首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT: BACKGROUND: The Biocontrol Peptide BP100 is a synthetic and strongly cationic a-helical undecapeptide with high, specific antibacterial activity against economically important plant-pathogenic bacteria, and very low toxicity. It was selected from a library of synthetic peptides, along with other peptides with activities against relevant bacterial and fungal species. Expression of the BP100 series of peptides in plants is of major interest to establish disease-resistant plants and facilitate molecular farming. Specific challenges were the small length, peptide degradation by plant proteases and toxicity to the host plant. Here we approached the expression of the BP100 peptide series in plants using BP100 as a proof-of-concept. RESULTS: Our design considered up to three tandemly arranged BP100 units and peptide accumulation in the endoplasmic reticulum (ER), analyzing five BP100 derivatives. The ER retention sequence did not reduce the antimicrobial activity of chemically synthesized BP100 derivatives, making this strategy possible. Transformation with sequences encoding BP100 derivatives (bp100der) was over ten-fold less efficient than that of the hygromycin phosphotransferase (hptII) transgene. The BP100 direct tandems did not show higher antimicrobial activity than BP100, and genetically modified (GM) plants constitutively expressing them were not viable. In contrast, inverted repeats of BP100, whether or not elongated with a portion of a natural antimicrobial peptide (AMP), had higher antimicrobial activity, and fertile GM rice lines constitutively expressing bp100der were produced. These GM lines had increased resistance to the pathogens Dickeya chrysanthemi and Fusarium verticillioides, and tolerance to oxidative stress, with agronomic performance comparable to untransformed lines. CONCLUSIONS: Constitutive expression of transgenes encoding short cationic a-helical synthetic peptides can have a strong negative impact on rice fitness. However, GM plants expressing, for example, BP100 based on inverted repeats, have adequate agronomic performance and resistant phenotypes as a result of a complex equilibrium between bp100der toxicity to plant cells, antimicrobial activity and transgene-derived plant stress response. It is likely that these results can be extended to other peptides with similar characteristics.  相似文献   

2.
3.
XPF‐St7 (GLLSNVAGLLKQFAKGGVNAVLNPK) is an antimicrobial peptide isolated from Silurana tropicalis. We developed an α‐helical segment of XPF‐St7 termed as XPF2. Using the XPF2 as a framework, we increased the positive net charge of XPF2 by amino acid substitutions, and thus obtained two novel antimicrobial peptides XPF4 and XPF6. These were each fused with an ubiquitin tag and successfully expressed in Escherichia coli. This ubiquitin fusion system may present a viable alternative for industrial production of antimicrobial peptides. XPF4 and XPF6 showed much better overall antimicrobial activity against both Gram‐negative and Gram‐positive bacteria than XPF2. The therapeutic index of XPF4 and XPF6 was 5.6‐fold and 6.7‐fold of XPF2, respectively. Bacterial cell membrane permeabilization and genomic DNA interaction assays were utilized to explore the mechanism of action of XPF serial peptides. The results revealed that the target of these antimicrobial peptides was the bacterial cytoplasmic membrane. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

4.
Li BC  Zhang SQ  Dan WB  Chen YQ  Cao P 《Biotechnology letters》2007,29(7):1031-1036
The antibacterial peptide CM4 (ABP-CM4), isolated from Chinese Bombys mori, is a 35-residue cationic, amphipathic α-helical peptide that exhibits a broad range of antimicrobial activity. To explore a new approach for the expression of ABP-CM4 in E. coli, the gene ABP-CM4, obtained by recursive PCR (rPCR), was cloned into the vector pET32a to construct a fusion expression plasmid. The fusion protein Trx-CM4 was expressed in soluble form, purified by Ni2+-chelating chromatography, and cleaved by formic acid to release recombinant CM4. Purification of rCM4 was achieved by affinity chromatography and reverse-phase HPLC. The purified of recombinant peptide showed antimicrobial activities against E. coli K12D31, Penicillium chrysogenum, Aspergillus niger and Gibberella saubinetii. According to the antimicrobial peptide database (http://aps.unmc.edu/AP/main.html), 116 peptides contain a Met residue, but only 5 peptides contain the AspPro site, indicating a broader application of formic acid than CNBr in cleaving fusion protein. The successful application to the expression of the ABP-CM4 indicates that the system is a low-cost, efficient way of producting milligram quantities of ABP-CM4 that is biologically active.  相似文献   

5.
Retrocyclin‐101 (RC101) and Protegrin‐1 (PG1) are two important antimicrobial peptides that can be used as therapeutic agents against bacterial and/or viral infections, especially those caused by the HIV‐1 or sexually transmitted bacteria. Because of their antimicrobial activity and complex secondary structures, they have not yet been produced in microbial systems and their chemical synthesis is prohibitively expensive. Therefore, we created chloroplast transformation vectors with the RC101 or PG1 coding sequence, fused with GFP to confer stability, furin or Factor Xa cleavage site to liberate the mature peptide from their fusion proteins and a His‐tag to aid in their purification. Stable integration of RC101 into the tobacco chloroplast genome and homoplasmy were confirmed by Southern blots. RC101 and PG1 accumulated up to 32%–38% and 17%~26% of the total soluble protein. Both RC101 and PG1 were cleaved from GFP by corresponding proteases in vitro, and Factor Xa–like protease activity was observed within chloroplasts. Confocal microscopy studies showed location of GFP fluorescence within chloroplasts. Organic extraction resulted in 10.6‐fold higher yield of RC101 than purification by affinity chromatography using His‐tag. In planta bioassays with Erwinia carotovora confirmed the antibacterial activity of RC101 and PG1 expressed in chloroplasts. RC101 transplastomic plants were resistant to tobacco mosaic virus infections, confirming antiviral activity. Because RC101 and PG1 have not yet been produced in other cell culture or microbial systems, chloroplasts can be used as bioreactors for producing these proteins. Adequate yield of purified antimicrobial peptides from transplastomic plants should facilitate further preclinical studies.  相似文献   

6.
Antimicrobial peptides are important effector molecules of the innate immune system. Here, we describe that peptides derived from the heparin‐binding disulfide‐constrained loop region of human ß‐amyloid precursor protein are antimicrobial. The peptides investigated were linear and cyclic forms of NWCKRGRKQCKTHPH (NWC15) as well as the cyclic form comprising the C‐terminal hydrophobic amino acid extension FVIPY (NWCKRGRKQCKTHPHFVIPY; NWC20c). Compared with the benchmark antimicrobial peptide LL‐37, these peptides efficiently killed the Gram‐negative bacteria Escherichia coli and Pseudomonas aeruginosa, the Gram‐positive Staphylococcus aureus and Bacillus subtilis, and the fungi Candida albicans and Candida parapsilosis. Correspondingly, fluorescence and electron microscopy demonstrated that the peptides caused defects in bacterial membranes. Analogously, the peptides permeabilised negatively charged liposomes. Despite their bactericidal effect, the peptides displayed very limited hemolytic activities within the concentration range investigated and exerted very small membrane permeabilising effects on human epithelial cells. The efficiency of the peptides with respect to bacterial killing and liposome membrane leakage was in the order NWC20c > NWC15c > NWC15l, which also correlated to the adsorption density for these peptides at the model lipid membrane. Thus, whereas the cationic sequence is a minimum determinant for antimicrobial action, a constrained loop‐structure as well as a hydrophobic extension further contributes to membrane permeabilising activity of this region of amyloid precursor protein. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

7.
Production of antimicrobial peptides in plants constitutes an approach for obtaining them in high amounts. However, their heterologous expression in a practical and efficient manner demands some structural requirements such as a minimum size, the incorporation of retention signals to assure their accumulation in specific tissues, and the presence of protease cleavage amino acids and of target sequences to facilitate peptide detection. Since any sequence modification may influence the biological activity, peptides that will be obtained from the expression must be screened prior to the synthesis of the genes for plant transformation. We report herein a strategy for the modification of the antimicrobial undecapeptide BP100 that allowed the identification of analogues that can be expressed in plants and exhibit optimum biological properties. We prepared 40 analogues obtained by incorporating repeated units of the antimicrobial undecapeptide, fragments of natural peptides, one or two AGPA hinges, a Gly or Ser residue at the N-terminus, and a KDEL fragment and/or the epitope tag54 at the C-terminus. Their antimicrobial, hemolytic and phytotoxic activities, and protease susceptibility were evaluated. Best sequences contained a magainin fragment linked to the antimicrobial undecapeptide through an AGPA hinge. Moreover, since the presence of a KDEL unit or of tag54 did not influence significantly the biological activity, these moieties can be introduced when designing compounds to be retained in the endoplasmic reticulum and detected using a complementary epitope. These findings may contribute to the design of peptides to be expressed in plants.  相似文献   

8.
A set of 31 undecapeptides, incorporating 1 to 11 d-amino acids and derived from the antimicrobial peptide BP100 (KKLFKKILKYL-NH(2)), was designed and synthesized. This set was evaluated for inhibition of growth of the plant-pathogenic bacteria Erwinia amylovora, Pseudomonas syringae pv. syringae, and Xanthomonas axonopodis pv. vesicatoria, hemolysis, and protease degradation. Two derivatives were as active as BP100, and 10 peptides displayed improved activity, with the all-d isomer being the most active. Twenty-six peptides were less hemolytic than BP100, and all peptides were more stable against protease degradation. Plant extracts inhibited the activity of BP100 as well as that of the d-isomers. Ten derivatives incorporating one d-amino acid each were tested in an infectivity inhibition assay with the three plant-pathogenic bacteria by using detached pear and pepper leaves and pear fruits. All 10 peptides studied were active against E. amylovora, 6 displayed activity against P. syringae pv. syringae, and 2 displayed activity against X. axonopodis pv. vesicatoria. Peptides BP143 (KKLFKKILKYL-NH(2)) and BP145 (KKLFKKILKYL-NH(2)), containing one d-amino acid at positions 4 and 2 (underlined), respectively, were evaluated in whole-plant assays for the control of bacterial blight of pepper and pear and fire blight of pear. Peptide BP143 was as effective as streptomycin in the three pathosystems, was more effective than BP100 against bacterial blight of pepper and pear, and equally effective against fire blight of pear.  相似文献   

9.
Human β‐defensins (HBDs) are cationic antimicrobial peptides constrained by three disulfide bridges. They have diverse range of functions in the innate immune response. It is of interest to investigate whether linear analogs of defensins can be generated, which possess antimicrobial activity. In this study, we have designed linear peptides with potent antimicrobial activity from an inactive peptide spanning the N‐terminus of HBD4. Our results show that l ‐arginine to d ‐arginine substitution imparts considerable antimicrobial activity against both bacteria and Candida albicans. Increase in hydrophobicity by fatty acylation of the peptides with myristic acid further enhances their potency. In the presence of high concentrations of salt, antimicrobial activity of the myristoylated peptide with l ‐arginine is attenuated relatively to a lesser extent as compared with the linear active peptide with d ‐arginine. Substitution of cysteine with the hydrophobic helix‐promoting amino acid α‐aminoisobutyric acid favors candidacidal activity but not antibacterial activity. The mechanism of killing by d ‐arginine substituted unacylated analog involves transient interaction with the bacterial membrane followed by translocation into the cytoplasm without membrane permeabilization. Accumulation of peptides in the cytoplasm can affect various cellular processes that lead to cell death. However, the peptide causes membrane permeabilization in case of C. albicans. Myristoylation results in greater interaction of the peptide chain with the microbial cell surface and causes membrane permeabilization. Results described in the study demonstrate that it is possible to generate highly active linear analogs of defensins by selective introduction of d ‐amino acids and fatty acids, which could be attractive candidates for development as therapeutic agents. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

10.
Antimicrobial peptides are important components of the host innate immune responses by exerting broad‐spectrum microbicidal activity against pathogenic microbes. Cy‐AMP1 found in the cycad (Cycas revoluta) seeds has chitin‐binding ability, and the chitin‐binding domain was conserved in knottin‐type and hevein‐type antimicrobial peptides. The recombinant Cy‐AMP1 was expressed in Escherichia coli and purified to study the role of chitin‐binding domain. The mutants of Cy‐AMP1 lost chitin‐binding ability completely, and its antifungal activity was markedly decreased in comparison with native Cy‐AMP1. However, the antimicrobial activities of the mutant peptides are nearly identical to that of native one. It was suggested that the chitin‐binding domain plays an essential role in antifungal, but not antimicrobial, activity of Cy‐AMP1. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

11.
The widespread natural sources‐derived cationic peptides have been reported to reveal bacterial killing and/or growth‐inhibiting properties. Correspondingly, a number of artificial peptides have been designed to understand antibacterial mechanism of the cationic peptides. These peptides are expected to be an alternative antibiotic against drug‐resistant pathogenic bacteria because major antimicrobial mechanism of cationic peptides involves bacterial membrane disorder, although those availabilities have not been well evaluated. In this study, cationic peptides containing Aib were prepared to evaluate the availability as an antimicrobial agent, especially against representative pathogenic bacteria. Among them, BRBA20, consisting of five repeated Aib‐Arg‐Aib‐Ala sequences, showed strong antibacterial activity against both Gram‐negative and Gram‐positive bacteria, including methicillin‐resistant Staphylococcus aureus. Additionally, growth of Serratia marcescens and multidrug‐resistant Pseudomonas aeruginosa, known as proteases‐secreting pathogenic bacteria, were also completely inhibited by BRBA20 under 20 µg/ml peptide concentrations. Our results suggested availabilities of Aib‐derived amphiphilicity and protease resistance in the design of artificial antimicrobial peptides. Comparing BRBA20 with BKBA20, it was also concluded that Arg residue is the preferred cationic source than Lys for antimicrobial action of amphiphilic helices. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

12.
Several cationic model peptides of the prepiece moieties of mitochondrial protein precursors were found to be active against Gram-positive bacteria, but inactive against Gram-negative bacteria. The CD spectra of the model peptides in the presence of phospholipid liposomes demonstrated that antimicrobial activity was generally in parallel with the content of the alpha-helical amphiphilicity. The results indicate that appropriate positioning of cationic and hydrophobic groups in the stable alpha-helical structure of the peptides is important to exhibit antimicrobial activity. These peptides also have an ability to leak carboxyfluorescein from acidic and neutral phospholipid vesicles, suggesting that the peptides interact with the bacterial membrane to perturb it.  相似文献   

13.
The common neurodegenerative disorder known as Alzheimer’s disease is characterized by cerebral neuritic plaques of amyloid β (Aβ) peptide. Plaque formation is related to the highly aggregative property of this peptide, because it polymerizes to form insoluble plaques or fibrils causing neurotoxicity. Here, we expressed Aβ peptide as a new causing agent to endoplasmic reticulum (ER) stress to study ER stress occurred in plant. When the dimer of Aβ1–42 peptide was expressed in maturing seed under the control of the 2.3‐kb glutelin GluB‐1 promoter containing its signal peptide, a maximum of about 8 μg peptide per grain accumulated and was deposited at the periphery of distorted ER‐derived PB‐I protein bodies. Synthesis of Aβ peptide in the ER lumen severely inhibited the synthesis and deposition of seed storage proteins, resulting in the generation of many small and abnormally appearing PB bodies. This ultrastructural change was accounted for by ER stress leading to the accumulation of aggregated Aβ peptide in the ER lumen and a coordinated increase in ER‐resident molecular chaperones such as BiPs and PDIs in Aβ‐expressing plants. Microarray analysis also confirmed that expression of several BiPs, PDIs and OsbZIP60 containing putative transmembrane domains was affected by the ER stress response. Aβ‐expressing transgenic rice kernels exhibited an opaque and shrunken phenotype. When grain phenotype and expression levels were compared among transgenic rice grains expressing several different recombinant peptides, such detrimental effects on grain phenotype were correlated with the expressed peptide causing ER stress rather than expression levels.  相似文献   

14.
Peptide fragments that exhibit antimicrobial activity in vitro have been shown to be produced by cleavage from the hydrophilic region near the N terminus of various vicilin proteins in plant seeds. Three peptide sequences identified in the hydrophilic region of vicilin seed proteins of Macadamia integrifolia and Theobroma cacao were predicted to exhibit antimicrobial activity based on sequence similarity to antimicrobial peptides that had been previously purified from macadamia kernels. Histidine-tagged versions of the putative antimicrobial peptides were expressed in Escherichia coli, purified, and demonstrated to have in vitro antimicrobial activity. There are many vicilin sequences in the growing plant genome sequence databases, and this expression method provides a high-throughput process for functionally testing the potential of internal peptide fragments of vicilins as novel antimicrobial molecules.  相似文献   

15.
The overuse of antibiotics has resulted in the emergence of antibiotic‐resistant bacteria, which presents an urgent need for new antimicrobial agents. At present, antimicrobial peptides have attracted a great deal of attention from researchers. However, antimicrobial peptides often affect a broad range of microorganisms, including the normal flora in a host organism. In the present study, we designed a novel hybrid antimicrobial peptide, expressed the hybrid peptide, and studied its specific target. The hybrid peptide, named T‐catesbeianin‐1, which includes the FyuA‐binding domain of pesticin and the peptide catesbeianin‐1, was designed and expressed in Pichia pastoris X‐33. Then, we determined the antimicrobial activity, cytotoxicity, and specific target of the peptide. T‐catesbeianin‐1 has strong antimicrobial activity and binds to FyuA to inhibit or kill Escherichia coli present in clinical specimens and mixed‐species culture. In summary, these findings suggested that T‐catesbeianin‐1 might be promising and specific antibiotic agent for therapeutic application against fyuA+ E. coli.  相似文献   

16.
It has been reported that it is difficult to express cationic antibacterial peptides in engineered bacteria because such peptides are highly toxic to the host bacteria cells and sensitive to intracellular proteases. Antibacterial peptide CM4 (ABP-CM4) is a small cationic peptide with broad-spectrum activities against bacteria, fungi and tumor cells, which may possibly be used as an antimicrobial agent. Here we tried to express ABP-CM4 in Escherichia coli cells using either the GST fusion system or the intein-mediated fusion expression system. In order to investigate the possible use of these two fusion partners in cationic small peptide expression and purification, a mutant ABP-CMt, which is a highly positively charged peptide with +9 charges at neutral pH, was designed. In the present study, we have shown that both ABP-CM4 and ABP-CMt peptides can be expressed and purified by the intein-mediated expression system but not by the GST fusion expression system. Thus the intein-mediated peptide expression and purification system potentially could be employed for the production of recombinant protease-sensitive and cytotoxic peptides.  相似文献   

17.
The innate resistance of plants and animals to microbial infection is mediated in part by small cationic peptides with antimicrobial activity. We assessed the susceptibility of the alfalfa symbiont Sinorhizobium meliloti to the model antimicrobial peptide protamine. Twenty-one Tn5-induced mutants showing increased sensitivity to protamine were isolated, and nine were further characterized in detail. These nine mutants carried distinct transposon insertions that affected a total of seven different genes. Three of these genes are involved in exopolysaccharide and beta-(1,2)-glucan biosynthesis (exoT, exoU and ndvB), three other genes are implicated in nitrogen metabolism, such as a putative dyhidropyrimidinase, hutU and ureF, and the last gene exhibited similarity to the ATP binding cassette family of membrane transporters. Symbiotic defects ranging from severe to moderate were displayed by some of the protamine-hypersensitive mutants suggesting that S. meliloti possess active mechanisms to counteract hypothetical cationic peptides that may be produced by its host plant.  相似文献   

18.
A 371 bp full-length cDNA (GenBank Accession No. DQ232774) was obtained from housefly Musca domestica by using degenerate primers and subsequent amplification by 5'- and 3'-RACE. The cecropin gene, Mdcec and Mdcec/6His, was cloned into expression pPICZalpha-A vector and was expressed in the methylotrophic yeast, Pichia pastoris. The recombinant Mdcec was purified using cationic exchange chromatography and 1.2mg pure active Mdcec was obtained from 100ml culture broth supernatant. To facilitate purification of Mdcec, the C-terminal 6His-tagged Mdcec was also expressed in P. pastoris. The recombinant Mdcec/6His was purified to homogeneity by a nickel chelating sepharose column and 2.0mg pure active Mdcec/6His was obtained from 100ml culture broth supernatant. Anti-microbial assays demonstrated that Mdcec had broad spectrum of antimicrobial property against fungi, as well as Gram-positive and Gram-negative bacteria. Mdcec/6His showed a similar activity to Mdcec against bacteria, but a slight higher activity against fungi. These results indicate that the 6His-tag can enhance the cationic nature and stability of Mdcec. This is the first report on the heterologous expression of a cecropin and cecropin with a 6His tag in P. pastoris. Our results suggest that the P. pastoris expression system can be used to produce large quantities of fully functional M. domestica cecropin for both research and industrial purpose.  相似文献   

19.
VmCT1 is a cationic antimicrobial peptide (AMP) from the venom of the scorpion Vaejovis mexicanus. VmCT1 and analogs were designed with single substitutions for verifying the influence of changes in physicochemical features described as important for AMPs antimicrobial and hemolytic activities, as well as their effect on VmCT1 analogs resistance against proteases action. The increase of the net positive charge by the introduction of an arginine residue in positions of the hydrophilic face of the helical structure affected directly the antimicrobial activity. Arg-substituted analogs presented activity against Gram-negative bacteria from the ESKAPE list of pathogens that were not observed for VmCT1. Additionally, peptides with higher net positive charge presented increased antimicrobial activity with values ranging from 0.39 to 12.5 μmol L−1 against Gram-positive and Gram-negative bacteria and fungi. The phenylalanine substitution by glycine (position 1), and the valine substitution by a proline residue (position 8) led to analogs with lower hemolytic activity (at concentrations 50 and 100 μmol L−1, respectively). These results revealed that it is possible to modulate the biological activities of VmCT1 derivatives by designing single substituted-analogs as prospective therapeutics against bacteria and fungi.  相似文献   

20.
天然抗菌肽(antimicrobial peptides, AMPs)是一类小分子阳离子多肽,具备多种杀菌机制,呈现出高效、广谱的杀菌特性,在抑制耐药性细菌、制备新型抗菌素等方面具有重要的研究价值。以天然抗菌肽为蓝本,设计和开发的人工合成型抗菌肽可以有效克服天然抗菌肽对蛋白酶敏感、细胞毒性较大、生产成本高等缺陷,作为抗感染的潜在药物具有更广阔的应用前景。综述了目前主要的抗菌肽人工改造技术,包括化学修饰法、蛋白质工程技术、计算机分子模拟技术和从头设计最小化抗菌肽方法的研究进展,并对人工合成抗菌肽作为抗菌药物的应用现状进行了简介。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号