首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soil disturbance is recognized as an important driver of biodiversity in dry grasslands, and can therefore be implemented as a restoration measure. However, because community re-assembly following disturbance includes stochastic processes, a focus only on species richness or establishment success of particular species will not inform on how plant communities respond ecologically to disturbance. We therefore evaluated vegetation development following disturbance by quantifying species richness, species composition and functional trait composition. Degraded calcareous sandy grassland was subjected to experimental disturbance treatments (ploughing or rotavation), and the vegetation was surveyed during four subsequent years of succession. Treated plots were compared with control plots representing untreated grassland, as well as nearby plots characterized by plant communities representing the restoration target.Species richness and functional diversity both increased in response to soil disturbance, and rotavation, but not ploughing, had a persistent positive effect on the occurrence of specialist species of calcareous sandy grassland. However, no type of soil disturbance caused the plant species composition to develop towards the target vegetation. The disturbance had an immediate and large impact on the vegetation, but the vegetation developed rapidly back towards the control sites. Plant functional composition analysis indicated that the treatments created habitats different both from control sites and target sites. Community-weighted mean Ellenberg indicator values suggested that the observed plant community response was at least partially due to an increase in nitrogen and water availability following disturbance. This study shows that a mild type of disturbance, such as rotavation, may be most successful in promoting specialist species in calcareous sandy grassland, but that further treatments are needed to reduce nutrient availability. We conclude that a functional trait based analysis provides additional information of the vegetation response and the abiotic conditions created, complementing the information from the species composition.  相似文献   

2.
The species-rich calcareous grassland communities in Europe are gradually disappearing due to lack of management such as grazing or cultivation, resulting in decalcification and reduction of gaps in the vegetation. In this study, experimental soil perturbation (deep and shallow) was performed in degenerated sandy grassland in plots with a size of 8 × 8 m, using a randomised block design. The hypothesis that soil perturbation that inverts the soil layers decreases nutrient availability, creates vegetation gaps and thereby selects for desirable species was tested through comparisons with untreated controls as well as with nearby target habitats. The deep perturbation was designed to bring CaCO3 up to the surface, whereas the shallow perturbation tested the effect of disturbance alone. The effects of soil perturbation on soil chemistry, vegetation and beetle communities were analysed for the 2 years following the treatments. Increased pH and calcium concentration, and decreased nitrogen and phosphorus availability, showed that deep perturbation was successful in restoring the soil chemistry to levels similar to those of the target habitat. Perturbated plots were rapidly colonised by the acid tolerant grass Corynephorus canescens, but the slow colonisation of the threatened calcicole species Koeleria glauca was an indication that the vegetation could be evolving towards the target vegetation. Six red-listed beetle species associated with open, dry grasslands were found, out of which four were found only in perturbated plots, although this could not be statistically tested. In conclusion, it may take many years or even decades for the establishment of desirable flora, and seeding could therefore be a suitable method of increasing the rate of succession.  相似文献   

3.
The effects of different restoration measures and management variants on the vegetation development of newly created calcareous grasslands were studied in southern Germany from 1993 to 2002. In 1993, fresh seed-containing hay from a nature reserve with ancient calcareous grasslands was transferred onto ex-arable fields with and without topsoil removal. Nine years after start of the restoration, the standing crop was lower and the cover of bare soil was higher on topsoil-removal sites than on sites without soil removal. Topsoil removal had a positive effect on the proportion of target species (class Festuco-Brometea), because the number and cover of productive meadow species (class Molinio-Arrhenatheretea) were reduced. Persistence of hay-transfer species and the number of newly colonizing target species were highest on topsoil-removal sites. On plots with and without soil removal, species richness and the number of target species increased quickly after hay transfer and were always higher on hay-transfer plots than on plots that had not received hay in 1993. In 2002, differences induced by hay transfer were still much more pronounced than differences between management regimes. Management by mowing, however, led to higher species richness, a greater number of target species and a lower number of ruderals in comparison to no management on restoration fields without soil removal. A detrended correspondence analysis (DCA) indicated that vegetation composition of the hay-transfer plots of the restoration fields still differed from the vegetation of ancient grasslands in the nature reserve. Vegetation of an ex-arable field in the nature reserve (last ploughed in 1959) showed an intermediate successional stage. In general our results indicate that the transfer of autochthonous hay is an efficient method for the restoration of species-rich vegetation, which allows not only quick establishment but also long-term persistence of target species.  相似文献   

4.
Questions: (1) Does soil acidification in calcareous sandy grasslands lead to loss of plant diversity? (2) What is the relationship between the soil content of lime and the plant availability of mineral nitrogen (N) and phosphorus (P) in sandy grasslands? Location: Sandy glaciofluvial deposits in south‐eastern Sweden covered by xeric sand calcareous grasslands (EU habitat directive 6120). Methods: Soil and vegetation were investigated in most of the xeric sand calcareous grasslands in the Scania region (136 sample plots distributed over four or five major areas and about 25 different sites). Environmental variables were recorded at each plot, and soil samples were analysed for exchangeable P and N, as well as limestone content and pH. Data were analysed with regression analysis and canonical correspondence analysis. Results: Plant species richness was highest on weakly acid to slightly alkaline soil; a number of nationally red‐listed species showed a similar pattern. Plant species diversity and number of red‐listed species increased with slope. Where the topsoil had been acidified, limestone was rarely present above a depth of 30 cm. The presence of limestone restricts the availability of soil P, placing a major constraint on primary productivity in sandy soils. Conclusions: Acidification of sandy grasslands leads to reduced abundance of desirable species, although the overall effect is rather weak between pH 5 and pH 9. Slopes are important for high diversity in sandy grasslands. Calcareous soils cannot be restored through shallow ploughing, but deep perturbation could increase the limestone content of the topsoil and favour of target species.  相似文献   

5.
In 1993, experiments on the restoration of calcareous grasslands on ex‐arable fields were started in order to provide new habitats for species of a small nature reserve with ancient grasslands north of Munich (Germany). The effects of diaspore transfer by the application of seed‐containing hay on vegetation establishment were studied on restoration fields with and without topsoil removal for 5 years. The aim of the study was to assess plant diversity for the evaluation of restoration success by different methods including determination of species with viable seeds in the hay by germination tests, phenological investigations on hay‐transfer source sites at the time of harvest, and vegetation analyses on the restoration sites. Total seed content of the hay and the number and composition of plant species with viable seeds were affected by the time of harvesting and differed between a site which had been used as arable field until 1959 and ancient grassland sites. Nevertheless, the number of established hay‐transfer species showed only few differences between restoration fields. The proportion of species transferred to restoration fields in relation to the number of species with viable seeds in the hay was between 69 and 89%. Five years after the hay transfer, the proportion of the established species was still between 58 and 76%. Up to now, topsoil removal had no significant effect on the number of established hay‐transfer species. After triple hay application the absolute number of transferred grassland species was higher than on sites with single hay application, but restoration efficiency was lower because many of the species with viable seeds in the hay did not establish. In general, our results showed that the transfer of autochthonous hay is a successful method to overcome dispersal limitation in restoration projects.  相似文献   

6.
Reliable assessment of the density and species richness of the viable seeds in the soil is essential to estimate the probability of successful restoration of a particular plant community. Since temperate calcareous grasslands contain several thermophilous species typical of fire prone habitats, heat shock can be expected to break dormancy of target species for calcareous grassland restoration. We tested the effect of heat shock on the estimated density and species richness of seeds in soil samples. Heat shock treatments between 70 and 110°C resulted in both a higher estimated seed density and estimated species richness, in particular of specialist calcareous grassland species. Moreover, 25 species germinated exclusively from the heat-treated samples. This indicates that several species would have been missed by handling soil seed bank samples following the standard germination protocol, resulting in an underestimation of the restoration potential.  相似文献   

7.
Calcicole plant species are vulnerable to acidification and fertilization, caused by deposition and changes in land use, since they are adapted to nutrient-poor calcareous conditions. In this study we used vegetation data (vascular plants, bryophytes and lichens) from 1964 and 1985 and stored soil samples from 1966 to investigate long-term soil chemistry and vegetation changes in a semi-natural, sandy calcareous grassland in southern Sweden. In the re-investigation in 2008 we found that increased decalcification due to acidification could not be verified. The plant community had changed from stress-tolerant calcareous grassland towards a community promoted by higher nutrient availability. Furthermore, the cover of species indicating calcareous conditions had decreased. A decline in the cover of species adapted to alkaline, phosphorus-poor conditions may be due to increased nutrient availability, but there were also indications that the vegetation had changed due to overgrowth by woody plants. This long-term impoverishment of the plant community highlights the need for appropriate management of calcareous grasslands, in order to limit the nutrients available in the soil and prevent overgrowth by shrubs and trees.  相似文献   

8.
Question: How do moderate grazing, topsoil removal and hay transfer affect species diversity and abundance on a eutrophic fen grassland site? Location: Northern Germany. Method: A three-factorial field experiment with the factors grazing, topsoil removal and hay transfer of diaspore-rich material was established in 2001. Soil nutrients and seed bank were analysed at the beginning of the experiment, species composition and vegetation development was monitored for four years (2002–2005). Results: Topsoil removal had a significant effect on the abundance of different plant species groups: resident vegetation of agricultural grasslands was suppressed, while clonal reed species were facilitated in recolonising the area. The establishment of regionally rare and endangered species of nutrient-poor fens and wet meadows introduced with hay was achieved mainly on plots with topsoil removal, with the exception of Rhinan-thus angustifolius, which also established on plots with intact topsoil. Effects of grazing after four years of experiments were of minor influence on species composition. Conclusion: The establishment of target plant species of nutrient-poor fens is most successful when both an adequate number of viable diaspores and suitable sites for germination and establishment are available. In our experiment this was achieved by the combination of topsoil removal and hay transfer. We recommend this combination, together with continuous management (grazing/cutting), for further restoration in fen grasslands.  相似文献   

9.
During recent decades, many studies have shown that the successful restoration of species-rich grasslands is often seed-limited because of depleted seed banks and limited seed dispersal in modern fragmented landscapes. In Europe, commercial seed mixtures, which are widely used for restoration measures, mostly consist of species and varieties of non-local provenance. The regional biodiversity of a given landscape, however, can be preserved only when seeds or plants of local provenance are used in restoration projects. Furthermore, the transfer of suitable target species of local provenance can strongly enhance restoration success.We review and evaluate the success of currently used near-natural methods for the introduction of target plant species (e.g. seeding of site-specific seed mixtures, transfer of fresh seed-containing hay, vacuum harvesting, transfer of turves or seed-containing soil) on restoration sites, ranging from dry and mesic meadows to floodplain grasslands and fens. Own data combined with literature findings show species establishment rates during the initial phase as well as the persistence of target species during long-term vegetation development on restoration sites.In conclusion, our review indicates that seed limitation can be overcome successfully by most of the reviewed measures for species introduction. The establishment of species-rich grasslands is most successful when seeds, seed-containing plant material or soil are spread on bare soil of ex-arable fields after tilling or topsoil removal, or on raw soils, e.g. in mined areas. In species-poor grasslands without soil disturbance and on older ex-arable fields with dense weed vegetation, final transfer rates were the lowest. For future restoration projects, suitable measures have to be chosen carefully from case to case as they differ considerably in costs and logistic effort. Long-term prospects for restored grassland are especially good when management can be incorporated in agricultural systems.  相似文献   

10.
Intra- and interspecific trait variation express the response of plants dealing with different environmental conditions. We measured root and leaf traits on 14 species of calcareous grasslands in a restoration experiment. We aimed at identifying intraspecific differences in biomass allocation and functional plant traits under contrasting soil conditions by comparing plants growing in ancient grassland and two restored grasslands on ex-arable land, one of them with topsoil removal. Relative importance of trait variation within and among species, and among site was assessed by variance partitioning. Interspecific variation was more important than intraspecific variation, but the contribution of the latter to total variation was considerable, especially for specific leaf area. Changes in soil properties due to topsoil removal resulted in lower values of plant height, specific leaf area and specific root length compared to the control (ancient grassland). Soil fertility found in the treatment without top soil removal did not affect plant plasticity compared to the control. The study species showed two allocation strategies in relation to resource stress, while the responses of individual traits to the soil treatments were consistent across species. We conclude that caution must be taken when using mean trait values for plastic species or when working with environmental gradients.  相似文献   

11.
Restoration of species-rich grasslands on ex-arable land can help the conservation of biodiversity but faces three big challenges: absence of target plant propagules, high residual soil fertility and restoration of soil communities. Seed additions and top soil removal can solve some of these constraints, but restoring beneficial biotic soil conditions remains a challenge. Here we test the hypotheses that inoculation of soil from late secondary succession grasslands in arable receptor soil enhances performance of late successional plants, especially after top soil removal but pending on the added dose. To test this we grew mixtures of late successional plants in arable top (organic) soil or in underlying mineral soil mixed with donor soil in small or large proportions. Donor soils were collected from different grasslands that had been under restoration for 5 to 41 years, or from semi-natural grassland that has not been used intensively. Donor soil addition, especially when collected from older restoration sites, increased plant community biomass without altering its evenness. In contrast, addition of soil from semi-natural grassland promoted plant community evenness, and hence its diversity, but reduced community biomass. Effects of donor soil additions were stronger in mineral than in organic soil and larger with bigger proportions added. The variation in plant community composition was explained best by the abundances of nematodes, ergosterol concentration and soil pH. We show that in controlled conditions inoculation of soil from secondary succession grassland into ex-arable land can strongly promote target plant species, and that the role of soil biota in promoting target plant species is greatest when added after top soil removal. Together our results point out that transplantation of later secondary succession soil can promote grassland restoration on ex-arable land.  相似文献   

12.
This paper is based on research of the restoration of species‐rich calcareous grasslands in The Netherlands, over the last 30 years. Chalk grassland is a semi‐natural vegetation with a high density of species at a small scale. This type of vegetation was once widespread in Western Europe as common grazing land, mainly for flocks of sheep for which the main function was dung production. In some regions of Central Europe, these grasslands were also used for hay production. The dung was used to maintain arable field production at a reasonable level. In the chalk district in the southernmost part of The Netherlands some 25 sites of this vegetation, varying in area from 0.05–4.5 ha, are still present. Chalk grassland completely lost its significance for modern agricultural production after the wide application of artificial fertilizer following World War II. This grassland has a high conservation value both for plants and animal species, of which a large number of species are exclusively restricted to this biotope. When conservation activities started at a large scale in the early 1960s, three different types of restoration activities could be distinguished: (1) restoration of fertilized sites; (2) restoration of abandoned grasslands; and (3) recreation of chalk grassland on former arable fields. The main aim of the restoration attempt is to create and/or improve sustainable conditions for both plant and animal species characteristic of the chalk grassland ecosystem. In the process of restoration, several phases of different activities can be distinguished: (1) pre‐restoration phase, during which information of the land use history is collected and, based on these data, clear restoration goals are established; (2) initial restoration phase, during which effects of former, non‐conservational land use has to be undone in order to stimulate germination and establishment of target species originating from soil seed bank and species pool; (3) consolidation phase, including the introduction and continuation of a regular management system for sustainable conservation; and (4) long‐term conservation strategy, including measures to prevent disturbance from the outside and genetic erosion and extinction of locally endangered plant populations.  相似文献   

13.
Soil disturbance is recognised as an important restoration measure for conserving biodiversity in sandy soils. We used a soil disturbance (ploughing) experiment in a sandy grassland as well as a semi-natural disturbance (slope erosion enhanced by cattle trampling) gradient on a sandy slope to test the soil disturbance effects on the ground-living beetle community. Both experimental disturbance and semi-natural disturbance favoured sandy grassland specialists, but there was no overall effect on beetle richness and abundance. Amara lucida and Harpalus spp. were favoured by disturbance while Calathus melanocephalus was disfavoured. Experimental ploughing significantly increased the proportion of red-listed species in disturbed plots compared to non-disturbed controls. In the semi-natural disturbance gradient we found that the beetle community on the disturbed slope differed from that of the flat areas, and there were tendencies for a higher proportion of red-listed species on the slope. We conclude that increasing the area of bare sand in sandy grasslands can have positive effects on many threatened species. Soil disturbance should thus be included as a regular measure in sandy grasslands under conservation management and as a measure to restore high biodiversity in areas where bare sand is rare.  相似文献   

14.
温杨雪  赵博  罗巧玉  贾云龙  冯涛  王强 《菌物学报》2021,40(10):2562-2578
超载过牧以及全球气候变化等导致大部分青藏高原高寒草地呈现持续退化态势。青藏高原高寒草地退化致使地上植物群落逐渐发生更替,地下土壤微生物群落多样性和丰富度发生改变。本文旨在探析青藏高原高寒草地丛枝菌根(arbuscular mycorrhizal,AM)真菌的分布特征、对近自然恢复的生理生态效应及其作用机制。青藏高原高寒草地中已报道4目14属61种AM真菌,约占已知AM真菌物种的20%。高寒草地禾本科植物根围AM真菌物种丰度最高,而莎草科植物根围AM真菌孢子密度最高。3种高寒草地植被类型中,高寒草原AM真菌丰度最高(33种),山地灌丛草原次之(32种),高寒草甸最低(22种)。高寒草原以光壁无梗囊霉Acaulospora laevis和闪亮和平囊霉Pacispora scintillans为优势种,山地灌丛草原以摩西斗管囊霉Funneliformis mosseae为优势种,高寒草甸以光壁无梗囊霉A. laevis、近明球囊霉Claroideoglomus claroideum和闪亮和平囊霉P. scintillans为优势种。高寒草地土著AM真菌与植物构建的菌根网络可以通过调节营养元素吸收、分配,促进植物建植和生长;但是毒杂草入侵可以改变土著AM真菌物种多样性和菌根网络,限制本地植被的实际生态位扩张。退化高寒草地中,AM真菌群落具有高的环境适应性和恢复力,其不仅调控地上植物群落建植和多样性,同时AM真菌建植也增加了代谢产物-球囊霉素相关土壤蛋白产生,进而协同改善地下土壤微生态系统,为退化高寒草地早期植被恢复塑造土壤生境。因此,AM真菌在退化高寒草地近自然恢复中具有较大的应用潜力。  相似文献   

15.
Species diversity depends on, often interfering, multiple ecological drivers. Comprehensive approaches are hence needed to understand the mechanisms determining species diversity. In this study, we analysed the impact of vegetation structure, soil properties and fragmentation on the plant species diversity of remnant calcareous grasslands, therefore, in a comparative approach.We determined plant species diversity of 18 calcareous grasslands in south eastern Germany including all species and grassland specialists separately. Furthermore, we analysed the spatial structure of the grasslands as a result of fragmentation during the last 150 years (habitat area, distance to the nearest calcareous grassland and connectivity in 1830 and 2013). We also collected data concerning the vegetation structure (height of the vegetation, cover of bare soil, grass and litter) and the soil properties (content of phosphorous and potassium, ratio of carbon and nitrogen) of the grassland patches. Data were analysed using Bayesian multiple regressions.We observed a habitat loss of nearly 80% and increasing isolation between grasslands since 1830. In the Bayesian multiple regressions the species diversity of the studied grasslands depended negatively on cover of litter and to a lower degree on the distance to the nearest calcareous grassland in 2013, whereas soil properties had no significant impact.Our study supports the observation that vegetation structure, which strongly depends on land use, is often more important for the species richness of calcareous grasslands than fragmentation or soil properties. Even small and isolated grasslands may, therefore, contribute significantly to the conservation of species diversity, when they are still grazed.  相似文献   

16.
The transfer of seed‐containing hay is a restoration measure for the introduction of plant species of local provenance. We investigated the effect of hay transfer on species richness and on long‐term establishment of target plant and grasshopper species on former arable fields with and without topsoil removal in comparison to reference sites in a nature reserve. Plant species richness, the number of target plant species, and Red List plant species were significantly positively affected by hay transfer, both on the scale of whole restoration fields and on permanent plots of 4 m2. Eight years after the start of the restoration, only few of the transferred plant species had disappeared and some target species were newly found. Grasshoppers were affected not by hay transfer but by topsoil removal. The proportion of target grasshopper and plant species and Red List grasshopper species was higher on topsoil removal sites with low standing crop and high cover of bare soil than on sites without soil removal. On topsoil removal sites without hay, however, plant species richness was very low because of the slow natural dispersal of the target species. Vegetation and grasshopper communities still differed between restoration fields and the nature reserve. Nevertheless, our results indicate that the transfer of autochthonous seed‐containing hay is a successful method to establish species‐rich grasslands with a high proportion of target species.  相似文献   

17.
The unique flora and fauna of calcareous sandy grasslands is threatened by acidification, eutrofication and changed land use. Restoration experiments in such grasslands in southern Sweden, including deep and shallow soil perturbation, allowed us to examine the effects of pH and disturbance on the bryophyte flora. We also studied natural pH and disturbance gradients in order to compare the natural pH and disturbance variation with the responses of experimental manipulation. We found that increased pH due to soil perturbation resulted in increased species richness. However, in naturally disturbed areas, pH seemed to have a lower effect, and instead, the location of the site and possibly the site history had a larger influence on species richness. We also found that some of the species that were common at naturally high pH (mainly acrocarps) were favoured by experimental pH manipulation. Our results pointed out Syntrichia ruraliformis as a sensitive pH indicator, being almost exclusively restricted to pH values above 7. The species can also serve as an indicator of sand steppe vegetation.  相似文献   

18.
建植紫花苜蓿人工草地是黄土高原植被恢复的重要措施之一。土壤微生物和线虫群落特征是评价和调控植被恢复的生态环境效应的重要依据。本研究在宁夏南部山区选取不同种植年限(1、2、6和12年)的紫花苜蓿人工草地为研究样地,以农田和天然草地作为对照,探索黄土高原人工草地植被恢复过程中土壤微生物和线虫群落的演变规律及其影响因素。结果表明: 1)种植苜蓿显著提高了土壤细菌群落的Chao1、ACE和Shannon多样性指数,并在种植苜蓿后第6年达到最高,但在种植6年和12年后真菌群落多样性降低;随着苜蓿种植年限的增加,真菌群落组成从农田逐渐向天然草地方向演变;2)土壤线虫数量与细菌群落多样性的变化趋势相同,在种植苜蓿后第6年出现峰值,该时期线虫群落结构组成与农田较相似,苜蓿12年样地则更接近天然草地;随着苜蓿种植年限的增加,食细菌线虫、植食性线虫比例总体呈上升趋势,食真菌线虫、杂食/捕食线虫比例呈下降趋势,土壤成熟度指数(MI)逐渐减小,植物寄生线虫指数(PPI)和线虫通路指数(NCR)则不断增大;3)在苜蓿人工草地植被恢复过程中,土壤有机碳、全氮和速效磷对土壤微生物群落结构影响较大,并进一步影响线虫群落结构;细菌和真菌群落优势类群和多样性与线虫的不同营养类群及生态指数之间存在密切联系,表明微生物群落结构与多样性对线虫群落具有显著影响;在不同种植年限苜蓿草地中,植物的生物量与多样性的变化可能通过影响土壤微生物与线虫食物资源状况从而引起其群落特征的改变。  相似文献   

19.
沙化草地土壤碳(C)、氮(N)、磷(P)化学计量特征及其对植被生产力与多样性的影响对于认识草地沙漠化过程中土壤与植被的互馈关系,以及沙漠化发展的生态学机理具有重要的意义。通过对科尔沁沙地75个沙化样地的野外调查,研究了科尔沁沙地不同程度沙化草地的表层土壤C、N、P化学计量特征及其与生产力和多样性的相关关系。结果表明:1)科尔沁沙地沙化草地表层土壤具有较低的有机C、全N、全P含量及C∶N、N∶P和C∶P,平均值分别为1.39 mg/g、0.117 mg/g、0.079 mg/g和7.50、2.22、16.91;草地沙漠化过程中,土壤有机C、全N、全P含量显著降低的同时,C∶N、N∶P和C∶P亦显著降低,表明土壤有机C、全N、全P在沙漠化过程中的损失是不同步的;2)科尔沁沙地沙化草地表层土壤有机C、全N、全P元素间均呈显著正相关,具有一定的耦合关系,且土壤有机C和全P间的耦合关系不随沙漠化的发展而发生改变;3)草地沙化过程中,土壤养分的损失限制着草地生产力,而土壤N∶P较全N、全P含量更能反映土壤养分对生产力的限制作用;4)沙化草地土壤全N含量与物种丰富度间具有显著正相关关系,而土壤全P含量与其无显著相关性;多样性指数与全N、全P含量间均具有显著正相关关系;相对于土壤全N、全P含量,N∶P能更好地反映养分平衡对物种多样性的影响作用。  相似文献   

20.
We investigated the effects of different restoration treatments on the development of fen meadow communities: (1) depth of topsoil removal, with shallow (circa 20 cm) and deep (circa 40 cm) soil removal applied, (2) transfer of seed‐containing hay, and (3) access of large animals. We carried out a full factorial experiment with all combinations of these factors and monitored it for 4 years. We studied the effect of seed availability in the soil seed bank on species abundance in the vegetation and compared it to the effect of species introduction by hay. We observed large differences in species composition between different treatments after 4 years. The combination of hay transfer, deep soil removal, and exclusion of large animals resulted in a community with highest similarity to the target vegetation. We found that the transfer of seeds with hay had a larger effect on species abundance than the soil seed bank. Hay transfer appeared to have important consequences on vegetation development because it speeded up the establishment of the target vegetation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号