首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
In melanoma, several signaling pathways are constitutively activated. Among these, the protein kinase C (PKC) signaling pathways are activated through multiple signal transduction molecules and appear to play major roles in melanoma progression. Recently, it has been reported that tamoxifen, an anti-estrogen reagent, inhibits PKC signaling in estrogen-negative and estrogen-independent cancer cell lines. Thus, we investigated whether tamoxifen inhibited tumor cell invasion and metastasis in mouse melanoma cell line B16BL6. Tamoxifen significantly inhibited lung metastasis, cell migration, and invasion at concentrations that did not show anti-proliferative effects on B16BL6 cells. Tamoxifen also inhibited the mRNA expressions and protein activities of matrix metalloproteinases (MMPs). Furthermore, tamoxifen suppressed phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt through the inhibition of PKCα and PKCδ phosphorylation. However, other signal transduction factor, such as p38 mitogen-activated protein kinase (p38MAPK) was unaffected. The results indicate that tamoxifen suppresses the PKC/mitogen-activated protein kinase kinase (MEK)/ERK and PKC/phosphatidylinositol-3 kinase (PI3K)/Akt pathways, thereby inhibiting B16BL6 cell migration, invasion, and metastasis. Moreover, tamoxifen markedly inhibited not only developing but also clinically evident metastasis. These findings suggest that tamoxifen has potential clinical applications for the treatment of tumor cell metastasis.  相似文献   

3.
Chemotherapy remains a commonly used therapeutic approach for many cancers. Indeed chemotherapy is relatively effective for treatment of certain cancers and it may be the only therapy (besides radiotherapy) that is appropriate for certain cancers. However, a common problem with chemotherapy is the development of drug resistance. Many studies on the mechanisms of drug resistance concentrated on the expression of membrane transporters and how they could be aberrantly regulated in drug resistant cells. Attempts were made to isolate specific inhibitors which could be used to treat drug resistant patients. Unfortunately most of these drug transporter inhibitors have not proven effective for therapy. Recently the possibilities of more specific, targeted therapies have sparked the interest of clinical and basic researchers as approaches to kill cancer cells. However, there are also problems associated with these targeted therapies. Two key signaling pathways involved in the regulation of cell growth are the Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways. Dysregulated signaling through these pathways is often the result of genetic alterations in critical components in these pathways as well as mutations in upstream growth factor receptors. Furthermore, these pathways may be activated by chemotherapeutic drugs and ionizing radiation. This review documents how their abnormal expression can contribute to drug resistance as well as resistance to targeted therapy. This review will discuss in detail PTEN regulation as this is a critical tumor suppressor gene frequently dysregulated in human cancer which contributes to therapy resistance. Controlling the expression of these pathways could improve cancer therapy and ameliorate human health.  相似文献   

4.
Non-small-cell lung cancer (NSCLC) is a cancer with high morbidity and mortality. We aimed to define the effect of Go-Ichi-Ni-San complex subuint 2 (GINS2) acting on NSCLC. The expressions of GINS2 in NSCLC tissues and cells were detected using real-time quantitative polymerase chain reaction, western blot, and immunohistochemistry (IHC). The relationship between GINS2 expression and NSCLC prognosis or clinicopathologic features was analyzed through statistical analysis. The overexpressed or downexpressed plasmids of GINS2 were transfected into NSCLC cell lines, and then cell proliferation, invasion, and migration viability were, respectively, determined by Cell Counting Kit-8 assay, transwell, and wound healing assay. The epithelial–mesenchymal transition (EMT) was observed and the EMT-related proteins were measured using IHC and western blot. The function of GINS2 in vivo was assessed by mice model. The related proteins of mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) and phosphoinositide-3-kinase/protein kinase B (PI3K/Akt) pathways were evaluated using western blot. GINS2 expression was upregulated in NSCLC tissues and cell lines, and its high expression was correlated with the poor prognosis and several clinicopathologic features, such as TMN stages (tumor size, lymph node, and metastasis) and clinical stages. GINS2 enhanced NSCLC cell proliferation, migration, and invasion viability in vivo and in vitro. GINS2 also promoted NSCLC cells EMT. In addition, GINS2 could regulate phosphorylated proteins of PI3K p85, Akt, MEK, and ERK expressions, it revealed that GINS2 effected on PI3K/Akt and MEK/ERK pathways. GINS2 promoted cell proliferation, migration, invasion, and EMT via modulating PI3K/Akt and MEK/ERK signaling pathways. It might be a target in NSCLC treatment.  相似文献   

5.
Endothelial dysfunction caused by cell apoptosis is thought to be a major cause of diabetic vascular complications. Advanced glycation end products (AGEs) play an important role in the pathogenesis of diabetic vascular complications by inducing apoptosis of endothelial cells. The aim of this study was to explore the effect of ghrelin on AGEs‐induced apoptosis in cultured human umbilical vein endothelial cells (HUVECs) and the potential mechanisms involved in this process. Exposure to AGEs (200 mg l?1) for 48 h caused a significant increase in cell apoptosis, while pretreatment with ghrelin eliminated AGEs‐induced apoptosis in HUVECs, as evaluated by MTT assays, flow cytometry and Hoechst 33258 staining. The induction of caspase‐3 activation was also prevented by ghrelin in cells incubated with AGEs. Exposure to ghrelin (10?6 M) resulted in a rapid activation of extracellular signal‐regulated protein kinase (ERK)1/2 and Akt. The inhibitory effect of ghrelin on caspase‐3 activity was attenuated by inhibitors of ERK1/2 (PD98059), PI3K/Akt (LY294002) and growth hormone secretagogue receptor (GHSR)‐1a (D ‐Lys3‐growth hormone releasing peptide‐6). The results of this study indicated that ghrelin could inhibit AGEs‐mediated cell apoptosis via the ERK1/2 and PI3K/Akt pathways and GHSR‐1a was also involved in the protective action of ghrelin in HUVECs. As such, ghrelin demonstrates significant potential for preventing diabetic cardiovascular complications. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Triple-negative breast cancers (TNBCs) represent 15% to 20% of all breast cancers and are often associated with poor prognosis. The lack of targeted therapies for TNBCs contributes to higher mortality rates. Aberrations in the phosphoinositide-3-kinase (PI3K) and mitogen-activated protein kinase pathways have been linked to increased breast cancer proliferation and survival. It has been proposed that these survival characteristics are enhanced through compensatory signaling and crosstalk mechanisms. While the crosstalk between PI3K and extracellular signal-regulated kinase 1/2 (ERK1/2) pathways has been characterized in several systems, new evidence suggests that MEK5/ERK5 signaling is a key component in the proliferation and survival of several aggressive cancers. In this study, we examined the effects of dual inhibition of PI3K/protein kinase B (Akt) and MEK5/ERK5 in the MDA-MB-231, BT-549, and MDA-MB-468 TNBC cell lines. We used the Akt inhibitor ipatasertib, ERK5 inhibitors XMD8-92 and AX15836, and the novel MEK5 inhibitor SC-1-181 to investigate the effects of dual inhibition. Our results indicated that dual inhibition of PI3K/Akt and MEK5/ERK5 signaling was more effective at reducing the proliferation and survival of TNBCs than single inhibition of either pathway alone. In particular, a loss of Bad phosphorylation at two distinct sites was observed with dual inhibition. Furthermore, the inhibition of both pathways led to p21 restoration, decreased cell proliferation, and induced apoptosis. In addition, the dual inhibition strategy was determined to be synergistic in MDA-MB-231 and BT-549 cells and was relatively nontoxic in the nonneoplastic MCF-10 cell line. In summary, the results from this study provide a unique prospective into the utility of a novel dual inhibition strategy for targeting TNBCs.  相似文献   

7.
8.
Proteinase-activated receptor-2 (PAR2) plays pro-inflammatory roles in many organs including the gastrointestinal (GI) tract. To clarify the downstream pro-inflammatory signaling of PAR2 in the GI tract, we examined interleukin-8 (IL-8) release and the underlying cellular signaling following PAR2 stimulation in human colorectal cancer-derived HCT-15 cells and human gastric adenocarcinoma-derived MKN-45 cells. A PAR2-activating peptide, but not a PAR2-inactive scrambled peptide or a PAR1- activating peptide, caused IL-8 release in these GI epithelial cells. The PAR2-triggered IL-8 release was suppressed by inhibitors of MEK (U0126) or PI3-kinase (LY294002), and PAR2 stimulation indeed activated the downstream kinases, ERK and Akt. U0126 blocked the phosphorylation of ERK, but not Akt, and LY294002 blocked the phosphorylation of Akt, but not ERK. Together, PAR2 triggers IL-8 release via two independent signaling pathways, MEK/ERK and PI3-kinase/Akt, suggesting a role of PAR2 as a pro-inflammatory receptor in the GI tract.  相似文献   

9.
Vascular endothelial growth factor (VEGF) is a hypoxia-induced angiogenic protein that exhibits a broad range of biological and pathological effects in wet age-related macular degeneration and proliferative diabetic retinopathy. However, its specific mechanism is still not fully understood. Here, we examined the effects of VEGF on choroid-retinal endothelial cells (RF/6A) proliferation and tube formation, and the underlying signal pathways responsible in this process. RF/6A cells were pretreated with MEK inhibitor or PI3K inhibitor, and then incubated in a hypoxia chamber. Real-time PCR and Western blot analysis were carried out to explore VEGF expression on mRNA and protein levels. Hypoxia inducible factor-1α (HIF-1α) and VEGFR2 expression levels were also investigated in the presence and absence of hypoxic conditions. CCK-8 analysis and tube formation assay were tested under hypoxia, exogenous recombinant VEGF, and different signal pathway inhibitors, respectively. Mean while, the PI3K/Akt and MEK/ERK pathways in this process were also investigated. Our results showed that VEGF, HIF-1α, VEGFR2, p-ERK, and p-Akt were up-regulated in RF/6A cells under hypoxic conditions. MEK inhibitor (PD98059) and PI3K inhibitor (LY294002) decreased ERK and Akt activity, respectively, and reduced VEGF expression. VEGF-induced RF/6A proliferation and tube formation requires MEK/ERK and PI3K/Akt signaling, and both of the two pathways were needed in regulating VEGF expression. These suggest that VEGF plays an important role in RF/6A proliferation and tube formation, and MEK/ERK and PI3K/Akt pathway may be responsible for this process.  相似文献   

10.
Osteosarcoma (OS) is a primary malignant bone tumour that mainly affects teenagers, with patients displaying poor prognosis. Budding uninhibited by benzimidazoles 1 (BUB1), a type of serine/threonine kinase that is linked to pro-tumorigenic phenomena, has not been well studied in OS. Hence, this study aimed to explore the role of BUB1 in OS. The expression of BUB1 in OS specimens and cell lines was assessed using immunohistochemistry and Western blot analysis. Univariate and multivariate analyses were applied to evaluate the impact of BUB1 on patient survival. Cell counting kit-8, wound-healing and Transwell assays, as well as flow cytometry, were used to investigate the influence of BUB1 inhibition on OS in vitro. Moreover, a tumour xenograft model was established to investigate the in vivo effect of BUB1 inhibition on OS tumour growth. Results showed that BUB1 was overexpressed in OS specimens and cell lines. Furthermore, BUB1 overexpression was closely associated with the poor clinical outcomes of patients with OS. Inhibition of BUB1 markedly suppressed cell proliferation and tumour growth, cell migration, invasion and induced cell apoptosis of OS by blocking the PI3K/Akt and ERK signalling pathways. Thus, our study suggested that overexpression of BUB1 protein contributed to poor survival of OS patients and that inhibition of BUB1 resulted in considerable anti-tumour activity associated with proliferation, migration, invasion and apoptosis of OS.  相似文献   

11.
Background and AimPredicting novel dual inhibitors to combat adverse effects such as the development of resistance to vemurafenib in melanoma treatment due to the reactivation of MAPK and PI3K/AKT signaling pathways is studied to help in reversal of cancer symptoms.Reversal of cancer symptoms in melanoma associated with vemurafenib resistance is driven by reactivation of MAPK and PI3K/Akt signaling pathways. Novel dual inhibitors targeting these proteins would be beneficial to combat resistance.MethodsHigh-throughput virtual screening of the ChemBridge library against B-RAFV600E and Akt was performed using an automated protocol with the AutoDock VINA program. Luminescence and time-resolved fluorescence kits were used to measure enzyme activities. The MTT assay was used to determine proliferation in normal and vemurafenib-resistant A375 cells. Flow cytometry was used to examine apoptosis, cell cycle, and phosphorylation of ERK/Akt signaling pathway.ResultsHigh-throughput screening from the ChemBridge library identified 15 compounds with high binding energy towards B-RAFV600E; among these, CB-RAF600E-1 had the highest ΔGbinding score −11.9 kcal/mol. The compound also had a high affinity towards Akt, with a ΔGbinding score of −11.5 kcal/mol. CB-RAF600E-1 dose-dependently inhibited both B-RAFV600E and Akt with IC50 values of 635 nM and 154.3 nM, respectively. The compound effectively controlled the proliferations of normal and vemurafenib-resistant A375 cells, with GI50 values of 222.3 nM and 230.5 nM, respectively. A dose-dependent increase in the sub G0/G1 phase of the cell cycle and total apoptosis was observed following compound treatment in both normal and vemurafenib-resistant melanoma cells. Treatment with CB-RAF600E-1 decreased the pERK/pAkt dual-positive populations in normal and vemurafenib-resistant A375 cells.ConclusionCB-RAF600E-1, identified as a novel dual inhibitor effective against normal and vemurafenib-resistant melanoma cells, requires further attention for development as an effective chemotherapeutic agent for melanoma management.  相似文献   

12.
Wang L  Chen Q  Li G  Ke D 《Peptides》2012,33(1):92-100
Ghrelin, an endogenous ligand of the growth hormone secretagogue receptor (GHSR), is thought to exert a protective effect on the cardiovascular system, specifically by promoting vascular endothelial cell function such as cell proliferation, migration, survival and angiogenesis. However, the effect of ghrelin on angiogenesis and the corresponding mechanisms have not yet been extensively studied in cardiac microvascular endothelial cells (CMECs) isolated from left ventricular myocardium of adult Sprague-Dawley (SD) rats. In our study, we found that ghrelin and GHSR are constitutively expressed in CMECs. Ghrelin significantly increases CMECs proliferation, migration, and in vitro angiogenesis. The ghrelin-induced angiogenic process was accompanied by phosphorylation of ERK and Akt. MEK inhibitor PD98059 abolished ghrelin-induced phosphorylation of ERK, but had no effect on Akt phosphorylation. PI3K inhibitor LY294002 abolished ghrelin-induced phosphorylation of Akt, but had no effect on ERK phosphorylation. Ghrelin-induced angiogenesis was partially blocked by treatment with PD98059 or LY294002. In addition, this angiogenic effect was almost completely inhibited by PD98059+LY294002. Pretreatment with GHSR1a blocker [D-Lys3]-GHRP-6 abolished ghrelin-induced phosphorylation of ERK, Akt and in vitro angiogenesis. In conclusion, this is the first demonstration that ghrelin stimulates CMECs angiogenesis through GHSR1a-mediated MEK/ERK and PI3K/Akt signal pathways, indicating that two pathways are required for full angiogenic activity of ghrelin. This study suggests that ghrelin may play an important role in myocardial angiogenesis.  相似文献   

13.
Persistence was established after most of the SARS-CoV-infected Vero E6 cells died. RNA of the defective interfering virus was not observed in the persistently infected cells by Northern blot analysis. SARS-CoV diluted to 2 PFU failed to establish persistence, suggesting that some particular viruses in the seed virus did not induce persistent infection. Interestingly, a viral receptor, angiotensin converting enzyme (ACE)-2, was down-regulated in persistently infected cells. G418-selected clones established from parent Vero E6 cells, which were transfected with a plasmid containing the neomycin resistance gene, were infected with SARS-CoV, resulting in a potential cell population capable of persistence in Vero E6 cells. Our previous studies demonstrated that signaling pathways of extracellular signal-related kinase (ERK1/2), c-Jun N-terminal protein kinase (JNK), p38 mitogen-activated protein kinase (MAPK), and phosphatidylinositol 3'-kinase (PI3K)/Akt were activated in SARS-CoV-infected Vero E6 cells. Previous studies also showed that the activation of p38 MAPK by viral infection-induced apoptosis, and a weak activation of Akt was not sufficient to protect from apoptosis. In the present study, we showed that the inhibitors of JNK and PI3K/Akt inhibited the establishment of persistence, but those of MAPK/ERK kinase (MEK; as an inhibitor for ERK1/2) and p38 MAPK did not. These results indicated that two signaling pathways of JNK and PI3K/Akt were important for the establishment of persistence in Vero E6 cells.  相似文献   

14.
We investigated the molecular effect and signal pathway of icariin, a major flavonoid of Epimedium koreanum Nakai, on angiogenesis. Icariin stimulated in vitro endothelial cell proliferation, migration, and tubulogenesis, which are typical phenomena of angiogenesis, as well as increased in vivo angiogenesis. Icariin activated the angiogenic signal modulators, ERK, phosphatidylinositol 3-kinase (PI3K), Akt, and endothelial nitric oxide synthase (eNOS), and increased NO production, without affecting VEGF expression, indicating that icariin may directly stimulate angiogenesis. Icariin-induced ERK activation and angiogenic events were significantly inhibited by the MEK inhibitor PD98059, without affecting Akt and eNOS phosphorylation. The PI3K inhibitor Wortmannin suppressed icariin-mediated angiogenesis and Akt and eNOS activation without affecting ERK phosphorylation. Moreover, the NOS inhibitor NMA partially reduced the angiogenic activity of icariin. These results suggest that icariin stimulated angiogenesis by activating the MEK/ERK- and PI3K/Akt/eNOS-dependent signal pathways and may be a useful drug for angiogenic therapy.  相似文献   

15.
Halofuginone, a novel inhibitor of Smad3 phosphorylation, has been shown to inhibit muscle fibrosis and to improve cardiac and skeletal muscle functions in the mdx mouse model of Duchenne muscular dystrophy. Here, we demonstrate that halofuginone promotes the phosphorylation of Akt and mitogen-activated protein kinase (MAPK) family members in a C2 muscle cell line and in primary myoblasts derived from wild-type and mdx mice diaphragms. Halofuginone enhanced the association of phosphorylated Akt and MAPK/extracellular signal-regulated protein kinase (ERK) with the non-phosphorylated form of Smad3, accompanied by a reduction in Smad3 phosphorylation levels. This reduction was reversed by inhibitors of the phosphoinositide 3′-kinase/Akt (PI3K/Akt) and MAPK/ERK pathways, suggesting their specific role in mediating halofuginone's inhibitory effect on Smad3 phosphorylation. Halofuginone enhanced Akt, MAPK/ERK and p38 MAPK phosphorylation and inhibited Smad3 phosphorylation in myotubes, all of which are crucial for myotube fusion. In addition, halofuginone increased the association Akt and MAPK/ERK with Smad3. As a consequence, halofuginone promoted myotube fusion, as reflected by an increased percentage of C2 and mdx myotubes containing high numbers of nuclei, and this was reversed by specific inhibitors of the PI3K and MAPK/ERK pathways. Together, the data suggest a role, either direct or via inhibition of Smad3 phosphorylation, for Akt or MAPK/ERK in halofuginone-enhanced myotube fusion, a feature which is crucial to improving muscle function in muscular dystrophies.  相似文献   

16.
Alveolar epithelial type II cells (AT II) in which lung surfactant synthesis and secretion take place, are subjected to low magnitude stretch during normal breathing. The aim of the study was to explore the effect of mild stretch on phospholipase A(2) (PLA(2)) activation, an enzyme known to be involved in surfactant secretion. In A549 cells (a model of AT II cells), we showed, using a fluorometric assay, that stretch triggers an increase of total PLA(2) activity. Western blot experiments revealed that the cytosolic isoform cPLA(2) is rapidly phosphorylated under stretch, in addition to a modest increase in cPLA(2) mRNA levels. Treatment of A549 cells with selective inhibitors of the MEK/ERK pathway significantly attenuated the stretch-induced cPLA(2) phosphorylation. A strong interaction of cPLA(2) and pERK enzymes was demonstrated by immunoprecipitation. We also found that inhibition of PI3K pathway attenuated cPLA(2) activation after stretch, without affecting pERK levels. Our results suggest that low magnitude stretch can induce cPLA(2) phosphorylation through the MEK/ERK and PI3K-Akt pathways, independently.  相似文献   

17.
The extracellular signal-regulated kinase (ERK) and Akt have been reported to be activated by ischemia/reperfusion in vivo. However, the signaling pathways involved in activation of these kinases and their potential roles were not fully understood in the postischemic kidney. In the present study, we observed that these kinases are activated by hypoxia/reoxygenation (H/R), an in vitro model of ischemia/reperfusion, in opossum kidney (OK) cells and elucidated the signaling pathways of these kinases. ERK and Akt were transiently activated during the early phase of reoxygenation following 4-12h of hypoxia. The ERK activation was inhibited by U0126, a specific inhibitor of ERK upstream MAPK/ERK kinase (MEK), but not by LY294002, a specific inhibitor of phosphoinositide 3-kinase (PI3K), whereas Akt activation was blocked by LY294002, but not by U0126. Inhibitors of epidermal growth factor receptor (EGFR) (AG 1478), Ras and Raf, as well as antioxidants inhibited activation of ERK and Akt, while the Src inhibitor PP2 had no effect. PI3K/Akt activation was shown to be associated with up-regulation of X chromosome-linked inhibitor of apoptosis (XIAP), but not survivin. Reoxygenation following 4-h hypoxia-stimulated cell proliferation, which was dependent on ERK and Akt activation and was also inhibited by antioxidants and AG 1478. Taken together, these results suggest that H/R induces activation of MEK/ERK and PI3K/Akt/XIAP survival signaling pathways through the reactive oxygen species-dependent EGFR/Ras/Raf cascade. Activation of these kinases may be involved in the repair process during ischemia/reperfusion.  相似文献   

18.
Mohamed Kodiha 《FEBS letters》2009,583(12):1987-21867
ERK and Akt kinases are key components that participate in numerous regulatory processes, including the response to stress. Using novel tools for quantitative immunofluorescence, we show that oxidant exposure controls the intracellular activation and localization of ERK1/2 and Akt. Oxidative stress alters the nuclear/cytoplasmic levels of the kinases, drastically changing phospho-ERK1/2 and phospho-Akt(Ser473) levels in the nucleus. Moreover, pharmacological inhibition of PI3 kinase modulates the intracellular distribution of phospho-ERK1/2, whereas MEK inhibition affects phospho-Akt(Thr308) and phospho-Akt(Ser473). Our studies identify a new signaling link in the nucleus of stressed cells, where changes in phospho-ERK1/2 levels correlate directly with changes in phospho-Akt(Ser473).  相似文献   

19.
《Genomics》2020,112(4):2688-2694
Adipose tissue is the largest metabolic organ because of adipogenesis controlled by numerous miRNAs. MiR-145 is classified into the same cluster with famous miR-143. However, few studies have investigated the role of miR-145 in adipogenesis. In the current study, we observed that the expression of miR-145 was downregulated during bovine adipogenesis in vivo and in vitro. The results of RNA-Seq analysis showed that miR-145 mainly disturb the PI3K/Akt and MAPK signaling pathways in bovine preadipocytes. MiR-145 inhibited bovine preadipocyte differentiation and downregulated phosphorylation level of Akt and ERK1/2 proteins. Furthermore, insulin, as a powerful inducer initiating adipogenesis and an activator of the PI3K/Akt and MAPK signaling pathways, was able to rescue the downregulation of Akt and ERK1/2 phosphorylation levels caused by miR-145. Taken together, our findings suggest that miR-145 is a potent inhibitor of adipogenesis that may function by reducing the activity of PI3K/Akt and MAPK signaling pathways.  相似文献   

20.
Macrophages are activated during an inflammatory response and produce multiple inflammatory cytokines. IL-18 is one of the most important innate cytokines produced from macrophages in the early stages of the inflammatory immune response. Monocyte chemoattractant protein (MCP-1) is expressed in many inflammatory diseases such as multiple sclerosis and rheumatoid arthritis, and its expression is correlated with the severity of the disease. Both IL-18 and MCP-1 have been shown to be involved in inflammatory immune responses. However, it has been unclear whether IL-18 is involved in the induction of MCP-1. This investigation was initiated to determine whether IL-18 can induce MCP-1 production, and if so, by which signal transduction pathways. We found that IL-18 induced the production of MCP-1 in macrophages, which was IL-12-independent and was not mediated by autocrine cytokines such as IFN-gamma or TNF-alpha. We then examined signal transduction pathways involved in IL-18-induced MCP-1 production. We found that IL-18 did not activate the IkappaB kinase/NF-kappaB pathway, evidenced by no degradation of IkappaBalpha and no translocation of NF-kappaB p65 to the nucleus in IL-18-stimulated macrophages. Instead, IL-18 activated the PI3K/Akt and MEK/ERK1/2 pathways. Inhibition of either of these pathways attenuated MCP-1 production in macrophages, and inhibition of both signaling pathways resulted in the complete inhibition of MCP-1 production. On the basis of these observations, we conclude that IL-18 induces MCP-1 production through the PI3K/Akt and MEK/ERK1/2 pathways in macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号