首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Five developmentally regulated sea urchin mRNA sequences which increase in abundance between the blastula and pluteus stages of development were isolated by molecular cloning of cDNA. The regulated sequences all appeared in moderately abundant mRNA molecules of pluteus cells and represented 4% of the clones tested. There were no regulated sequences detected in the 40% of the clones which hybridized to the most abundant mRNA, and the screening procedures were inadequate to detect possible regulation in the 20 to 30% of the clones presumably derived from rare-class mRNA. The reaction of 32P[cDNA] from blastula and pluteus mRNA to dots of the cloned DNAs on nitrocellulose filters indicated that the mRNAs complementary to the different cloned pluteus-specific sequences were between 3- and 47-fold more prevalent at the pluteus stage than at the blastula stage. Polyadenylated RNA from different developmental stages was transferred from electrophoretic gels to nitrocellulose filters and reacted to the different cloned sequences. The regulated mRNAs were undetectable in the RNA of 3-h embryos, became evident at the hatching blastula stage, and reached a maximum in abundance by the gastrula or pluteus stage. Certain of the clones reacted to two sizes of mRNA which did not vary coordinately with development. Transfers of RNA isolated from each of the three cell layers of pluteus embryos that were reacted to the cloned sequences revealed that two of the sequences were found in the mRNA of all three layers, two were ectoderm specific, and one was endoderm specific. Four of the regulated sequences were complementary to one or two major bands and one to at least 50 bands on Southern transfers of restriction endonuclease-digested total sea urchin DNA.  相似文献   

2.
3.
4.
5.
Inhomogeneous distribution of egg RNA sequences in the early embryo   总被引:6,自引:0,他引:6  
W H Rodgers  P R Gross 《Cell》1978,14(2):279-288
  相似文献   

6.
Structural gene sequences active in a variety of sea urchin adult and embryo tissues are compared. A single-copy 3H-DNA fraction, termed mDNA, was isolated, which contains sequences complementary to the messenger RNA present on gastrula stage polysomes. Gastrula message sequences are 50 fold concentrated in the mDNA compared to total single-copy DNA. mDNA reactions were carried out with excess mRNA from blastula, pluteus, exogastrula, adult ovary, tubefoot, intestine, and coelomocytes, and with excess total mature oocyte RNA. A single-copy 3H-DNA fraction totally devoid of gastrula message sequences, termed null mDNA, was also reacted with these RNAs. Large differences in the extent of both mDNA and null mDNA reaction with the various RNAs were observed, indicating that in each state of differention a distinct set of structural genes is active, generally characterized by several thousand specific sequences. The complexity of gastrula mRNA was shown in previous work to be about 17 × 106 nucleotides. In units of 106 nucleotides, the complexities of the RNA sequence reacting with mDNA and with null mDNA in each tissue are, respectively, as follows: intestine mRNA; 2.1 and 3.7; coelomocyte mRNA: 3.5 and ≤1.4; tubefoot mRNA: 2.7 and ≤0.4; ovary mRNA: 13 and 6.7; oocyte total RNA: 17 and 20; blastula mRNA: 12 and 15; pluteus mRNA: 14 and ≤0.6; exogastrula mRNA: 14 and ≤0.6. The total complexity of each mRNA population is the sum of these values, as verified for several cases by reactions with total single-copy DNA. A relatively small set of mRNAs, the complexity of which is about 2.1 × 106 nucleotides, appears to be shared by several of the tissues studied.  相似文献   

7.
8.
9.
The hybridization kinetics of nuclear RNAs of loach embryos labelled with [3H]uridine for 1 hour with DNA excess shows that during embryogenesis (from the blastula to the gastrula stage) the number of newly formed RNA molecules transcribed from repeating DNA sequences in considerably reduced. This occurs both in the RNA fraction extracted from the nuclei with phenol pH 7.7 and having a low sedimentation coefficient and a low degree of polyadenylation, and in the RNA fraction extracted with phenol pH 9.0 having a higher sedimentation coefficient and a higher degree of polyadenylation.  相似文献   

10.
Total single-copy DNA and single-copy DNA contiguous to middle repetitive sequences were isolated from mouse brain by successive hydroxylapatite column chromatographies. These DNAs, termed repeat-contiguous single-copy DNA, were found to constitute 48% of the total single-copy DNA. The saturation hybridization values of these two DNA probes to nuclear RNA and cytoplasmic RNA containing polyA of mouse brain and liver were measured. The saturation hybridization levels of total single-copy DNA to brain and liver nuclear RNA were 13.5% and 8.8%, respectively, and those of repeat-contiguous single-copy DNA to the same RNA samples were 13.3% and 8.5%, respectively. On the contrary, the saturation hybridization levels of single-copy DNA to cytoplasmic RNA containing polyA of brain and liver were 3.8% and 2.0%, respectively, and those of repeat-contiguous single-copy DNA to the same RNA samples were 5.8% and 4.0%, respectively. Similar results were obtained with total cytoplasmic RNA. These results indicate that about half the steady state nuclear RNA is transcribed from repeat-contiguous single-copy DNA, and that cytoplasmic RNA containing polyA is mainly derived from repeat-contiguous single-copy DNA.  相似文献   

11.
R H Shutt  L H Kedes 《Cell》1974,3(3):283-290
A qualitative assay for detection of histone mRNA sequences in nuclear RNA was developed using actinomycin D-CsCl gradients to separate histone DNA from bulk DNA by differences in buoyant density. A significant amount of RNA synthesized in vitro in isolated nuclei from early blastula stage sea urchin embryos hybridized coincident with the histone DNA satellite, and this hybridization was competed out by unlabeled “9S” polysomal RNA purified from embryos at the same stage of development. The biogenesis of these histone mRNA sequences appeared similar as observed during in vivo and in vitro synthesis. Nuclear RNA from embryos pulse labeled in vivo was found to lack histone sequences, suggesting a rapid exit time for these sequences from the nucleus. Attempts to study the exit of histone sequences from isolated nuclei labeled in vitro also suggested a rapid exit time for histone sequences. The histone sequences were synthesized to a much lesser extent in isolated nuclei from late blastula stage embryos, as anticipated from the much reduced amount of histone mRNA labeled on polysomes at this stage.  相似文献   

12.
13.
14.
J. R. Powell  A. Caccone  J. M. Gleason    L. Nigro 《Genetics》1993,133(2):291-298
DNA-sequence divergence of genes expressed in the embryonic stage was compared with the divergence of genes expressed in adults for 13 species of Drosophila representing various degrees of relatedness. DNA-DNA hybridization experiments were conducted using as tracers complementary DNA (cDNA) reversed transcribed from poly(A)(+) mRNA isolated from different developmental stages. The results indicate: (1) cDNA is less diverged than total single-copy DNA; (2) cDNA sequences are not in the rapidly evolving fraction of the single-copy genome of Drosophila; (3) early in evolutionary divergence embryonic messages are about half as diverged as adult messages; sequence data from some of the species compared indicate this is likely due to differences in rates of silent substitutions in genes expressed at different stages of development; and (4) at greater evolutionary distance, the differences in embryonic and adult messages disappear; this could be due to lineage-specific shifts in codon usage.  相似文献   

15.
The sequence complexity and abundance of polysomal mRNA populations of pea seedlings were measured using RNA excess hybridization to both single-copy DNA and complementary DNA. The estimated sequence complexity of the polysomal mRNA populations was 2.5·107 nucleotides or 19,400 different mRNAs of average size. Since the haploid genome size of pea was found to be 4.0·109 nucleotide pairs, only 0.62% of the total haploid genome of pea was transcribed into polysomal mRNA. The roots and shoots of 4-d etiolated and light-grown seedlings contained similar numbers of diverse mRNAs. The RNA excess hybridizations, using single-copy DNA enriched for sequences transcribed in either light-grown shoots or etiolated roots and single-copy DNA depleted of such sequences, indicated that at least 92% of the sequence complexity of polysomal mRNAs was identical in roots and shoots irrespective of the presence of a functional photosynthetic system. In contrast, RNA excess hybridization to complementary DNA revealed that 21% of the polysomal polyadenylated mRNA mass found in light-grown shoots was absent in etiolated roots. The kinetics of these hybridizations indicated that this was due to the appearance of a limited number of abundant mRNAs under conditions of illumination.  相似文献   

16.
Two recombinant plasmids, M4 and KH10, carrying Dictyostelium DNA inserted into the Eco RI restriction endonuclease site of pMB9 by poly(dA)-poly(dT) tailing, were selected for study because they are complementary to abundant mRNA populations from Dictyostelium. Both plasmids have been shown to hybridize a heterogeneous size class of mRNAs which, in the case of KH10, comprise 5-10% of the pulse-labeled poly(A)+ RNA from vegetative cells. Analysis of the sequence organization of the two pieces of Dictyostelium DNA shows that they consist mostly of single-copy sequences with a short DNA sequence which is repeated in the genome and interspersed with single-copy DNA. These and other results suggest that the majority of the hybridization of pulse-labeled mRNA to M4 and KH10 is to the short "repeated" DNA sequences. In the genome, members of these repeat families appear to be transcribed onto a population of different single-copy mRNAs. Additional results show that M4 DNA contains a sequence which is entirely complementary to a discrete mRNA.  相似文献   

17.
Mature unfertilized eggs of the sea urchin Lytechinus pictus contain multiple alpha-tubulin mRNAs, which range in size from 1.75 to 4.8 kb, and two beta-tubulin mRNAs, 1.8 and 2.25 kb. These mRNAs were found at similar levels throughout the early cleavage stages. RNA gel blot hybridizations showed that prominent quantitative and qualitative changes in tubulin mRNAs occurred between the early blastula and hatched blastula stages. The overall amounts of alpha- and beta-tubulin mRNAs increased two- to fivefold between blastula and pluteus. These increases were due mainly to a rise in a 1.75-kb alpha RNA and a new 2.0-kb beta RNA. Other, minor changes also occurred during subsequent development. All size classes of alpha- and beta-tubulin RNAs in early and late embryos contained poly(A)+ translatable sequences. As reported earlier, some of each of the alpha RNAs, but neither of the beta RNAs, are translated in the egg and a small portion of each of the stored alpha and beta RNAs is recruited onto polysomes within 30 min of fertilization. In the work described here, subsequent development up to the morula stage was accompanied by a gradual recruitment of tubulin mRNAs into polysomes. By the early blastula stage, most of the maternal tubulin sequences were associated with polysomes. In contrast to the gradual recruitment of maternal sequences throughout cleavage, the tubulin mRNAs which appeared at the blastula stage showed no delay in entering polysomes. The exact fraction of each mRNA that was translationally active at later stages varied somewhat among the individual mRNAs. From the differential hybridization patterns of egg, embryo, and testis RNAs to various tubulin cDNA and genomic DNA probes, it is concluded that at least one gene producing maternal alpha mRNA is different from a second one which is expressed only in testis. Each of the three embryonic beta RNAs is encoded by a different beta gene; at least two of these different beta genes are also expressed in testis.  相似文献   

18.
19.
The concentrations, in copies per cell, of viral RNA sequences complementary to different regions of the genome were determined at 8, 18 and 32 hours after infection of human cells with adenovirus type 2: separated strands of fragments of 32P-labelled adenovirus 2 DNA, generated by cleavage with restriction endonucleases EcoR1, Hpa1 and BamH1, were added to reaction mixtures at sufficient concentrations to drive hybridizations with infected or transformed cell RNA. Under these conditions, the fraction of 32P-labelled DNA entering hybrid is directly proportional to the absolute amount of complementary RNA in the reaction.At 8 hours after infection in the presence of cytosine arabinoside, “early” viral messenger RNA sequences are present at a frequency of 300 to 1000 copies per cell. The abundance of early mRNA sequences in different lines of adenovirus 2-transformed rat cells is markedly lower than their concentration in lytically infected cells. Moreover, the abundance of early mRNA in a given transformed rat cell line reflects the number of copies of its template DNA sequences per diploid quantity of cell DNA. After the onset of the late phase of the lytic cycle, the abundance of one early mRNA species, that coding for a single-stranded DNA binding protein required for viral DNA replication, is amplified. Viral RNA sequences complementary to regions of the genome coding for other early mRNA sequences remain at the level observed at 8 hours after infection.Exclusively “late” viral mRNA sequences are present over a range of concentrations, 500 to 10,000 copies per cell, depending on the region of the genome. By 18 hours after infection, the nucleus contains approximately three times as much total, viral RNA as the cytoplasm. The abundant nuclear, viral RNA sequences at 18 hours are transcribed from a contiguous region, 65% of the genome in length. In some cases, viral RNA sequences complementary to mRNA sequences are very abundant in the nucleus. When cytoplasmic and nuclear fractions are mixed and incubated under annealing conditions, some mRNA sequences will anneal with more abundant, anti-messenger nuclear RNA sequences to form double-stranded RNA. Such annealing of nuclear, viral RNA to early, cytoplasmic mRNA sequences probably accounts for the inability to detect, by filter hybridization, certain classes of early mRNA sequences during the late stage of infection.  相似文献   

20.
  • 1.1. Total cytoplasmic RNA of germinating wheat embryos was fractionated by affinity chromatography and separated into non-polyadenylated oligo(U)-containing RNA (A(−)U(+)RNA) and polyadenylated oligo(U)-lacking RNA (A(+)U(−)RNA).
  • 2.2. The reassociation kinetics of 32P-labelled complementary DNA (cDNA) reverse-transcribed from A(−)U(+)RNA shows that this RNA fraction is transcribed from unique DNA sequences of the genome similarly as typical mRNA.
  • 3.3. Cross hybridization experiments show no significant sequence homology between the two RNA fractions. Therefore it is concluded that non-polyadenylated oligo(U)-containing RNA of wheat embryo may represent a discrete class of mRNA.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号