies. Tobacco plants over‐expressing tomato ASR1 have a decreased rate of water loss and improved salt tolerance. Upon exposure to salt, ASR1‐over‐expressing plants accumulate less Na+ and proline than wild‐type plants, and also results in increased steady‐state levels of other gene products under non‐stressed plant growth conditions. Therefore, ASR1 is probably involved in the regulation of water‐ or salt‐stress‐modulated gene expression.  相似文献   

3.
Maize (Zea mays L. cv. Ganga-5) seedlings were grown in the presence of ferulic acid (0.5 – 3.0 mM) for 8 d. Treatment with ferulic acid considerably decreased shoot and root length, increased the activity of peroxidase, catalase and indole-3-acetic acid (IAA) oxidase and decreased the activity of polyphenol oxidase. The increased activity of peroxidase correlated with pronounced increase in content of lignin and phenolic compounds  相似文献   

4.
The activity of the peroxidase system in Mesembryanthemum crystallinum L. plants in relation to the shift from C3 to CAM photosynthesis was studied. In detached leaves of the fourth and fifth stories treated with NaCl (0.3 M), a rapid (after 30 min) transient induction of the ionically bound peroxidase (the first maximum) was observed followed by a second weak increase in the enzyme activity (90 min after salt treatment). In the leaves of intact plants, which received a longer treatment with NaCl, a two-phase change in the enzyme activity was also observed. It was most pronounced at the early stages of the NaCl-induced plant shift from C3 to CAM photosynthesis. In this case, in both detached and intact leaves of juvenile plants, the activity of soluble peroxidase was at a low steady-state level. The situation changed dramatically when M. crystallinum plants transitioned to the reproductive developmental phase and photosynthesis switched from C3 to CAM. The time dependence of the activities of both peroxidase types, the soluble ones in particular, was characterized by marked diurnal oscillations (light–dark), which coincided with the fluctuations of the total titratable acidity. In this case, the activity of the soluble enzyme was several orders of magnitude higher than the activity of the ionically bound peroxidase, even though the optimum pH for both isoforms was similar (pH 5.0). Three acid isoforms of soluble peroxidases, which operated more actively when the cytoplasm had a higher acidity, were distinguished by isoelectrofocusing. Their activity increased under salinity. Alkaline and neutral components were predominant in more than 30 molecular forms of the soluble peroxidase detected. We concluded that the operation of the peroxidase system changed substantially when plants shifted from the juvenile to the reproductive state and switched from C3 to CAM photosynthesis: the activity of stress-induced ionically bound peroxidase was drastically inhibited with a concurrent increase in the activity of soluble peroxidase and a change in the spectrum of its molecular forms.  相似文献   

5.
Exogenous-applied 24-epibrassinolide (EBR) increased the seedling growth of radish (Raphanus sativus L.) in terms of seedling length, fresh weight and dry weight both in zinc (Zn2+)-stressed and unstressed conditions. Moreover, EBR lowered the Zn2+ uptake and bioaccumulation. Increased oxidation of ascorbate (AsA) and glutathione (GSH) pools to dehydroascorbate and glutathione disulfide respectively was observed in Zn2+-stressed seedlings, a clear indication of oxidative stress. However, exogenous application of EBR to stressed seedlings inhibited the oxidation of ascorbate and glutathione, maintaining redox molecules in reduced form. Under Zn2+ stress, enzymatic activities of ascorbate–glutathione cycle such as ascorbate peroxidase, monodehydroascorbate reductase increased but the dehydroascorbate reductase, glutathione reductase decreased. Zn2+ stress induced the gamma-glutamylcysteine synthetase, and glutathione-s-transferase activities in radish seedlings were further enhanced with EBR application. Zn2+ toxicity decreased the thiol content but, EBR supplementation resulted in restoration of thiol pool. The results of present study clearly demonstrated that external application of EBR modulates the AsA and GSH redox status to combat the oxidative stress of Zn2+ in seedlings via the AsA–GSH cycle and glutathione metabolism as an antioxidant defense system.  相似文献   

6.
The activities of antioxidative enzymes and contents of proline and total phenolics were assayed in roots of two maize (Zea mays L.) genotypes grown in a medium containing nitrate (NO3 ) or both nitrogen forms, nitrate and ammonium (NH4 +/NO3 ). An increase in the activities of class III peroxidases (POD), superoxide dismutase (SOD), ascorbate peroxidase (APX), ascorbate oxidase (AO) and proline content, and decrease in phenolic content were observed in NH4 +/NO3 in comparison with NO3 grown plants. When polyethylene glycol (PEG) was added to both nitrogen treatments, the content of total phenolics and proline was increased, especially in NH4 +/NO3 treatment. The PEG treatment decreased enzyme activities in NH4 +/NO3 grown plants, but in NO3 grown plants activities of POD and SOD were increased, opposite to decreased APX and AO. Isoelectric focusing demonstrated increased activities of acidic POD isoforms in PEG treated NO3 grown plants, and lower activities of both, acidic and basic isoforms in NH4 +/NO3 grown plants.  相似文献   

7.
The cellular levels of methylglyoxal (MG), a toxic byproduct of glycolysis, rise under various abiotic stresses in plants. Detoxification of MG is primarily through the glyoxalase pathway. The first enzyme of the pathway, glyoxalase I (GLYI), is a cytosolic metalloenzyme requiring either Ni2+ or Zn2+ for its activity. Plants possess multiple GLYI genes, of which only some have been partially characterized; hence, the precise molecular mechanism, subcellular localization and physiological relevance of these diverse isoforms remain enigmatic. Here, we report the biochemical properties and physiological role of a putative chloroplast‐localized GLYI enzyme, OsGLYI‐8, from rice, which is strikingly different from all hitherto studied GLYI enzymes in terms of its intracellular localization, metal dependency and kinetics. In contrast to its predicted localization, OsGLYI‐8 was found to localize in the nucleus along with its substrate, MG. Further, OsGLYI‐8 does not show a strict requirement for metal ions for its activity, is functional as a dimer and exhibits unusual biphasic steady‐state kinetics with a low‐affinity and a high‐affinity substrate‐binding component. Loss of AtGLYI‐2, the closest Arabidopsis ortholog of OsGLYI‐8, results in severe germination defects in the presence of MG and growth retardation under salinity stress conditions. These defects were rescued upon complementation with AtGLYI‐2 or OsGLYI‐8. Our findings thus provide evidence for the presence of a GLYI enzyme and MG detoxification in the nucleus.  相似文献   

8.
Oxidative stress is one aspect of metal toxicity. Zinc, although unable to perform univalent oxido‐reduction reactions, can induce the oxidative damage of cellular components and alter antioxidative systems. Verbascum thapsus L. plants that were grown hydroponically were exposed to 1 and 5 mM Zn2+. Reactive oxygen species (ROS) accumulation was demonstrated by the fluorescent probe H2DCFDA and EPR measurements. The extent of zinc‐induced oxidative damage was assessed by measuring the level of protein carbonylation. Activities and isoform profiles of some antioxidant enzymes and the changes in ascorbate and total phenolic contents of leaves and roots were determined. Stunted growth because of zinc accumulation, preferentially in the roots, was accompanied by H2O2 production in the leaf and root apoplasts. Increased EPR signals of the endogenous oxidant quinhydrone, ?CH3 and ?OH, were found in the cell walls of zinc‐treated plants. The activities of the antioxidative enzymes ascorbate peroxidase (APX) (EC 1.11.1.11), soluble superoxide dismutase (SOD) (EC 1.15.1.1), peroxidase (POD), (EC 1.11.1.7) and monodehydroascorbate reductase (EC 1.6.5.4) were increased; those of glutathione reductase (EC 1.6.4.2), dehydroascorbate reductase (EC 1.8.5.1) and ascorbate oxidase (AAO) (EC 1.10.3.3) were decreased with zinc treatment. Zinc induced a cell‐wall‐bound SOD isoform in both organs. Leaves accumulated more ascorbate and phenolics in comparison to roots. We propose a mechanism for zinc‐promoted oxidative stress in V. thapsus L. through the generation of charge transfer complexes and quinhydrone because of phenoxyl radical stabilisation by Zn2+ in the cell wall. Our results suggest that the SOD and APX responses are mediated by ROS accumulation in the apoplast. The importance of the POD/Phe/AA (ascorbic acid) scavenging system in the apoplast is also discussed.  相似文献   

9.
Indole-3-Acetic Acid Control on Acidic Oat Cell Wall Peroxidases   总被引:2,自引:0,他引:2  
Incubation of oat coleoptile segments with 40 μm indoleacetic acid (IAA) induced a decrease of 35–60% in peroxidase activity at the cell wall compartment. Treatment with IAA also produced a similar decrease in the oxidation of NADH and IAA at the cell wall. Isoelectric focusing of ionic, covalent, and intercellular wall peroxidase fractions showed that acidic isoforms (pI 4.0–5.5) were reduced preferentially by IAA treatment. Marked differences were found between acidic and basic wall isoperoxidases in relation to their efficacy in the oxidation of IAA. A peroxidase fraction containing acidic isoforms oxidized IAA with a V max/s0.5 value of 2.4 × 10−2 min−1· g fw−1, 4.0 times higher than that obtained for basic peroxidase isoforms (0.6 × 10−2 min−1· g fw−1). In contrast, basic isoforms were more efficient than acidic isoperoxidases in the oxidation of coniferyl alcohol or ferulic acid with H2O2 (5.6 and 2.1 times, respectively). The levels of diferulate and lignin in the walls of oat coleoptile segments were not altered by treatment with IAA. The decrease in cell wall peroxidase activity by IAA was related more to reduced oxidative degradation of the hormone than to covalent cell wall cross-linking. Received November 1, 1998; accepted December 14, 1998  相似文献   

10.
Metabolic adaptations to heavy metal toxicity in plants are thought to be related with developmental growth stage and the type of metal by which plant is affected. In the present study, changes in ionically bound CWP, soluble peroxidase activity, H(2)O(2) level and Malonaldehyde content in roots of cadmium and copper stressed seedlings and cadmium stressed 3-4 leaf stage plants of Brassica juncea were investigated. Cadmium inhibits root growth and reduces fresh biomass. The reduction in root growth and fresh biomass is correlated with increased lipid peroxidation and reduced tolerance. Treatment with cadmium resulted in an increase in ionically bound CWP activity in roots of seedlings but no significant change in its activity was found in roots of 3-4 leaf stage plants. Increased level of H(2)O(2) in roots of cadmium and copper treated seedlings, show a direct correlation with increased activity of ionically bound CWP. H(2)O(2) level in 3-4 leaf stage plant roots was found to be very low. Soluble peroxidase activity decreased in cadmium (50 and 100 mu-icroM) treated seedlings but it was ineffective to cause any change in its activity in 3-4 leaf stage plants. Copper treated seedlings showed an increase in ionically bound CWP activity, H(2)O(2) level and MDA content. Ascorbic acid (50 mM) pretreated seedlings shows significant decrease in ionically bound CWP activity when exposed to 50 muM cadmium. Hence, it is concluded that inhibition of root growth in Brassica juncea seedlings by cadmium, is associated with CWP catalyzed H(2)O(2) dependent reactions which are involved in metabolic adaptations to heavy-metal stress.  相似文献   

11.
Defence reactions occurring in resistant (cv. Gankezaomi) and susceptible (cv. Ganmibao) muskmelon leaves were investigated after inoculating with Colletotrichum lagenarium. Lesion restriction in resistant cultivars was associated with the accumulation of hydrogen peroxide (H2O2). The activity of antioxidants catalase (CAT) and peroxidase (POD) significantly increased in both cultivars after inoculation, while levels of both CAT and POD activity were significantly higher in the resistant cultivar. Ascorbate peroxidase (APX) increased in both cultivars after inoculation, and level of APX activity was significantly higher in the resistant cultivar. Glutathione reductase (GR) activity significantly increased in both cultivars following inoculation, but was higher in the resistant cultivar, resulting in higher levels of ascorbic acid (AsA) and reduced glutathione (GSH). Phenylalanine ammonia lyase (PAL) significantly increased in inoculated leaves of both cultivars, resulting in higher levels of total phenolic compounds and flavonoids. The pathogenesis‐related proteins chitinase (CHT) and β‐1, 3‐glucanase (GLU) significantly increased following inoculation with higher activity in the resistant cultivar. These findings show that resistance of muskmelon plants against C. lagenarium is associated with the rapid accumulation of H2O2, resulting in altered cellular redox status, accumulation of pathogenesis‐related proteins, activation of phenylpropanoid pathway to accumulation of phenolic compounds and flavonoids.  相似文献   

12.
Clusterbean seedlings growing in soil inoculated with Rhizoctonia were treated with either 5 or 10 ppm Cu2+ and Mn2+. Soil was inoculated by pretreatment with 250 mg (wet weight) of Rhizoctonia inoculum. A similar set of plants was maintained in uninoculated soil. Root rot incidence of plants treated with Cu2+ 5 ppm, Cu2+ 10 ppm, Mn2+ 5 ppm and Mn2+ 10 ppm was 26.6, 30.5, 11.8 and 29.2% less than the inoculated control, respectively. Inoculation with Rhizoctonia reduced chlorophyll, non‐structural carbohydrate and in vitro dry matter digestibility (IVDMD) content compared with uninoculated ones. Oxidative enzymes activities (polyphenol oxidase, peroxidase, phenylalanine ammonia lyase and tyrosine ammonia lyase), crude protein, phenolic content, structural components (acid detergent fibre, cellulose and lignin), silica, macronutrients and micronutrients increased in inoculated seedlings and this increase was further heightened by the Cu2+ 10 ppm treatment compared with the Cu2+ 5 ppm, Mn2+ 5 ppm and Mn2+ 10 ppm treatments in response to fungal invasion. It was concluded that the Cu2+ 10 ppm treatment may be an effective soil nutrient to provide enhanced resistance of clusterbean plants to root rot (fungal) diseases.  相似文献   

13.
14.
When seedlings of two rice (Oryza sativa L.) cultivars Ratna and Jaya were raised under 100 and 500 μM cadmium nitrate in the medium, a high proline content was noted in Cd2+ stressed seedlings compared to controls. Seedlings grown under 500 μM Cd(NO3)2 maintained increased proline level compared to non-stressed seedlings. Kinetic properties of RNase extracted from control grown and Cd2+ stressed seedlings showed a marked alteration in Km due to Cd2+ treatment. The RNase isoforms were purified from 15-d-old rice seedlings with a total purification of 22.25 fold and 74.75 % yield using conventional biochemical techniques. Three RNase isoforms, namely I, II and III were eluted from DEAE-Sephacel column. The isoform RNase II had Km value of 3.2 mg(RNA) cm-3. The in vitro osmotic stress created by incorporation of PEG in the enzyme assay medium led to decreased affinity of enzyme towards its substrate with increase in Km. This loss in affinity was partially restored by the addition of 1 M proline in the assay medium, suggesting the possible protective role of proline on RNase under osmotic stress. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Although strobilurins are one of the most effective and broad spectrum classes of systemic fungicides, they may also increase plant stress tolerance by modulating the activity of antioxidant enzymes. To address this issue, the effect of azoxystrobin (Az) on the activity of antioxidant enzymes and on the concentrations of antioxidant metabolites and oxidative stress‐related compounds was studied in rice plants (cv. Metica‐1) either inoculated or not with Bipolaris oryzae, the causal agent of brown spot (BS). The Az minimally affected the enzyme activities, but consistently increased the glutathione reduced (GSH) concentrations in the noninoculated plants. The activities of superoxide dismutase, peroxidase, ascorbate peroxidase, glutathione peroxidase, glutathione reductase and glutathione‐S‐transferase were increased upon B. oryzae infection, but such increases were greatly limited in the Az‐sprayed plants. Catalase activity decreased in the inoculated plants compared to the noninoculated plants regardless of fungicide treatment. The GSH concentration increased in response to the B. oryzae infection, and the Az‐sprayed plants sustained higher levels of GSH at advanced stages of fungal infection than did the nonsprayed plants. The inoculated plants exhibited an extensive oxidative stress as evidenced by higher concentrations of hydrogen peroxide and malondialdehyde compared to the noninoculated plants, but lower and later increases were recorded in the Az‐sprayed plants than in the nonsprayed plants. Therefore, Az greatly reduces B. oryzae‐induced oxidative stress by limiting BS development rather than by activating antioxidant enzymes. The GSH, however, seems to be Az‐modulated, and this may partially explain the constrained oxidative stress observed in the Az‐sprayed plants.  相似文献   

16.
The rate of ascorbate and nicotinamide adenine dinucleotide plus hydrogen (NADH) cooxidation (i.e., their nonenzymic oxidation by peroxidase/H2O2-generated phenoxyl radicals of three hydroxycinnamates: caffeate, ferulate and p-coumarate) was studied in vitro. The reactions initiated by different sources of peroxidase (EC 1.11.1.7) [isolates from soybean (Glycine max L.) seed coat, maize (Zea mays L.) root-cell wall, and commercial horseradish peroxidase] were monitored. Native electrophoresis of samples and specific staining for peroxidase activity revealed various isoforms in each of the three enzyme sources. The peroxidase sources differed both in the rate of H2O2-dependent hydroxycinnamate oxidation and in the order of affinity for the phenolic substrates. The three hydroxycinnamates did not differ in their ability to cooxidize ascorbate, whereas NADH cooxidation was affected by substitution of the phenolic ring. Thus, p-coumarate was more efficient than caffeate in NADH cooxidation, with ferulate not being effective at all. Metal ions (Zn2+ and Al3+) inhibited the reaction of peroxidase with p-coumarate and affected the cooxidation rate of ascorbate and the peroxidase reaction in the same manner with all substrates used. However, inhibition of p-coumarate oxidation by metal ions did not affect NADH cooxidation rate. We propose that both the ascorbate and NADH cooxidation systems can function as mechanisms to scavenge H2O2 and regenerate phenolics in different cellular compartments, thus contributing to protection from oxidative damage. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
18.
The effect of exogenous application of 28-Homobrassinolide (HBR) on radish (Raphanus sativus L.) seedlings under zinc (Zn2+) stress on glutathione (GSH) production, consumption and changes in redox status was investigated. Zinc toxicity resulted in oxidative burst as evidenced by increased accumulation of hydrogen peroxide (H2O2) and malondialdehyde (MDA) content. These stress indices were significantly decreased by HBR supplementation. Under Zn2+ stress, GSH pool was decreased, while the contribution of oxidized glutathione (GSSG) to total GSH increased (GSSH/GSH ratio), this translated into significant reduction of GSH redox homeostasis. In addition, an increase of phytochelatins (PCs) was observed. In radish seedlings under Zn2+ stress, the activities of gamma-glutamylcysteine synthetase (γ-ECS), glutathione synthetase (GS), glutathione peroxidase (GPX), glutathione-S-transferase (GST) and cysteine (Cys) levels increased but the activity of glutathione reductase (GR) decreased. However, application of HBR increased the GSH pool and maintained their redox ratio by increasing the enzyme activities of GSH biosynthesis (γ-ECS and GS) and GSH metabolism (GR, GPX and GST). The results of present study are novel in being the first to demonstrate that exogenous application of HBR modulates the GSH synthesis, metabolism and redox homeostasis to confer resistance against Zn2+ induced oxidative stress.  相似文献   

19.
Peroxidase bound to the membrane either ionically or covalently, but not the free enzyme, is inhibited by polyamines and activated by guanidines. The ionically bound peroxidase detached from the membrane by Ca2+, or the peroxidase present in the cytosolic fraction, can be associated with the membrane fraction from which the ionically bound enzyme is removed, by Ca2+. The reconstituted membrane fraction, either with the enzyme solubilized by Ca2+, or with the cytosolic enzyme, can again be modulated by these compounds by changing the affinity of the enzyme for its substrate.  相似文献   

20.
The differences in the ability of the invading whitefly, Bemisia tabaci (Gennadius) (commonly known as biotype B and hereafter as B) and Trialeurodes vaporariorum (Westwood) (both Hemiptera: Aleyrodidae) to utilize salivary phenol‐oxidizing enzymes – polyphenol oxidase (PPO) and peroxidase (POD) to detoxify plant defensive phenolic compounds were explored. Polyphenol oxidase and POD were found in the saliva of both B and T. vaporariorum. For tomato colonies, the PPO and POD activities in the watery saliva of B were 2.27‐ and 1.34‐fold higher than those of T. vaporariorum. The PPO activities against specific phenolic compounds commonly found in plants were compared. The activities of those from B were significantly greater than those from T. vaporariorum. We also measured PPO activity in both species after they had fed on plants that were undamaged or had been previously damaged with either a plant pathogen [Phytophthora infestans (Mont.) de Bary (Peronosporales)] infection, mechanical damage, B infestation, or exogenous salicylic acid. For B, PPO activities in watery saliva increased 229, 184, 152, and 139% in response to the four treatments, whereas those of T. vaporariorum only increased 133, 119, 113, and 103%, respectively. Biotype B infestation significantly increased the total phenolic content of tomato leaves. Meanwhile, feeding on tomato infestation with B had no significant effect on the survival rate of B, but decreased the survival rate of T. vaporariorum significantly. These results suggest that B has stronger ability utilizing PPO to detoxify high concentrations of phenolics than T. vaporariorum, and this contributes to a significant advantage for B to hold high fitness on plants with induced resistance. Possible roles of salivary PPO in the competition between B and T. vaporariorum are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号