首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Melanin is a pigment that plays an important role in providing coloration and protecting human skin from the harmful effects of UV light radiation. Human skin color is determined by the type and amount of melanins that are synthesized and deposited within the melanosomes. In addition, the transfer of these specialized membrane-bound organelles from melanocytes to surrounding keratinocytes also plays a role in dictating human skin color. In order to investigate the principle features of skin pigmentation, the origin, function, and production ability of melanin should be highly understood in terms of biological and pathophysiological aspects. Furthermore, a deep understanding of melanin synthesis will also contribute to cosmetics and drugs development. In this review, the processes of melanin biosynthesis, such as survival, proliferation, and differentiation of melanin cells, as well as the biological regulation of human pigmentation were described.  相似文献   

2.
Molecular motors and their role in pigmentation.   总被引:6,自引:0,他引:6  
Skin pigmentation is orchestrated through a series of complementary processes. After migration of melanoblasts out of the neural crest to epidermis and hair follicle, these cells mature into melanocytes. Differentiated melanocytes produce melanin in specialized organelles, the melanosomes. Moreover, the cytoplasm of melanocytes branches into extensions, the dendrites. Via the tips of these dendrites they donate their mature melanosomes to the keratinocytes resulting in skin pigmentation. Thus, one essential part of the process of pigmentation is the translocation of melanosomes from their site of origin in the perinuclear cytoplasm towards the dendrite tips. Motor proteins are molecules which use the energy derived from ATP hydrolysis to move along cytoskeletal elements, either actin filaments or microtubules, to transport their cargo, which can be organelles, vesicles or chromosomes. This review describes the different classes of microtubule-based and actin-based motor proteins with their characteristics and functional importance in cell biology and organelle transport. Some of them will be highlighted and several recent studies in mammalian pigment cells indicating their role in pigment granule transport will be discussed. As a result of these data and previous suggestions, a model will be proposed for the possible cooperation of both systems in melanosome movement.  相似文献   

3.
4.
Role of light in human skin color viariation.   总被引:1,自引:0,他引:1  
The major source of color in human skin derives from the presence within the epidermis of specialized melanin-bearing organelles, the melanosomes. Tanning of human skin on exposure to ultraviolet light results from increased amounts of melanin within the epidermis. Melanosomes synthesized by melanocytes are acquired by keratinocytes and transported within them to the epidermal surface. In some cases, the melanosomes are catobolized en route. New information indicates that the multicellular epidermal melanin unit (melanocyte and associated pool of keratinocytes) rather than the melanocyte alone is the focal point for the control of melanin metabolism within mammalian epidermis. Gross human skin color derives from the visual impact of the summed melanin pigmentation of the many epidermal melanin units. In theory, constitutive skin color in man designates the genetically-determined levels of melanin pigmentation developed in the absence of exposure to solar radiation or other environmental influences; facultative skin color or "tan" characterizes the increases in melanin pigmentation above the constitutive level induced by ultraviolet light. The details of genetic regulation of pigment metabolism within the epidermal melanin units are being clarified. In some mammals at least, the function of epidermal melanin units is significantly influenced by hormones which may be regulated by radiations received through the eyes. Based on an evolutionary history of the human family which exceeds ten million years, it is proposed that melanin pigmentation may have played a number of roles in human adaptions to changing biologic and physical environments.  相似文献   

5.
Signaling pathways in melanosome biogenesis and pathology   总被引:1,自引:0,他引:1  
Melanosomes are the specialized intracellular organelles of pigment cells devoted to the synthesis, storage and transport of melanin pigments, which are responsible for most visible pigmentation in mammals and other vertebrates. As a direct consequence, any genetic mutation resulting in alteration of melanosomal function, either because affecting pigment cell survival, migration and differentiation, or because interfering with melanosome biogenesis, transport and transfer to keratinocytes, is immediately translated into color variations of skin, fur, hair or eyes. Thus, over 100 genes and proteins have been identified as pigmentary determinants in mammals, providing us with a deep understanding of this biological system, which functions by using mechanisms and processes that have parallels in other tissues and organs. In particular, many genes implicated in melanosome biogenesis have been characterized, so that melanosomes represent an incredible source of information and a model for organelles belonging to the secretory pathway. Furthermore, the function of melanosomes can be associated with common physiological phenotypes, such as variation of pigmentation among individuals, and with rare pathological conditions, such as albinism, characterized by severe visual defects. Among the most relevant mechanisms operating in melanosome biogenesis are the signal transduction pathways mediated by two peculiar G protein-coupled receptors: the melanocortin-1 receptor (MC1R), involved in the fair skin/red hair phenotype and skin cancer; and OA1 (GPR143), whose loss-of-function results in X-linked ocular albinism. This review will focus on the most recent novelties regarding the functioning of these two receptors, by highlighting emerging signaling mechanisms and general implications for cell biology and pathology.  相似文献   

6.
The skin pigment melanin is produced in melanocytes in highly specialized organelles known as melanosomes. Melanosomes are related to the organelles of the endosomal/lysosomal pathway and can have a low internal pH. In the present study we have shown that melanin synthesis in human pigment cell lysates is maximal at pH 6.8. We therefore investigated the role of intramelanosomal pH as a possible control mechanism for melanogenesis. To do this we examined the effect of neutralizing melanosomal pH on tyrosinase activity and melanogenesis in 11 human melanocyte cultures and in 3 melanoma lines. All melanocyte cultures (9 of 9) from Caucasian skin as well as two melanoma cell lines with comparable melanogenic activity showed rapid (within 24 h) increases in melanogenesis in response to neutralization of melanosomal pH. Chemical analysis of total melanin indicated a preferential increase in eumelanin production. Electron microscopy revealed an accumulation of melanin and increased maturation of melanosomes in response to pH neutralization. In summary, our findings show that: (i) near neutral melanosomal pH is optimal for human tyrosinase activity and melanogenesis; (ii) melanin production in Caucasian melanocytes is suppressed by low melanosomal pH; (iii) the ratio of eumelanin/phaeomelanin production and maturation rate of melanosomes can be regulated by melanosomal pH. We conclude that melanosomal pH is an essential factor which regulates multiple stages of melanin production. Furthermore, since we have recently identified that pink locus product (P protein) mediates neutralization of melanosomal pH, we propose that P protein is a key control point for skin pigmentation. We would further propose that the wide variations in both constitutive and facultative skin pigmentation seen in the human population could be associated with the high degree of P-locus polymorphism.  相似文献   

7.
How skin colour adjusts to circadian light/dark cycles is poorly understood. Melanopsin (Opn4) is expressed in melanophores, where in vitro studies suggest it regulates skin pigmentation through a ‘primary colour response’ in which light photosensitivity is translated directly into pigment movement. However, the entrainment of the circadian rhythm is regulated by a population of melanopsin‐expressing retinal ganglion cells (mRGCs) in the eye. Therefore, in vivo, melanopsin may trigger a ‘secondary colour response’ initiated in the eye and controlled by the neuro‐endocrine system. We analysed the expression of opn4m and opn4x and melanin aggregation induced by light (background adaptation) in Xenopus laevis embryos. While opn4m and opn4x are expressed at early developmental times, light‐induced pigment aggregation requires the eye to become functional. Pharmacological inhibition of melanopsin suggests a model whereby mRGC activation lightens skin pigmentation via a secondary response involving negative regulation of alpha‐melanocyte‐stimulating hormone (α‐MSH) secretion by the pituitary.  相似文献   

8.
Objective in situ measurements of skin pigmentation are needed for accurate documentation of pigmentation disorders, in studies of constitutive and induced skin pigmentation, for testing of the efficacy of pro‐pigmentation or de‐pigmentation agents, etc. Non‐invasive instrumental measurements of skin pigmentation have been used for many decades. All are based on the ability of melanin to attenuate light. However, hemoglobin in dermal capillaries also attenuates light and needs to be accounted for when pigmentation is assessed. The methods under consideration include: (a) single point measurements, in which light reflected from a defined skin area is collected and a pigment index is calculated representing the average pigmentation over the examined area, and (b) imaging methods that attempt to generate a concentration distribution map of melanin pigment for the skin area being imaged. In this article, we describe the potentials and the limitations of the different approaches to both single point and imaging methods.  相似文献   

9.
Close association exists between melanocytes, the pigment melanin-producing cells in the body, and their neighboring keratinocytes. Keratinocytes are the pigment recipients and skin pigmentation is the result of this interaction. While the chemical basis of melanin production (melanogenesis) is well documented, the molecular mechanism of melanosome transfer needs to be elucidated. We are now providing first evidence that the protease-activated receptor 2 (PAR-2) expressed on keratinocytes, but not on melanocytes, is involved in melanosome transfer and therefore may regulate pigmentation. Activation of PAR-2 with trypsin or with the peptide agonist SLIGRL induced pigmentation in both two- and three-dimensional cocultures of keratinocytes and melanocytes, but not in cocultures that were spatially separated, indicating the need for intimate cell-cell contact. Topical application of SLIGRL on human skin transplanted on SCID mice resulted in a visible skin darkening. Histological examination revealed increased deposits of melanin in the keratinocytes. Inhibition of PAR-2 activation by RWJ-50353, a serine protease inhibitor, resulted in depigmentation and changes in expression of melanogenic-specific genes. Keratinocyte-melanocyte contact was essential for this depigmenting effect. Topical application of this inhibitor induced lightening of the dark skin Yucatan swine, which was confirmed by histochemical analysis. The results presented here suggest a novel mechanism for the regulation of pigmentation, mediated by the activation or inhibition of the keratinocyte receptor PAR-2.  相似文献   

10.
Non-invasive measurements of skin pigmentation in situ   总被引:3,自引:0,他引:3  
Objective in situ measurements of skin pigmentation are needed for accurate documentation of pigmentation disorders, in studies of constitutive and induced skin pigmentation, for testing of the efficacy of pro-pigmentation or de-pigmentation agents, etc. Non-invasive instrumental measurements of skin pigmentation have been used for many decades. All are based on the ability of melanin to attenuate light. However, hemoglobin in dermal capillaries also attenuates light and needs to be accounted for when pigmentation is assessed. The methods under consideration include: (a) single point measurements, in which light reflected from a defined skin area is collected and a pigment index is calculated representing the average pigmentation over the examined area, and (b) imaging methods that attempt to generate a concentration distribution map of melanin pigment for the skin area being imaged. In this article, we describe the potentials and the limitations of the different approaches to both single point and imaging methods.  相似文献   

11.
Drug discovery in skin pharmacotherapy is an enormous, continually expanding field. Researchers are developing novel and sensitive pharmaceutical products and drugs that target specific receptors to elicit concerted and appropriate responses. The pigment-bearing cells called melanophores have a significant contribution to make in this field. Melanophores, which contain the dark brown or black pigment melanin, constitute an important class of chromatophores. They are highly specialized in the bidirectional and coordinated translocation of pigment granules when given an appropriate stimulus. The pigment granules can be stimulated to undergo rapid dispersion throughout the melanophores, making the cell appear dark, or to aggregate at the center, making the cell appear light. The major signals involved in pigment transport within the melanophores are dependent on a special class of cell surface receptors called G-protein-coupled receptors (GPCRs). Many of these receptors of adrenaline, acetylcholine, histamine, serotonin, endothelin and melatonin have been found on melanophores. They are believed to have clinical relevance to skin-related ailments and therefore have become targets for high throughput screening projects. The selective screening of these receptors requires the recognition of particular ligands, agonists and antagonists and the characterization of their effects on pigment motility within the cells. The mechanism of skin pigmentation is incredibly intricate, but it would be a considerable step forward to unravel its underlying physiological mechanism. This would provide an experimental basis for new pharmacotherapies for dermatological anomalies. The discernible stimuli that can trigger a variety of intracellular signals affecting pigment granule movement primarily include neurotransmitters and hormones. This review focuses on the role of the hormone and neurotransmitter signals involved in pigment movement in terms of the pharmacology of the specific receptors.  相似文献   

12.
Sturm RA  Teasdale RD  Box NF 《Gene》2001,277(1-2):49-62
The synthesis of the visible pigment melanin by the melanocyte cell is the basis of the human pigmentary system, those genes directing the formation, transport and distribution of the specialised melanosome organelle in which melanin accumulates can legitimately be called pigmentation genes. The genes involved in this process have been identified through comparative genomic studies of mouse coat colour mutations and by the molecular characterisation of human hypopigmentary genetic diseases such as OCA1 and OCA2. The melanocyte responds to the peptide hormones alpha-MSH or ACTH through the MC1R G-protein coupled receptor to stimulate melanin production through induced maturation or switching of melanin type. The pheomelanosome, containing the key enzyme of the pathway tyrosinase, produces light red/yellowish melanin, whereas the eumelanosome produces darker melanins via induction of additional TYRP1, TYRP2, SILV enzymes, and the P-protein. Intramelanosomal pH governed by the P-protein may act as a critical determinant of tyrosinase enzyme activity to control the initial step in melanin synthesis or TYRP complex formation to facilitate melanogenesis and melanosomal maturation. The search for genetic variation in these candidate human pigmentation genes in various human populations has revealed high levels of polymorphism in the MC1R locus, with over 30 variant alleles so far identified. Functional correlation of MC1R alleles with skin and hair colour provides evidence that this receptor molecule is a principle component underlying normal human pigment variation.  相似文献   

13.
Two biological processes regulate light‐induced skin colour change. A fast ‘physiological pigmentation change’ (i.e. circadian variations or camouflage) involves alterations in the distribution of pigment containing granules in the cytoplasm of chromatophores, while a slower ‘morphological pigmentation change’ (i.e. seasonal variations) entails changes in the number of pigment cells or pigment type. Although linked processes, the neuroendocrine coordination triggering each response remains largely obscure. By evaluating both events in Xenopus laevis embryos, we show that morphological pigmentation initiates by inhibiting the activity of the classical retinal ganglion cells. Morphological pigmentation is always accompanied by physiological pigmentation, and a melatonin receptor antagonist prevents both responses. Physiological pigmentation also initiates in the eye, but with repression of melanopsin‐expressing retinal ganglion cell activity that leads to secretion of alpha‐melanocyte‐stimulating hormone (α‐MSH). Our findings suggest a model in which eye photoperception links physiological and morphological pigmentation by altering α‐MSH and melatonin production, respectively.  相似文献   

14.
The presence of melanin in spleens of black C57BL/6 mice has been known for long. Although its origin and biological functions are still obscure, the relation of splenic melanin to the hair follicle and skin pigmentation was suggested. Here, we demonstrated using for the first time electron paramagnetic resonance spectroscopy that black-spotted C57BL/6 spleens contain eumelanin. Its presence here is a "yes or no" phenomenon, as even in the groups which revealed the highest percentage of spots single organs completely devoid of the pigment were found. Percentage of the spotted spleens decreased, however, with the progress of telogen after spontaneously-induced hair growth. The paramagnetic properties of the spleen eumelanin differed from the hair shaft or anagen VI skin melanin. The splenic melanin revealed narrower signal, and its microwave power saturability betrayed more heterogenous population of paramagnetic centres than in the skin or hair shaft pigment. Interestingly, the pigment of dry hair shafts and of the wet tissue of depilated anagen VI skin revealed almost identical properties. The properties of splenic melanin better resembled the synthetic dopa melanin (water suspension, and to a lesser degree - powder sample) than the skin/hair melanin. All these findings may indicate a limited degradation of splenic melanin as compared to the skin/hair pigment. The splenic eumelanin may at least in part originate from the skin melanin phagocyted in catagen by the Langerhans cells or macrophages and transported to the organ.  相似文献   

15.
The relationship between human skin pigmentation and protection from ultraviolet (UV) radiation is an important element underlying differences in skin carcinogenesis rates. The association between UV damage and the risk of skin cancer is clear, yet a strategic balance in exposure to UV needs to be met. Dark skin is protected from UV-induced DNA damage significantly more than light skin owing to the constitutively higher pigmentation, but an as yet unresolved and important question is what photoprotective benefit, if any, is afforded by facultative pigmentation (i.e. a tan induced by UV exposure). To address that and to compare the effects of various wavelengths of UV, we repetitively exposed human skin to suberythemal doses of UVA and/or UVB over 2 weeks after which a challenge dose of UVA and UVB was given. Although visual skin pigmentation (tanning) elicited by different UV exposure protocols was similar, the melanin content and UV-protective effects against DNA damage in UVB-tanned skin (but not in UVA-tanned skin) were significantly higher. UVA-induced tans seem to result from the photooxidation of existing melanin and its precursors with some redistribution of pigment granules, while UVB stimulates melanocytes to up-regulate melanin synthesis and increases pigmentation coverage, effects that are synergistically stimulated in UVA and UVB-exposed skin. Thus, UVA tanning contributes essentially no photoprotection, although all types of UV-induced tanning result in DNA and cellular damage, which can eventually lead to photocarcinogenesis.  相似文献   

16.
Melanocytes, pigment-producing cells residing primarily in the hair follicle, epidermis and eye, are responsible for skin hair and eye pigmentation. Pigmentation is achieved by the highly regulated manufacture of the pigment melanin in specialised organelles, melanosomes that are transported along dendritic processes before being transferred to growing hair, or keratinocytes where melanin protects from UV-induced DNA damage. Because loss of melanocytes gives a clear pigmentation phenotype yet is non-lethal, over 130 genes implicated in the development or function of this cell type have been identified to date, and in humans the loss of melanocytes or their ability to produce pigment, or transport or transfer melanosomes is associated with several diseases such as vitiligo, albinism and Hermansky-Pudlak syndrome. Importantly, the effective combination of genetics, cell and molecular biology possible with this cell type is attracting an increasing number of researchers focussed on understanding how cells coordinate survival, proliferation, differentiation and stem cell maintenance.  相似文献   

17.
Melanins are the principal surface pigments in vertebrates and, in humans, play a major role in photoprotection. Although the product (melanin) has a mainly protective function in the skin, the process of melanogenesis represents a potential cellular hazard and is confined to special membrane‐limited organelles (melanosomes) in a set of specialized dendritic cells (melanocytes) which synthesize the pigment and transfer it to recipient cells. Malignant melanocytes tend to exhibit up‐regulated melanogenesis and defective melanosomes. These features suggest ways in which anti‐melanoma therapy may be specifically targeted. Two general chemotherapeutic modalities are considered:
1 The ‘Achilles heel’ approach in which the generation of reactive quinones capable of leaking into the cytosolic compartment and causing structural and functional derangement is encouraged by the use of analogue substrates.
2 The ‘Trojan horse’ approach, in which a cytotoxic agent is selectively released by a tyrosinase‐dependent mechanism.  相似文献   

18.
19.
Using chimeric human epidermal reconstructs, we previously demonstrated that epidermal pigmentation is dependent upon the phototype of melanocytes. We report here several lines of experimental evidence for dermal modulation of human epidermal pigmentation. First, phototype II-III epidermal reconstructs grafted on the back of immunotolerant Swiss nu/nu mice developed a patchy pigmentation dependent on the presence of colonizing human or mouse fibroblasts. Similarly, human white Caucasoid split-thickness skin xenografted on the same mouse strain became black within 3 months and histochemistry revealed a phototype VI pattern of melanin distribution. In vitro, human fibroblasts colonizing human dead de-epidermized dermis (DDD) induced a decrease in epidermal pigmentation whereas mouse (Swiss nu/nu) fibroblasts increased epidermal pigmentation. Conditioned medium from mice (Swiss nu/nu) fibroblasts also increased pigmentation whereas conditioned medium from human fibroblasts had no significant effect. Lastly, epidermal reconstructs made with normal or vitiligo keratinocytes and/or normal or vitiligo melanocytes from the same donor grown on DDD originating from several donors of the same clinical phototype did not pigment similarly and no specific dermal influence was noted for vitiligo. Thus, fibroblast secretion and acellular dermal connective tissue itself significantly influence melanocyte proliferation and melanin distribution/degradation. Our study suggests that murine fibroblasts are more potent than human fibroblasts in secreting soluble factors which can act directly on pigmentation, such as SCF, or activate keratinocytes to produce basement membrane proteins or melanogenic factors.  相似文献   

20.
Several species of bats contain pigment granules within the scrotal skin, tunica vaginalis, or tunica albuginea surrounding the testis and/or epididymis. Seventy-two species of bats, representing 49 genera were examined for the presence of such pigmentation. Histological, chemical and spectrophotometric tests were performed and confirmed the pigment as melanin. Melanin was found only in the families Pteropidae, Megadermatidae, Myzopodidae and Vespertilionidae. A strong correlation exists between scrotal pigmentation and roosting in locations where the bats are exposed to solar radiation. Melanin pigmentation in the scrotal region appears to be an adaption protecting male germinal tissue from the harmful effects of ultraviolet radiation. In one species, Laoiu frons , melanin deposited within the scrotal skin appears to have a social/reproductive communication function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号