共查询到20条相似文献,搜索用时 15 毫秒
1.
The European grapevine moth Lobesia botrana relies on a female produced sex pheromone for long-distance mate finding. Grapevine moth males compete heavily during limited time windows for females. The aim of this study was to investigate the perception of host plant volatiles by grapevine moth males and whether such compounds elicit upwind oriented flights. We compared five host plant headspace extracts by means of gas chromatography linked electroantennogram (EAG) recording. We identified 12 common host plant volatiles (aliphatic esters, aldehydes, and alcohols, aromatic compounds and terpenes) that elicit EAG responses from grapevine moth males and that occur in at least three of the host plant volatile headspace extracts tested. Subsequently the behavioural response of grapevine moth males to four these compounds presented singly and in mixtures (1-hexanol, 1-octen-3-ol, (Z)-3-hexenyl acetate and (E)-β-caryophyllene) was recorded in a wind tunnel. Grapevine moth males engaged in upwind flights to all of four compounds when released singly at 10,000 pg/min and to all, except 1-octen-3-ol, when released at 100 pg/min. A blend of the four host plant volatiles released at 10,000 pg/min and mixed at a ratio based on the analysis of Vitis vinifera cv. Solaris volatile emissions attracted significantly more males than any single compound. Grapevine moth males perceive and respond to host plant volatiles at biologically relevant levels indicating that host plant volatiles figure as olfactory cues and that L. botrana males can discern places where the likelihood of encountering females is higher. 相似文献
2.
Herbert Venthur Juan Machuca Ricardo Godoy Rubn Palma‐Millanao Jing‐Jiang Zhou Giovanni Larama Leonardo Bardehle Andrs Quiroz Ricardo Ceballos Ana Mutis 《Archives of insect biochemistry and physiology》2019,101(3)
The European grapevine moth, Lobesia botrana (Denis & Schiffermüller), is a serious pest in vineyards in North and South America. Mating disruption techniques have been used to control and monitor L. botrana on the basis of its sexual communication. This needs a well‐tuned olfactory system, in which it is believed that pheromone‐binding proteins (PBPs) are key players that transport pheromones in the antennae of moths. In this study, the selectivity of a PBP, named as LbotPBP1, was tested by fluorescence binding assays against 11 sex pheromone components and 6 host plant volatiles. In addition, its binding mechanism was predicted on the basis of structural analyses by molecular docking and complex and steered molecular dynamics (SMD). Our results indicate that LbotPBP1 binds selectively to sex pheromone components over certain host plant volatiles, according to both in vitro and in silico tests. Thus, chain length (14 carbon atoms) and functional groups (i.e., alcohol and ester) appear to be key features for stable binding. Likewise, residues such as Phe12, Phe36, and Phe118 could participate in unspecific binding processes, whilst Ser9, Ser56, and Trp114 could participate in the specific recognition and stabilization of sex pheromones instead of host plant volatiles. Moreover, our SMD approach supported 11‐dodecenyl acetate as the best ligand for LbotPBP1. Overall, the dynamics simulations, contact frequency analysis and SMD shed light on the binding mechanism of LbotPBP1 and could overcome the imprecision of molecular docking, supporting the in vitro binding assays. Finally, the role of LbotPBP1 in the chemical ecology of L. botrana is discussed. 相似文献
3.
Effects of grapevine bunch exposure to sunlight on berry surface temperature and Lobesia botrana (Lepidoptera: Tortricidae) egg laying,hatching and larval settlement 下载免费PDF全文
Fatemeh Kiaeian Moosavi Elena Cargnus Francesco Pavan Pietro Zandigiacomo 《Agricultural and Forest Entomology》2018,20(3):420-432
4.
ANDREA GHIRARDO WERNER HELLER MATTHIAS FLADUNG JÖRG‐PETER SCHNITZLER HILKE SCHROEDER 《Plant, cell & environment》2012,35(12):2192-2207
The indirect defences of plants are comprised of herbivore‐induced plant volatiles (HIPVs) that among other things attract the natural enemies of insects. However, the actual extent of the benefits of HIPV emissions in complex co‐evolved plant‐herbivore systems is only poorly understood. The observation that a few Quercus robur L. trees constantly tolerated (T‐oaks) infestation by a major pest of oaks (Tortrix viridana L.), compared with heavily defoliated trees (susceptible: S‐oaks), lead us to a combined biochemical and behavioural study. We used these evidently different phenotypes to analyse whether the resistance of T‐oaks to the herbivore was dependent on the amount and scent of HIPVs and/or differences in non‐volatile polyphenolic leaf constituents (as quercetin‐, kaempferol‐ and flavonol glycosides). In addition to non‐volatile metabolic differences, typically defensive HIPV emissions differed between S‐oaks and T‐oaks. Female moths were attracted by the blend of HIPVs from S‐oaks, showing significantly higher amounts of (E)‐4,8‐dimethyl‐1,3,7‐nonatriene (DMNT) and (E)‐β‐ocimene and avoid T‐oaks with relative high fraction of the sesquiterpenes α‐farnesene and germacrene D. Hence, the strategy of T‐oaks exhibiting directly herbivore‐repellent HIPV emissions instead of high emissions of predator‐attracting HIPVs of the S‐oaks appears to be the better mechanism for avoiding defoliation. 相似文献
5.
Antonino Cusumano Jorge M. González Stefano Colazza S. Bradleigh Vinson 《Entomologia Experimentalis et Applicata》2010,136(3):301-307
Responses of macropterous females of the ectoparasitoid Melittobia digitata Dahms (Hymenoptera: Eulophidae) to direct and indirect cues emitted by its natural hosts as well as laboratory hosts were investigated using a Y‐tube olfactometer. To locate the nest of mud dauber wasps, Trypoxylon politum Say (Hymenoptera: Crabronidae), and one of their inquilines, Anthrax spec., parasitoids exploit volatiles from the freshly built nest mud and the empty cocoon constructed by the wasps, as well as their meconium. However, the parasitoids did not respond to odors emitted by older nest mud or by the host stages that are attacked (T. politum prepupae and Anthrax spec. larvae). Melittobia digitata was not attracted to direct volatiles released by the dipteran hosts Anastrepha ludens Loew (Diptera: Tephritidae) (a natural host) and Sarcophaga bullata (Parker) (Diptera: Sarcophagidae) (a laboratory host). Based on our results, we suggest that M. digitata adopts a ‘sit and wait’ strategy to locate mud dauber wasps, relying mainly on indirect host‐related cues: females search for nests that are under construction and once found, they wait inside the cell until the host completes its cocoon and releases meconium, an indicator that is associated with host suitability. No attraction was found to dipteran hosts, suggesting that parasitization of these hosts may be incidental, due to the broad host plasticity of Melittobia wasps. 相似文献
6.
The European corn borer Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae) is a worldwide pest of maize (Zea mays L.) and other crops. The semiochemicals released by maize plants and structurally‐related compounds can be used by adult female O. nubilalis for host‐plant location and oviposition. Headspace volatile compounds emitted by watered and water‐deprived maize plants are collected and identified by their retention indices and mass spectra. The most abundant compounds from watered plants are limonene, linalool, benzoic acid, indole, β‐caryophyllene and acetophenone, whereas, in water‐deprived plants, limonene, acetophenone, hexanoic acid, benzoic acid and indole are dominant. In addition, (E)‐4,8‐dimethyl‐1,3,7‐nonatriene, 6‐methyl‐5‐hepten‐2‐one, anisole and 1‐carvone are undetected in the water‐deprived plants. Some of the identified compounds show electrophysiological activity (electroantennogram) in the antennae of both sexes, with the responses elicited by tridecane, tetradecane, dodecane, nonanal, decanal and 2‐ethylhexanol on males being particularly noteworthy. In a dual‐choice olfactometer, adult females show a preference for 2‐hexanol, heptanal, methyl salicylate, hexyl acetate, nonanal, methyl dodecanoate, β‐pinene and (E)‐2‐hexenyl acetate over hexane controls. Tetradecane, linalool, methyl hexanoate, methyl nonanoate, (Z)‐3‐hexenyl benzoate, tridecane, 2‐cyclopentylcyclopentanone, 3‐methylbutyl acetate, β‐myrcene and (Z)‐3‐hexenyl butanoate result in fewer females in the test arm compared with the control arm. No single compound displays an activity similar to watered maize plants, supporting the hypothesis that blends of volatiles in specific ratios are more effective than single volatile chemicals. The results of the present study suggest that methyl salicylate, which elicits also one of the highest electrophysiological responses in female antennae, plays a role in host preference by O. nubilalis females. 相似文献
7.
DANIELA SCHMIDT‐BÜSSER MARTIN VON ARX SOPHIE CONNÉTABLE PATRICK M. GUERIN 《Physiological Entomology》2011,36(2):101-110
Olfaction is of major importance for survival and reproduction in moths. Males possess highly specific and sensitive olfactory receptor neurones to detect female sex pheromones. However, the capacity of male moths to respond to host‐plant volatiles is relatively neglected and the role that such responses could play in the sensory ecology of moths is still not fully understood. The present study aims to identify host‐plant stimuli for the European grape berry moth Eupoecilia ambiguella Hb. (Tortricidae, Lepidoptera), a major pest of vine in Europe. Headspace volatiles from Vitis vinifera L. cv. Pinot Noir, Vitis vinifera subsp. sylvestris and five other host‐plant species comprising five different families are analyzed by gas chromatography linked to electroantennogram (EAG) recording from male E. ambiguella antennae and by gas chromatography‐mass spectrometry. This procedure identifies 32 EAG‐active compounds, among them the aliphatic compounds 1‐hexanol, (Z)‐3‐hexenol, (Z)‐3‐hexenyl acetate and 1‐octen‐3‐ol; the terpenes limonene, β‐caryophyllene and (E)‐4,8‐dimethyl‐1,3,7‐nonatriene; and the aromatic compounds benzaldehyde and methyl salicylate. Male and female E. ambiguella show similar EAG response amplitudes to individual chemical stimuli and also to mixtures of plant volatiles, as represented by essential oils from ten other plant species. This possibly indicates a common role for plant compounds in the sensory ecology of the two sexes of E. ambiguella. 相似文献
8.
Herbivorous insects use highly specific volatiles or blends of volatiles characteristic to particular plant species to locate their host plants. Thus, data on olfactory preferences can be valuable in developing integrated pest management tools that deal with manipulation of pest insect behaviour. We examined host plant odour preferences of the tomato leafminer, Liriomyza bryoniae (Kaltenbach) (Diptera: Agromyzidae), which is an economically important agricultural pest widespread throughout Europe. The odour preferences of leafminers were tested in dependence of feeding experiences. We ranked host plant odours by their appeal to L. bryoniae based on two‐choice tests using a Y‐tube olfactometer with five host plants: tomato, Solanum lycopersicum Mill.; bittersweet, Solanum dulcamara L.; downy ground‐cherry, Physalis pubescens L. (all Solanaceae); white goosefoot, Chenopodium album L. (Chenopodiaceae); and dead nettle, Lamium album L. (Lamiaceae). The results imply that ranking of host plant odours by their attractiveness to L. bryoniae is complicated due to the influence of larval and adult feeding experiences. Without any feeding experience as an adult, L. bryoniae males showed a preference for the airflow with host plant odour vs. pure air, whereas females did not display a preference. Further tests revealed that adult feeding experience can alter the odour choice of L. bryoniae females. After feeding experience, females showed a preference for host plant odour vs. pure air. Feeding experience in the larval stage influenced the choice by adults of both sexes: for males as well as females reared on bittersweet the odour of that plant was the most attractive. Thus, host feeding experience both in larval and/or adult stage of polyphagous tomato leafminer L. bryoniae influences host plant odour preference by adults. 相似文献
9.
Olfactory responses of western flower thrips (Frankliniella occidentalis) populations to a non‐pheromone lure 下载免费PDF全文
M‐C. Nielsen S.P. Worner M. Rostás R.B. Chapman R.C. Butler W.J. de Kogel D.A.J. Teulon 《Entomologia Experimentalis et Applicata》2015,156(3):254-262
Western flower thrips (WFT), Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), is a major pest of horticultural crops worldwide. The search for alternative pest management techniques has resulted in increasing interest in the use of kairomones and other behaviour‐modifying chemicals to mitigate the impact of this pest. In this study, we determined whether the origin of populations, feeding history, and/or genotype influence the response of WFT to the thrips kairomone lure methyl isonicotinate (MI) in a Y‐tube olfactometer study. Four New Zealand thrips populations were tested: (1) from a commercial glasshouse capsicum crop, (2) from a long‐established laboratory colony (>222 generations) kept on chrysanthemums, (3) from a laboratory colony (6–9 generations) kept on French dwarf beans, and (4) thought to be a separate cryptic non‐pest species from outdoor yellow tree lupins, Lupinus arboreus Sims (Fabaceae). In the laboratory tests, significantly more WFT from all four populations chose the MI‐laden arm of a Y‐tube olfactometer when it contained 1 μl methyl isonicotinate (61.3–73.2%) compared with the blank no‐odour arm. No differences in response to MI were found between the two laboratory and the one glasshouse WFT populations. Both laboratory populations and the greenhouse population belonged to the ‘glasshouse pest’ genotype of WFT. However, the cryptic non‐pest WFT genotype responded more strongly to MI than any of the other populations, although the response was only significantly stronger than that of the long‐established laboratory population. Significant differences were also found among populations in the average time taken for thrips to make a choice to enter either arm of the Y‐tube olfactometer, with the cryptic non‐pest lupin genotype taking the shortest time, followed by thrips from the capsicum glasshouse. The results are discussed with respect to the variability in olfactory perception and olfactory behaviour within a species and the relevance to the use of such a kairomone lure in pest management programmes. 相似文献
10.
Electrophysiological and laboratory behavioral responses of a leaf beetle pest of elm,Ambrostoma quadriimpressum,to selected plant volatiles and essential oils 总被引:1,自引:0,他引:1 下载免费PDF全文
The leaf beetle Ambrostoma quadriimpressum Motschulsky (Coleoptera: Chrysomelidae) is distributed in China, Siberia, and elsewhere in northeastern Asia. This pest feeds only on buds and leaves of elm trees (Ulmaceae) and inhibits elm trees sprouting, increasing the risk of damage and destruction by other pests. We investigated selected plant compounds that could be used for the development of semiochemical‐based push‐pull methods for the control of this elm pest. Electroantennogram (EAG), Y‐tube olfactometer, and wind tunnel bioassays were conducted to test the electrophysiological and behavioral response of A. quadriimpressum to nine individual volatiles and five essential oils. Individual volatiles and essential oils were selected based on their activity against insects in previous studies. The individual volatiles and essential oils were dissolved in dichloromethane and adsorbed by filter paper. Using a pipette, odor stimuli were delivered as 0.5‐s puffs of air into a continuously humidified air stream in the odor delivery tube at 400 ml per min. Ambrostoma quadriimpressum adults display strong EAG responses to l mol l?1 isoeugenol, (1R)‐(+)‐α‐pinene, 1% pepper oil (derived from the pericarp of Piper chinense Miq.), and peppermint oil [derived from the aerial parts of Mentha haplocalyx (Briq.)] compared to the control. In behavioral assays conducted using a Y‐tube olfactometer and a wind tunnel, adult beetles were attracted by (1R)‐(+)‐α‐pinene but repelled by 0.1% pepper oil. The results provide a basis for the development of a ‘push‐pull’ strategy to manage A. quadriimpressum. 相似文献
11.
Non‐host plant essential oil volatiles with potential for a ‘push‐pull’ strategy to control the tea green leafhopper,Empoasca vitis 下载免费PDF全文
The tea green leafhopper, Empoasca vitis Göthe (Hemiptera: Cicadellidae), is an economically important pest of tea crops, Camellia sinensis (L.) O. Kuntze (Theaceae), in China. The use of non‐host plant essential oils for manipulation of E. vitis was investigated for potential incorporation into a ‘push‐pull’ control strategy for this pest. The effectiveness of 14 plant essential oils in repelling E. vitis was investigated in laboratory assays. Rosemary oil, geranium oil, lavender oil, cinnamon oil, and basil oil repelled leafhoppers in a Y‐shaped olfactometer. We also compared the efficacy of these five plant essential oils to repel E. vitis in the presence of a host plant volatile‐based leafhopper attractant, (Z)‐3‐hexenyl acetate, in a tea plantation. In the treatment combination, four plates (north, south, east, and west) treated with an essential oil surrounded a central sticky plate treated with (Z)‐3‐hexenyl acetate. Fewer E. vitis were found on the plates treated with rosemary oil (12.5% reduction) than on the four water‐sprayed control treatment plates surrounding a central plate with (Z)‐3‐hexenyl acetate. We compared the distribution of E. vitis on the plates, and the relative numbers of E. vitis on each plate were compared with similar plates in the control treatment. When four plates treated with rosemary oil surrounded a central (Z)‐3‐hexenyl acetate‐treated plate, the distribution of E. vitis on the different plates changed significantly compared with that of the control. Relatively fewer E. vitis were found on the east (13.0% reduction) rosemary oil‐treated plates and more E. vitis (11.3% increase) were found on the central attractant‐treated plate. Our findings indicate that rosemary oil is a promising leafhopper repellent that should be tested further in a ‘push‐pull’ strategy for control of E. vitis. 相似文献
12.
M. VILA M. A. AUGER‐ROZENBERG F. GOUSSARD C. LOPEZ‐VAAMONDE 《Ecological Entomology》2009,34(3):356-362
Abstract 1. Non‐lethal genetic surveys in insects usually extract DNA from a leg or a piece of wing. Although preferable to lethal sampling, little is known about the effect of leg/wing non‐lethal sampling on fitness‐related traits. 2. Graellsia isabelae (Graells, 1849) is a European moth protected by the Habitats Directive and the Bern Convention. Conservation genetics surveys on this species should therefore use non‐lethal sampling. 3. The present study aimed to (1) quantify the effects of both leg and hind‐wing tail sampling on survivorship and reproductive behaviour of adult males and females, and (2) assess the quality and quantity of DNA obtained from those tissues. 4. Both hind‐wing tails and mid‐legs proved to be good sources of high quality nuclear and mitochondrial DNA. DNA concentration was significantly higher when extracted from a large (130 mm2) piece of the hind‐wing tails than from about half of the mid‐leg. Using mark–release–recapture experiments with adults, it was found that neither mid‐leg nor hind‐wing tail sampling significantly reduced male survivorship or total number of matings. However, although mid‐leg sampling did not significantly affect female survivorship, it had a negative effect on female mating success. 5. Wing‐tail clipping on males appeared to be the best non‐lethal sampling procedure for G. isabelae. It is a fast procedure, similar to natural wing impairment, and did not significantly affect survival or mating behaviour. 相似文献
13.
Alice L. Mauchline Sam M. Cook Wilf Powell Juliet L. Osborne 《Entomologia Experimentalis et Applicata》2013,146(3):313-320
The use of semiochemicals for the manipulation of the pollen beetle, Meliethes aeneus (Fabricius) (Coleoptera: Nitidulidae), is being investigated for potential incorporation into a push‐pull strategy for this pest, which damages oilseed rape, Brassica napus L. (Brassicaceae), throughout Europe. Previous laboratory behavioural studies using volatiles from non‐host plants showed that M. aeneus is repelled by the odour of lavender, Lavendula angustifolia Mill. (Lamiaceae), essential oil. This article reports on semi‐field and field trials to investigate this behaviour under more realistic conditions. Semi‐field experiments were conducted to assess the relative importance of olfaction at different points in host location behaviour by M. aeneus. The results showed that oilseed rape plants treated with lavender odour were less colonised by M. aeneus in comparison with an untreated control, but that the treatment effect was much reduced if the lavender odour was applied after colonisation. The field experiment demonstrated that lavender odour caused a significant reduction in the number of adult M. aeneus infesting the oilseed rape plants in the treatment plots compared to the control plots. Overall, these findings are very encouraging for the future development of a push‐pull pest control system. 相似文献
14.
Effects of single and multiple herbivory by host and non‐host caterpillars on the attractiveness of herbivore‐induced volatiles of sugarcane to the generalist parasitoid Cotesia flavipes 下载免费PDF全文
Maria Fernanda G.V. Peñaflor Felipe G. Gonçalves Camila Colepicolo Patricia A. Sanches José Mauricio S. Bento 《Entomologia Experimentalis et Applicata》2017,165(1):83-93
It is well known that parasitoids are attracted to volatiles emitted by host‐damaged plants; however, this tritrophic interaction may change if plants are attacked by more than one herbivore species. The larval parasitoid Cotesia flavipesCameron (Hymenoptera: Braconidae) has been used intensively in Brazil to control the sugarcane borer, Diatraea saccharalisFabricius (Lepidoptera: Pyralidae) in sugarcane crops, where Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae), a non‐stemborer lepidopteran, is also a pest. Here, we investigated the ability of C. flavipes to discriminate between an unsuitable host (S. frugiperda) and a suitable host (D. saccharalis) based on herbivore‐induced plant volatiles (HIPVs) emitted by sugarcane, and whether multiple herbivory (D. saccharalis feeding on stalk + S. frugiperda feeding on leaves) in sugarcane affected the attractiveness of HIPVs to C. flavipes. Olfactometer assays indicated that volatiles of host and non‐host‐damaged plants were attractive to C. flavipes. Even though host‐ and non‐host‐damaged plants emitted considerably different volatile blends, neither naïve nor experienced wasps discriminated suitable and unsuitable hosts by means of HIPVs emitted by sugarcane. With regard to multiple herbivory, wasps innately preferred the odor blend emitted by sugarcane upon non‐host + host herbivory over host‐only damaged plants. Multiple herbivory caused a suppression of some volatiles relative to non‐host‐damaged sugarcane that may have resulted from the unaltered levels of jasmonic acid in host‐damaged plants, or from reduced palatability of host‐damaged plants to S. frugiperda. In conclusion, our study showed that C. flavipes responds to a wide range of plant volatile blends, and does not discriminate host from non‐host and non‐stemborer caterpillars based on HIPVs emitted from sugarcane. Moreover, we showed that multiple herbivory by the sugarcane borer and fall armyworm increases the attractiveness of sugarcane plants to the parasitoids. 相似文献
15.
Effect of a non‐host plant Phaseolus vulgaris on larval performance and oviposition of the oriental tobacco budworm Helicoverpa assulta (Lepidoptera: Noctuidae) 下载免费PDF全文
Hyun‐Joo Lim Taek Jun Kang Hyeong Hwan Kim Chang Yeol Yang Iksoo Kim Dong Hwan Kim Seung‐Joon Ahn 《Entomological Research》2016,46(2):170-175
The oriental tobacco budworm, Helicoverpa assulta, is a specialist herbivore feeding on a few plants of the Solanaceae family including tobacco. Larval performance and adult oviposition of H. assulta were investigated in a non‐host plant, Phaseolus vulgaris (Fabaceae) in comparison with two solanaceous host plants, Nicotiana tabacum and Datura stramonium. Larvae provided with the P. vulgaris leaf died off at day 15, whereas 50% and 40% of larval populations fed on the leaves of N. tabacum and D. stramonium, respectively, survived at day 15. Larval growth upon feeding showed significant difference between the non‐host plant (P. vulgaris) and the host plants (N. tabacum and D. stramonium), but it was not significantly different between the two host plants. In the no‐choice experiment of oviposition, gravid females laid more eggs in N. tabacum and D. stramonium than in P. vulgaris. When the most likely acceptable host plant, N. tabacum, and the non‐host plant, P. vulgaris, were subjected to the choice experiment of oviposition, H. assulta females preferred to lay eggs in N. tabacum, where eggs were continuously laid during the whole experiment period. However, eggs in P. vulgaris were hardly detected throughout the period. This study showed that the non‐host plant, P. vulgaris, had a negative influence on the larval performance and adult oviposition of H. assulta, implying neonate stage is critical for larval survivorship, and ovipositional preference by the female is highly specialized to host plants. Further investigation is required to identify non‐host factors, which could be applied to the development of alternative pest management strategy against H. assulta. 相似文献
16.
Gurion C.K. Ang Myron P. Zalucki Michael J. Furlong 《Entomologia Experimentalis et Applicata》2016,160(1):28-39
Temporal changes in the pre‐ and post‐alighting responses of mated female diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae), to two species of Brassica (Brassicaceae) host plants induced by larval feeding were studied using olfactometer and oviposition assays. Females displayed strong olfactory and oviposition preferences for herbivore‐induced common cabbage (Brassica oleracea var. capitata L. cv. sugarloaf) plants over intact plants; these preferences decreased with time and disappeared by the 7th day after induction. In herbivore‐induced common cabbage plants, eggs were clustered near feeding damage on the younger leaves (leaves 5–7), whereas in intact plants, eggs were clustered on the stem and lower leaves (leaves 1–4) . However, as the time interval between larval feeding and oviposition increased, more eggs were laid on the lower leaves of induced plants. This demonstrates a change in egg distribution from the pattern associated with induced plants to that associated with intact plants. In contrast, females displayed strong olfactory and oviposition preferences for intact Chinese cabbage [Brassica rapa ssp. pekinensis (Lour.) Hanelt cv. Wombok] plants over induced plants; these preferences decreased with time and disappeared by the 5th day after induction. More eggs were laid on the upper leaves (leaves 4–6) than on the lower leaves (leaves 1–3) of intact Chinese cabbage plants at first, but the distribution changed over time until there were no significant differences in the egg count between upper and lower leaves by the 4th day post induction. For both host plant species, pre‐alighting responses of moths were reliable indicators of post‐alighting responses on the first 2 days post induction. The results suggest that temporal changes in a plant's profile (chemical or otherwise) following herbivory may influence attractiveness to an insect herbivore and be accompanied by changes in olfactory and oviposition preferences. 相似文献
17.
ANA PINEDA ROXINA SOLER BERHANE T. WELDEGERGIS MPOKI M. SHIMWELA JOOP J. A. VAN LOON MARCEL DICKE 《Plant, cell & environment》2013,36(2):393-404
Beneficial soil‐borne microbes, such as mycorrhizal fungi or rhizobacteria, can affect the interactions of plants with aboveground insects at several trophic levels. While the mechanisms of interactions with herbivorous insects, that is, the second trophic level, are starting to be understood, it remains unknown how plants mediate the interactions between soil microbes and carnivorous insects, that is, the third trophic level. Using Arabidopsis thaliana Col‐0 and the aphid Myzus persicae, we evaluate here the underlying mechanisms involved in the plant‐mediated interaction between the non‐pathogenic rhizobacterium Pseudomonas fluorescens and the parasitoid Diaeretiella rapae, by combining ecological, chemical and molecular approaches. Rhizobacterial colonization modifies the composition of the blend of herbivore‐induced plant volatiles. The volatile blend from rhizobacteria‐treated aphid‐infested plants is less attractive to an aphid parasitoid, in terms of both olfactory preference behaviour and oviposition, than the volatile blend from aphid‐infested plants without rhizobacteria. Importantly, the effect of rhizobacteria on both the emission of herbivore‐induced volatiles and parasitoid response to aphid‐infested plants is lost in an Arabidopsis mutant (aos/dde2‐2) that is impaired in jasmonic acid production. By modifying the blend of herbivore‐induced plant volatiles that depend on the jasmonic acid‐signalling pathway, root‐colonizing microbes interfere with the attraction of parasitoids of leaf herbivores. 相似文献
18.
RITA S. L. VEIGA ANTONELLA FACCIO ANDREA GENRE CORNÉ M. J. PIETERSE PAOLA BONFANTE MARCEL G. A. van der HEIJDEN 《Plant, cell & environment》2013,36(11):1926-1937
The arbuscular mycorrhizal (AM) symbiosis is widespread throughout the plant kingdom and important for plant nutrition and ecosystem functioning. Nonetheless, most terrestrial ecosystems also contain a considerable number of non‐mycorrhizal plants. The interaction of such non‐host plants with AM fungi (AMF) is still poorly understood. Here, in three complementary experiments, we investigated whether the non‐mycorrhizal plant Arabidopsis thaliana, the model organism for plant molecular biology and genetics, interacts with AMF. We grew A. thaliana alone or together with a mycorrhizal host species (either Trifolium pratense or Lolium multiflorum) in the presence or absence of the AMF Rhizophagus irregularis. Plants were grown in a dual‐compartment system with a hyphal mesh separating roots of A. thaliana from roots of the host species, avoiding direct root competition. The host plants in the system ensured the presence of an active AM fungal network. AM fungal networks caused growth depressions in A. thaliana of more than 50% which were not observed in the absence of host plants. Microscopy analyses revealed that R. irregularis supported by a host plant was capable of infecting A. thaliana root tissues (up to 43% of root length colonized), but no arbuscules were observed. The results reveal high susceptibility of A. thaliana to R. irregularis, suggesting that A. thaliana is a suitable model plant to study non‐host/AMF interactions and the biological basis of AM incompatibility. 相似文献
19.
1. The selection of an oviposition site by a phytophagous insect can depend on many factors, including the risk of predation. Many species avoid predators by laying eggs where enemies searching host plants are unlikely to find them. 2. Females of the Peruvian butterfly, Oleria onega Hewitson (Lepidoptera: Nymphalidae: Danainae: Ithomiini) lay most of their eggs (76 ± 9%) off the host plant, Solanum mite Ruiz & Pav. These off‐host eggs may be laid up to 0.5 m from the nearest host‐plant individual, on twigs or leaf litter, as well as on living plants of species unsuitable for larval food. 3. Disappearance of eggs on and off the host plant was recorded by transferring eggs laid in captivity to known locations in the wild and recording rates of disappearance before the larvae emerged. After 2 days, eggs on the host were significantly more likely to have disappeared compared to eggs laid elsewhere. 4. We conclude that a high risk of predation is a likely trigger that caused O. onega to evolve a behaviour of laying eggs off its host plant. 相似文献
20.
BRADLEY C. RHODES CATHERINE P. BLAIR MIZUKI K. TAKAHASHI WARREN G. ABRAHAMSON 《Ecological Entomology》2012,37(6):500-507
1. Herbivorous insects often have close associations with specific host plants, and their preferences for mating and ovipositing on a specific host‐plant species can reproductively isolate populations, facilitating ecological speciation. Volatile emissions from host plants can play a major role in assisting herbivores to locate their natal host plants and thus facilitate assortative mating and host‐specific oviposition. 2. The present study investigated the role of host‐plant volatiles in host fidelity and oviposition preference of the gall‐boring, inquiline beetle, Mordellistena convicta LeConte (Coleoptera: Mordellidae), using Y‐tube olfactometers. Previous studies suggest that the gall‐boring beetle is undergoing sequential host‐associated divergence by utilising the resources that are created by the diverging populations of the gall fly, Eurosta solidaginis Fitch (Diptera: Tephritidae), which induces galls on the stems of goldenrods including Solidago altissima L. (Asteraceae) and Solidago gigantea Ait. 3. Our results show that M. convicta adults are attracted to galls on their natal host plant, avoid the alternate host galls, and do not respond to volatile emissions from their host‐plant stems. 4. These findings suggest that the gall‐boring beetles can orient to the volatile chemicals from host galls, and that beetles can use them to identify suitable sites for mating and/or oviposition. Host‐associated mating and oviposition likely play a role in the sequential radiation of the gall‐boring beetle. 相似文献