首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Changes in gene expression patterns can reflect the adaptation of organisms to divergent environments. Quantitative real‐time PCR (qRT‐PCR) is an important tool for ecological adaptation studies at the gene expression level. The quality of the results of qRT‐PCR analysis largely depends on the availability of reliable reference genes (RGs). To date, reliable RGs have not been determined for adaptive evolution studies in insects using a standard approach. Here, we evaluated the reliability of 17 candidate RGs for five Gynaephora populations inhabiting various altitudes of the Tibetan Plateau (TP) using four independent (geNorm, NormFinder, BestKeeper, and the deltaCt method) and one comprehensive (RefFinder) algorithms. Our results showed that EF1‐α, RPS15, and RPS13 were the top three most suitable RGs, and a combination of these three RGs was the most optimal for normalization. Conversely, RPS2, ACT, and RPL27 were the most unstable RGs. The expression profiles of two target genes (HSP70 and HSP90) were used to confirm the reliability of the chosen RGs. Additionally, the expression patterns of four other genes (GPI, HIF1A, HSP20, and USP) associated with adaptation to extreme environments were assessed to explore the adaptive mechanisms of TP Gynaephora species to divergent environments. Each of these six target genes showed discrepant expression patterns among the five populations, suggesting that the observed expression differences may be associated with the local adaptation of Gynaephora to divergent altitudinal environments. This study is a useful resource for studying the adaptive evolution of TP Gynaephora to divergent environments using qRT‐PCR, and it also acts as a guide for selecting suitable RGs for ecological and evolutionary studies in insects.  相似文献   

2.
3.
Qin Y  Duan Z  Xia X  Yin W 《Plant cell reports》2011,30(10):1893-1907
MicroRNAs (miRNAs) are small non-coding RNAs that play vital roles in plant abiotic stress responses via cleavage or translational inhibition of their target mRNAs. Populus euphratica is a typical stress-resistant sessile organism that grows in desert areas. Here, we identified sequences of 12 miRNA precursors from 11 families and 13 mature miRNAs from 12 families by PCR amplification in P. euphratica. To detect expression differences in mature miRNAs and their precursors under dehydration and high salinity shock in P. euphratica, we examined 14 miRNA precursors from 13 miRNA families and 17 mature miRNAs from 17 miRNA families using the SYBR Green RT–PCR assay. This is the first report of expression profiles for both precursor and mature miRNAs in P. euphratica. By profiling both the mature miRNAs and the precursors under abiotic stress shock, it was possible to identify miRNA whose processing is regulated during stress shock environments. A majority of the genes predicted to be targets for plant miRNAs are involved in development, stress resistance and metabolic processes. We have cloned and experimentally identified in vivo five of the predicted target genes and quantified the five target mRNAs from the same RNA sample simultaneously. Based on this study, we propose some regulatory pathways that illustrate the important role that miRNAs play in response to abiotic stress shock in P. euphratica.  相似文献   

4.
The green peach aphid, Myzus persicae Sulzer (Hemiptera, Aphididae), is an important cosmopolitan pest. Real time qRT‐PCR has been used for target gene expression analysis on M. persicae. Using real time qRT‐PCR, the expression levels are normalized on the basis of the reliable reference genes. However, to date, the stability of available reference genes has been insufficient. In this study, we evaluated nine candidate reference genes from M. persicae under diverse experimental conditions. The tested candidate genes were comprehensively ranked based on five alternative methods (RefFinder, geNorm, Normfinder, BestKeeper and the comparative ΔCt method). 18s, Actin and ribosomal protein L27 (L27) were recommended as the most stable reference genes for M. persicae, whereas ribosomal protein L27 (L27) was found to be the least stable reference genes for abiotic studies (photoperiod, temperature and insecticide susceptibility). Our finding not only sheds light on establishing an accurate and reliable normalization of real time qRT‐PCR data in M. persicae but also lays a solid foundation for further studies of M. persicae involving RNA interference and functional gene research.  相似文献   

5.
6.
7.
植物特异性转录因子NAM家族从属于NAC转录因子超家族,在植株生长发育、生理代谢以及应对各种胁迫反应中均发挥重要作用。该研究采用生物信息学方法鉴定水稻基因组中的NAM基因,分析其时空表达模式、亚细胞定位以及蛋白相互作用,并采用实时定量qRT PCR方法分析不同外源激素(如SA、ABA和MeJA)以及非生物胁迫(包括干旱、盐和冷)处理下各NAM基因的表达特征,为进一步探索NAM基因在非生物胁迫中的功能和应激机制以及激素调控途径奠定基础。结果显示:(1)从水稻基因组中共鉴定出48个NAM基因,进化分析将其分为5个亚家族;NAM基因在水稻基因组中存在9对片段复制事件。(2)组织表达分析显示,NAM基因在水稻不同组织及发育时期表现特异性表达,特别是叶鞘、茎和节的生长过程中高表达,且大多数是核定位,并存在多种蛋白互作。(3)实时定量qRT PCR表达分析显示,10个NAM基因在不同组织中均特异表达;大部分NAM基因在盐和干旱胁迫下表达上调,而在冷胁迫下表达降低;SA、ABA和MeJA处理均可显著改变各NAM基因的表达水平。研究表明,NAM基因在水稻生长发育、激素应答和非生物胁迫响应中具有重要作用。  相似文献   

8.
TCP家族是植物特有的响应高盐、干旱等非生物胁迫的重要转录因子.该研究基于沙棘转录组数据,利用生物信息学与qRT-PCR对HrTCP转录因子家族进行鉴定,预测其家族成员的结构和功能,为解析TCP转录因子调控沙棘抵御干旱胁迫的作用机制奠定基础.结果表明:(1)获得了 11个HrTCP转录因子成员,并命名为HrTCP2/4...  相似文献   

9.
10.
番茄复三螺旋基因响应外源激素和非生物胁迫的研究   总被引:1,自引:0,他引:1  
复三螺旋(double trihelix)基因在植物形态建成和植株抗逆性方面发挥关键作用。该研究以番茄自交品种AC++为试验材料,运用生物信息学方法与qRT PCR技术对5个复三螺旋成员(SlGTL1~SlGTL5)在番茄体内不同器官的表达模式、以及基因对激素与非生物胁迫的响应进行表达分析,以探讨番茄复三螺旋基因的功能。结果表明:(1)生物信息学分析显示,番茄中含有5个复三螺旋基因(SlGTL1~SlGTL5);进化树分析表明,番茄复三螺旋基因具有物种特异性。(2)qRT PCR分析显示,番茄SlGTL3基因在根和茎中特异表达,其他4个基因均在果实中较高表达,表明不同番茄复三螺旋基因的表达具有组织特异性。(3)激素诱导表达结果显示,SlGTL1只响应ABA(1种)激素,而SlGTL5基因可响应4种激素,且速度较快。(4)非生物胁迫诱导证实,SlGTL3、SlGTL5基因可响应盐胁迫,SlGTL3~SlGTL5基因可响应极端温度,SlGTL3和SlGTL4基因可响应机械损伤;SlGTL1、SlGTL4和SlGTL5可响应脱水胁迫。研究认为,SlGTL3的功能可能与植株形态建成和非生物胁迫有关,其他4个基因的功能可能与果实的发育有关;推测SlGTL1可能与ABA信号途径有关,SlGTL5快速响应多种激素,可能位于信息传递的节点,其功能可能与信号传递有关。  相似文献   

11.
Stress-associated proteins (SAPs) are a novel class of zinc finger proteins that extensively participate in abiotic stress responses. To date, no overall analysis and expression profiling of SAP genes in woody plants have been reported. Populus euphratica is distributed in desert regions and is extraordinarily adaptable to abiotic stresses. Thus, it is regarded as a promising candidate for studying abiotic stress resistance mechanisms of woody plants. In this study, 18 non-redundant SAP genes were identified from the genome of P. euphratica using basic local alignment search tool algorithms and functional domain verification. Among these 18 PeuSAP genes, 15 were intronless. To investigate the evolutionary relationships of SAP genes in P. euphratica and other Salicaceae plants, phylogenetic analyses were performed. Subsequently, the expression profiles of the 18 PeuSAP genes were analyzed in different tissues and under various stresses (drought, salt, heat, cold, and abscisic acid (ABA) treatment) using quantitative real-time PCR. Tissue expression analysis indicated that PeuSAPs showed no tissue specificity. PeuSAPs were induced by multiple abiotic stresses, especially drought, salt, and heat stresses, perhaps because of abundant cis-acting heat shock elements and drought-inducible elements in the promoter regions of the PeuSAPs. Moreover, single nucleotide polymorphisms (SNPs) variant analysis revealed many synonymous and non-synonymous SNPs in PeuSAP genes, but the zinc finger structure was conserved during evolution. These results provide an overview of the SAP gene family in P. euphratica and a reference for further functional research on PeuSAP genes.  相似文献   

12.
Populus euphratica is well adapted to extreme desert environments and is an important model species for elucidating the mechanisms of abiotic stress resistance in trees. The current assembly of P. euphratica genome is highly fragmented with many gaps and errors, thereby impeding downstream applications. Here, we report an improved chromosome‐level reference genome of P. euphratica (v2.0) using single‐molecule sequencing and chromosome conformation capture (Hi‐C) technologies. Relative to the previous reference genome, our assembly represents a nearly 60‐fold improvement in contiguity, with a scaffold N50 size of 28.59 Mb. Using this genome, we have found that extensive expansion of Gypsy elements in P. euphratica led to its rapid increase in genome size compared to any other Salicaceae species studied to date, and potentially contributed to adaptive divergence driven by insertions near genes involved in stress tolerance. We also detected a wide range of unique structural rearrangements in P. euphratica, including 2,549 translocations, 454 inversions, 121 tandem and 14 segmental duplications. Several key genes likely to be involved in tolerance to abiotic stress were identified within these regions. This high‐quality genome represents a valuable resource for poplar breeding and genetic improvement in the future, as well as comparative genomic analysis with other Salicaceae species.  相似文献   

13.
14.
15.
16.
CBL-CIPK是高等植物中广泛存在的一类解析Ca~(2+)信号的蛋白。该研究在前期工作基础上,对甘蓝型油菜(Brassica napus L.)的BnaCIPK15基因进行了亚细胞定位、双分子荧光互补(BiFC)、酵母双杂交和qRT-PCR检测等一系列分析,以探究BnaCIPK15蛋白在ABA激素响应中的作用。结果显示:(1)亚细胞定位发现,BnaCIPK15蛋白定位于细胞质和细胞核中; BiFC分析发现,BnaCIPK15蛋白与BnaCBL1/3/4/9蛋白之间的互作较强,与BnaCBL10仅有微弱互作。(2)qRT-PCR检测发现,BnaCIPK15基因受ABA和冷胁迫的诱导极显著上调表达,而对百草枯(Paraquat)、活性氧(H_2O_2)和热胁迫的诱导较弱,表明BnaCIPK15基因很可能参与ABA和冷胁迫的调控过程。(3)酵母滴定实验结果显示,BnaCIPK15蛋白与脱落酸(ABA)信号通路中的BnaHAB1蛋白(属于蛋白磷酸酶PP2C家族)存在明显的互作,而与BnaABFs/AREB3/ABI5转录因子无明显互作;BiFC验证显示,BnaCIPK15与BnaHAB1蛋白之间存在互作信号,而BnaCIPK15与BnaHAB2组合没有观察到信号,证明BnaCIPK15与BnaHAB1磷酸酶具有特异互作特征,推测BnaCIPK15可能参与调控ABA信号转导。研究认为,甘蓝型油菜中可能存在基于BnaCIPK15-BnaHAB1的互作模块,并参与ABA的信号转导和网络调控。  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号