首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Hayashi  H.  Nakamura  S.  Ishiwatari  Y.  Mori  S.  Chino  M. 《Plant and Soil》1993,(1):171-174
Pure phloem sap was collected from insects feeding on rice (Oryza sativa L.) leaves by a laser technique similar to the aphid stylet technique. Rapid circulation of nitrogen in the sieve tubes was demonstrated directly using 15N as a tracer. Application to the roots of the metabolic inhibitors of amino acids, aminooxyacetate and methioninesulfoximine, changed the amino acid composition in the sieve tubes. Feeding methionine to leaf tips resulted in its bulk transfer into the sieve tubes. In vitro experiments confirmed the existence of protein kinases in the pure rice phloem sap. The phosphorylation status of the sieve tube sap proteins was affected by the light regime. The possibility that changes in chemical composition or protein modification such as phosphorylation in the sieve tubes might affect plant growth are discussed.Analysis of pure phloem sap collected from rice plants by insect laser technique has shown dynamic changes in the chemical composition and the quality of proteins in the sap.  相似文献   

2.
Cultivars of Brassica juncea, B. napus and B. campestris, differing in host-suitability to the mustard aphid (Lipaphis erysimi pseudobrassicae Kalt.), were analysed for their phloem sap content of free amino acids. Sap was collected from excised mustard aphid stylets and analysed by means of high performance liquid chromatography. Aspartic and glutamic acid were, together with glutamine, the dominating amino acids. All plants had very little glycine, γ-aminobutyric acid (GABA), methionine and tryptophan in their sap. This amino acid pattern closely resembled that of cereals. The total concentration and the individual composition of amino acids were not found to be related to the level of aphid resistance previously found in the investigated Brassica species. However, one B. campestris cultivar, yellow sarson YSB-9, on which the aphids were shown to grow more slowly, had less amino acid content than other B. campestris varieties. The slow population growth of aphids on B. juncea, compared to that on B. campestris, is probably due to other than nutritional factors.  相似文献   

3.
The concentrations and composition of free amino acids in phloem sap from two cultivars of oats and barley, both susceptible to the aphid Rhopalosiphum padi, were determined by means of high performance liquid chromatography. Sap was collected from excised aphid stylets at three developmental stages (seedlings, tillering plants and plants undergoing stem elongation) from plants given or not given fertiliser and grown outdoors. In connection, the growth of individual R. padi nymphs was estimated at the same phenological stages on plants grown in the greenhouse. The content of free amino acids was consistently higher in seedlings than in plants at the early tillering stage. Only in seedlings did the addition of fertiliser increase amino acid levels. Barley phloem sap contained more free amino acids than that of oats when fertiliser was added and at later developmental stages. Phloem sap of oats and barley showed similar patterns in their composition of free amino acids at the seedling stage, but as the plants grew older the patterns became increasingly different. Plants given fertiliser had higher amounts of dicarboxylic amino acids (glutamic and aspartic acid) than unfertilised plants. The concentrations of γ-amino butyric acid, glycine, histidine, and methionine were very low in all treatments. The relative growth rates of R. padi nymphs were low when amino acid content was low and vice versa. The results are discussed in relation to host plant suitability and plant resistance mechanisms.  相似文献   

4.
The metal micronutrients (MN) copper, iron, manganese, and zinc are transported via the phloem in the course of remobilization and circulation. The extent of these processes and transport species are still largely unknown. The Ricinus seedling was used to study the transport of these metal micronutrients as well as their interactions with the plant-endogenous chelator nicotianamine (NA) by daily measurements of the concentrations in the seedling parts and in the sieve tube sap obtained from a cut at the hypocotyl hook. The concentrations of these micronutrients in the phloem exudate decreased slightly from day 4 to day 8 of seedling development. Maximum values at day 4 were 65 μM for Zn, 63 μM for Fe, 27 μM for Cu, and 12 μM for Mn. The phloem transport rates reached maxima of 0.12 nmol cm?2h?1 for Zn and Fe at days 6 and 7, corresponding to the maximum exudation rates. The magnitude of these transport rates were in agreement with the net translocation rates estimated by analyses of the concentrations in the individual seedling parts. The NA content of the seedlings increased from day 0 (seed before sowing) until day 8, from 16 nmol to 474 nmol, which corresponds to an average net synthesis rate of about 100 nmol day?1 between the days 4 and 8. The NA:MN ratio was constant at 0.5 in the seedlings within this period. The NA concentrations and the sum of the concentrations of all four micronutrients in the sieve tube sap showed a constant ratio of 1.25 over the entire experimental period. Thus, both complex partners were subject to a cotransport in the phloem. Removal of the supplying endosperm led to a decrease in MN and NA concentrations in the sieve tube sap to about 80% while an average excess of NA of 1.1 was maintained. Since the concentrations of other amino acids, also possible chelators of metal micronutrients, fall to about 10% after removal of the endosperm, their role seems to be negligible as vehicles of MN transport in the phloem. Thus it is suggested that the divalent micronutrients considered in this study are loaded and maybe transported as NA complexes.  相似文献   

5.
This study investigated the relationship between the essential amino acid requirement of the aphid Aphis fabae Scop. and the phloem sap amino acid composition of its host plants. The dietary amino acid requirement of A. fabae varied between clones. One or more of the eight clones of A. fabae tested displayed depressed larval survival, larval growth rate, or rm on diets lacking histidine, methionine, threonine, and valine, but none of the other five essential amino acids. The required amino acids corresponded closely to the essential amino acids that varied in relative concentrations among 16 plant species tested: histidine, threonine, tryptophan, and valine. It is suggested that the interclonal variation in the dietary requirements of an aphid species may contribute to the intraspecific variation in plant utilisation patterns. The phloem sap amino acid composition and sucrose : amino acid ratio did not differ consistently between host plant species of A. fabae and non‐host species, indicating that phloem amino acid composition is not an important factor in determining the host plant range of this aphid species.  相似文献   

6.
Effects of elevated CO2 levels on the amino acid constituents of cotton aphid, Aphis gossypii (Glover), fed on transgenic Bacillus thuringiensis (Berliner) (Bt) cotton [Cryl A(c)], grown in ambient and double‐ambient CO2 levels in closed‐dynamics CO2 chambers, were investigated. Lower amounts of amino acids were found in cotton phloem under elevated CO2 than under ambient CO2 levels. However, higher amounts of free amino acids were found in A. gossypii fed on elevated CO2‐grown cotton than those fed ambient CO2‐grown cotton, and the contents of amino acids in honeydew were not significantly affected by elevated CO2 levels. A larger amount of honeydew was produced by cotton aphids feeding on leaves under elevated CO2 treatment than those feeding on leaves under ambient CO2 treatment, which indicates that A. gossypii ingests more cotton phloem because of the higher C:N ratio of cotton phloem under elevated CO2 levels. Moreover, the amino acid composition was similar in bodies of aphids ingesting leaves under both CO2 treatments, except for two alkaline amino acids, lysine and arginine. This suggests that the nutritional constitution of the phloem sap was important for A. gossypii. Our data suggest that more phloem sap will be ingested by A. gossypii to satisfy its nutritional requirement and balance the break‐even point of amino acid in elevated CO2. Larger amounts of honeydew produced by A. gossypii under elevated CO2 will reduce the photosynthesis and result in the occurrence of some Entomophthora spp.  相似文献   

7.
The cotyledons of castor bean (Ricinus communis L.) act as absorption organs for amino acids, which are supplied to the medium. The analysis of the sieve-tube sap, which exudes from the cut hypocotyl, demonstrated the ability of the cotyledons to load particular amino acids into the phloem and to reject the loading of others. The sieve-tube sap of cotyledons, which were embedded in the endosperm, contained 150 mM amino acids, with 50 mM glutamine as the major amino acid, and 10–15 mM each of valine, isoleucine, lysine and arginine. Removal of the endosperm led to a drastic decline in the amino-acid content of sieve-tube sap down to 16 mM. Addition of single amino acid species to the medium increased the amino acid concentration in the sieve-tube sap in specific manner: glutamine caused the largest increase (up to 140 mM in exudate), glutamate and alanine smaller increases (up to 60 mM), and arginine the smallest. In addition, the amino acid composition of the sieve-tube sap changed, for instance, glutamine or alanine readily appeared in the sieve-tube sap upon incubation in glutamine or alanine, respectively, whereas glutamate was hardly discernible even in the case of incubation with glutamate; arginine was loaded into the sieve tubes only reluctantly. In general, glutamine and alanine accumulated four- to tenfold in the sieve tubes. The uptake of amino acids and of sucrose into the sieve tubes was interdependent: the loading of sucrose strongly reduced the amino acid concentration in the sieve-tube exudate and loading of amino acids decreased the sucrose concentration. Comparison of the concentrations of various amino acids on their way from the endosperm via the cotyledon-endosperm interface, through the cotyledons and into the sieve tubes showed that glutamine, valine, isoleucine and lysine are accumulated on this pathway, whereas glutamate and arginine are more concentrated in the cotyledons than in the sieve tubes. Obviously the phloem-loading system has a transport specificity different from that of the amino acid uptake system of the cotyledon in general and it strongly discriminates between amino acids within the cotyledons.  相似文献   

8.
Heike Nowak  Ewald Komor 《Oecologia》2010,163(4):973-984
Leaf-chewing herbivores select food with a protein/carbohydrate ratio of 0.8–1.5, whereas phloem sap, which aphids feed on, has a ratio of ~0.1. Enhanced N fertilization increases the amino acid concentration in phloem sap and elevates the N/C ratio. The study examines: (1) whether aphids select between plants of different N nutrition, (2) whether feeding time correlates with the amino acid composition of phloem sap, and (3) at which stage of probing aphids identify the quality of the plant. Uroleucon tanaceti (Mordvilko) and Macrosiphoniella tanacetaria (Kaltenbach), specialist aphids feeding on tansy (Tanacetum vulgare L.), were reared on this host plant grown essentially hydroponically (in Vermiculite) in the greenhouse on 1, 3, 6, or 12 mM NH4NO3. One and 3 mM NH4NO3 corresponds to the situation found in natural tansy stands. Aphid stylet penetration was monitored by electrical penetration graphs whilst phloem sap was sampled by stylectomy. Both aphid species settled 2–3 times more frequently on plants fertilized with 6 or 12 mM NH4NO3. The phloem sap of these plants contained up to threefold higher amino acid concentrations, without a change in the proportion of essential amino acids. No time differences were observed before stylet penetration of plant tissue. After the first symplast contact, most aphids penetrated further, except M. tanacetaria on low-N plants, where 50% withdrew the stylet after the first probing. The duration of phloem feeding was 2–3 times longer in N-rich plants and the time spent in individual sieve tubes was up to tenfold longer. Aphids identified the nutritional quality of the host plant mainly by the amino acid concentration of phloem sap, not by leaf surface cues nor the proportion of essential amino acids. However, U. tanaceti infestation increased the percentage of methionine plus tryptophan in phloem tenfold, thus manipulating the plants nutritional quality, and causing premature leaf senescence.  相似文献   

9.
Sieve tube sap exuded from the cut hypocotyl of castor bean seedlings (Ricinus communis L.) was found to contain 0.2–0.5 mmol m?3abscisic acid (ABA). The ABA concentration in the sieve tube sap always exceeded that in root pressure exudate under a wide range of water supply. Exudation of sieve tube sap from the cut hypocotyls caused water loss, and this induced ‘water shortage’ in the cotyledons which resulted in the ABA concentration in the cotyledons increasing by 3-fold and that in the sieve tube sap increasing by up to 50-fold within 7h. The wounded surface of the cut hypocotyl was not responsible for the ABA increase. Incubation of the cotyledons of endosperm-free seedlings in various ABA concentrations (up to 100 mmol m?3) increased the ABA concentration in sieve tube sap. The concomitant increase in ABA, both in cotyledons and in sieve tube sap, had no effect on the phloem loading of sucrose, K+ and Mg2+ within the experimental period, i.e. up to 10h. It can be concluded that (i) the phloem is an important transport path for ABA, (ii) water stress at the phloem loading sites elevates phloem-mobile ABA, which may then serve as a water stress signal for sinks, for example stem and roots (not only for stomata), and (iii) the ABA concentration of cells next to or in the phloem is more important than the average ABA content in the whole cotyledon for determining the ABA concentration in sieve tube sap.  相似文献   

10.
The absorption of lysine, arginine, phenylalanine and methionine by Taenia crassiceps larvae is linear with respect to time for at least 2 min. Arginine uptake occurs by a mediated system and diffusion, and arginine, lysine and ornithine (in order of decreasing affinity) are completely competitive inhibitors of arginine uptake. The basic amino acid transport system has a higher affinity for l-amino acids than d-amino acids, and blocking the α-amino group of an amino acid destroys its inhibitory action. Phenylalanine uptake by T. crassiceps larvae is inhibited in a completely competitive fashion by serine, leucine, alanine, methionine, histidine, phenylalanine, tyrosine and tryptophan (in order of increasing affinity). Methionine apparently binds non-productively to the phenylalanine (aromatic amino acid-preferring) transport system. l-methionine uptake by larvae is inhibited more by d-alanine and d-valine than by their respective l-isomers, while d- and l-methionine inhibit l-methionine uptake equally well. The presence of an unsubstituted α-amino group is essential for an inhibitor to have a high affinity for the methionine transport system. Uptake of arginine, phenylalanine and methionine is Na+-insensitive, and both phenylalanine and methionine are accumulated by larvae against a concentration difference in the presence or absence of Na+. Arginine accumulation is precluded by its rapid metabolism to proline, ornithine and an unidentified compound.  相似文献   

11.
The amino acid composition of endosperm cavity sap and of sieve tube saps from the flag leaf, peduncle, rachis, grain pedicel, and grain were determined for wheat plants just past the mid-half of grain filling. On a mole percent basis, glutamine accounted for almost half of the amino acids in sieve tube sap from the peduncle and ear. Other protein amino acids, plug γ-aminobutyrate, were present in varying, but mostly low (a few mole percent) proportions. The amino acid composition of phloem exudate resembled that of the mature wheat grain. The proportions of amino acids in the endosperm cavity were generally similar to those of the sieve tube sap supplying the grain. Cysteine, however, while virtually absent from sieve tube sap, comprised 1 to 2 mole percent of amino acids in the endosperm cavity, suggesting it is transported in a different form. Also, alanine and, to a lesser extent, glutamate were relatively more prominent in endosperm cavity sap than in the sieve tube sap. Thus, while most amino acids were more concentrated in the sieve tube sap than in the endosperm cavity sap, alanine and glutamate appeared to be moving from the sieve tube to the endosperm cavity in the absence of, or perhaps even against, their concentration gradients.  相似文献   

12.
Feeding behavior of Melanaphis sacchari Zehntner (Hemiptera: Aphididae) was studied on sugarcane, Saccharum spp. (Poaceae), cultivars HoCP 91‐555 (resistant), LCP 85‐384 (moderately resistant), and L 97‐128 (susceptible) using the electrical penetration graph (EPG) technique. Constitutive concentrations of total phenolics and available carbohydrates, water potential at the whole‐leaf tissue level, and free amino acids (FAAs) in phloem sap extracts, and in honeydew produced by aphids fed on L 97‐128 and HoCP 91‐555 were determined. Cultivar did not influence time for M. sacchari to access phloem sieve elements. Total time in sieve elements was ca. two‐fold greater on L 97‐128 than on HoCP 91‐555, whereas it did not differ from LCP 85‐384 in either cultivar. The mean duration of individual events associated with phloem sap ingestion was ca. 50% shorter on both HoCP 91‐555 and LCP 85‐384 than on L 97‐128. Although cultivar effects were not detected for levels of total phenolics, available carbohydrates, and water potential, two free essential amino acids, histidine and arginine, were absent from phloem sap in HoCP 91‐555. Two free essential amino acids, leucine and isoleucine, and two free non‐essential amino acids, tyrosine and proline, were absent from honeydew of aphids fed on HoCP 91‐555. These results suggest that despite apparent biosynthesis of some FAAs, the absence of important FAAs in the phloem sap of HoCP 91‐555 and the inability of M. sacchari and its endosymbionts (e.g., Buchnera) to derive specific free essential and non‐essential amino acids from other ingested molecules, possibly along with other unidentified factors, underlie the pest's decreased phloem sap ingestion and consequently reduced growth potential on HoCP 91‐555.  相似文献   

13.
Dietary amino acids imbalances have been described when fish larvae are fed rotifers, what may lead to a reduction in growth rate. The tube-feeding technique can be used to assess the effect of free amino acid short term supplementation. In this study supplementation of tryptophan, methionine and arginine were tested in Diplodus sargus. Single crystalline 14C amino acids as well as a mix of 14C amino acids were used as tracers to compare results of individual amino acids metabolism with the average of all amino acids. The results show low absorption efficiencies for tryptophan (70%) and arginine (80%) and similar absorption for methionine (90%) when compared with the average of all amino acids. Supplementation of these amino acids seems to be viable but it did not result in higher retention compared to the amino acid mix. This means that tryptophan, methionine and arginine are probably not the limiting amino acid when Diplodus sargus larvae are fed rotifers. However, supplementation in these IAA may be required for their roles as precursors of important molecules other than proteins, in order to improve larval quality and/or performance.  相似文献   

14.
At a concentration of 1.25 mM, 14 amino acids were capable of inhibiting the induction of ornithine decarboxylase (L-ornithine carboxy-lyase, EC 4.1.1.17) activity by the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) in isolated epidermal cells. The greatest percentages of inhibition of TPA-induced epidermal ornithine decarboxylase activity were as follows: cysteine, 98%; tryptophan, 74%; methionine, 64%; phenylalanine, 51%; glycine, 44%; asparagine, 43%; glutamic acid, 42%; leucine, 40%; and arginine, 39%. These amino acid treatments did not alter the time- and concentration-response curves for induction of ornithine decarboxylase activity by TPA. Moreover, there was no difference between the rates at which [3H]arginine, [3H]leucine, [3H]phenylalanine, [3H]methionine, [3H]tryptophan and [14C]cysteine were taken up by freshly isolated epidermal cells or incorporated into epidermal proteins. Arginine, phenylalanine and methionine inhibited the induction of ornithine decarboxylase activity by the tumor promoter to degrees comparable to those elicited by their analogs canavanine and homoarginine, beta-2-thienyl-DL-alanine, and ethionine, respectively. These amino acids and amino acid analogs did not alter the overall rate of protein synthesis. In contrast, both the amino acids and their analogs increased the rates of proteolysis in isolated epidermal cells, an effect which correlated well with the abilities of these different compounds to inhibit TPA-induced ornithine decarboxylase activity. Moreover, both methionine and phenylalanine decreased the half-life and increased the rate of heat denaturation of the TPA-induced enzyme, a result identical to that obtained after treatment with the analogs ethionine and beta-2-thienyl-DL-alanine, respectively. Taken together, these results suggest that millimolar concentrations of exogenous amino acids might induce the synthesis of abnormal proteins and nonfunctional enzymes. Therefore, it is speculated that the uptake of unbalanced amounts of amino acids into the epidermal target cells might alter the stability and the ultrastructure of the TPA-stimulated enzyme just as the amino acid analogs do.  相似文献   

15.
Ekrem Dündar  Daniel R. Bush 《Planta》2009,229(5):1047-1056
The Arabidopsis thaliana At2g01170 gene is annotated as a putative gamma amino butyric acid (GABA) permease based on its sequence similarity to a yeast GABA transporting gene (UGA4). A cDNA of At2g01170 was expressed in yeast and analyzed for amino acid transport activity. Both direct measurement of amino acid transport and yeast growth experiments demonstrated that the At2g01170 encoded-protein exhibits transport activity for alanine, arginine, glutamate and lysine, but not for GABA or proline. Significantly, unlike other amino acid transporters described in plants to date, At2g01170 displayed both export and import activity. Based on that observation, it was named bidirectional amino acid transporter 1 (BAT1). Sequence comparisons show BAT1 is not a member of any previously defined amino acid transporter family. It does share, however, several conserved protein domains found in a variety of prokaryotic and eukaryotic amino acid transporters, suggesting membership in an ancient family of transporters. BAT1 is a single copy gene in the Arabidopsis genome, and its mRNA is ubiquitously expressed in all organs. A transposon—GUS gene-trap insert in the BAT1 gene displays GUS localization in the vascular tissues (Dundar in Ann Appl Biol, 2009) suggesting BAT1 may function in amino acid export from the phloem into sink tissues.  相似文献   

16.
A lysimeter study was conducted on Cajeme wheat (Triticum aestivum L.) to investigate the impact of salinity on protein and free amino acid content of the grain. Cross correlations were obtained between 16 different soil-plant-water based parameters and the concentration and total accumulation of amino acids. The results indicated that after 3 years of irrigation, the majority of protein bound and free amino acids increased in concentration in the grain. However, both free tryptophan and free proline revealed decreasing concentrations with increasing salinity. Free tryptophan showed a synergism between total accumulation, yield and concentration. Free proline concentrations decreased in association with increasing protein concentrations. Cross correlations of the 16 soil-plant-water based parameters with free and protein bound amino acids revealed significant correlations for free aspartic acid and glycine with total accumulation but not with concentrations. Only methionine plus cystine was lower than suggested FAO levels for essential amino acids and was lower in the third year than in the first year.  相似文献   

17.
Aphids are well‐known for their symbiotic relationship with intracellular bacteria of the genus Buchnera (γ‐Proteobacteria). The symbiosis has a nutritional basis in that the bacteria supplement the aphid diet of phloem sap through the provision of essential amino acids. To date, few studies have considered the spatial complexity of the association, particularly the delineation of the symbiosis into embryo and maternal compartments. Here, we generate aposymbiotic (bacteria‐free) embryos of the black bean aphid, Aphis fabae (Scopoli) (Hemiptera: Aphididae), as our experimental model and demonstrate that embryos reared in culture media require an external supply of essential amino acids. Analysis of individual amino acid deletions from the culture medium indicate that the key individual amino acids for embryo growth are phenylalanine and valine derived from the maternal tissues, and tryptophan derived from Buchnera. These results are discussed in relation to our current limited understanding of nutrient supply to aphid embryos.  相似文献   

18.
The effect of twelve amino acids and lactalbumin hydrolysate in concentration of 200 mg 1?1 on rooting of the dwarf apple rootstocks P 2 and P 60 was testedin vitro. Arginine, omithine, glutamic acid and glycine enhanced root number of the P 60 rootstock; proline and lactalbumin hydrolysate were neutral; and asparagine, tyrosine, methionine, cysteine and glutamine lowered the root number. Tyrosine, methionine, cysteine and glutamine reduced almost completely rooting of P 60. In the recalcitrant P 2 rootstock aspartic acid, glutamic acid and omithine significantly enhanced the number of roots and rooted shoots, arginine and tryptophan increased the root number only slightly, asparagine was neutral, and proline reduced the root number.  相似文献   

19.
Comparisons were made between the free amino acid composition in leaf exudates and that in pure phloem sap, using twin samples taken from a single leaf of two oat (Avena sativa L.) and three barley (Hordeum vulgare L.) varieties. Leaf exudate was collected in a 5 mm EDTA-solution (pH 7.0) from cut leaf blades and phloem sap was obtained through excised aphid (Rhopalosiphum padi L.) stylets. Fluorescent derivatives of amino acids were obtained using 9-fluorenylmethyl chloroformate and were separated by means of high performance liquid chromatography. The total concentration of free amino acids varied considerably in the exudate samples. There was no correlation between the total amino acid content in the exudate samples and that of the corresponding phloem sap samples, but the amino acid composition of the corresponding samples was highly correlated (median R2-value 0.848). There was only limited between-plant variation in phloem sap amino acid composition. Nevertheless, in comparisons involving all samples, many of the amino acids showed significant correlations between their relative amounts in exudate and phloem sap. The results presented here indicate that the exudate technique holds great promise as an interesting alternative to the laborious and time-consuming stylet-cutting technique of obtaining samples for comparative studies of phloem sap.  相似文献   

20.
Amino acid and sucrose contents were analyzed in the chloroplastic, cytosolic, and vacuolar compartments and in the phloem sap of illuminated spinach leaves (Spinacia oleracea L.). The determination of subcellular metabolite distribution was carried out by nonaqueous fractionation of frozen and lyophilized leaf material using a novel three-compartment calculation method. The phloem sap was collected by aphid stylets which had been severed by a laser beam. Subcellular analysis revealed that the amino acids found in leaves are located mainly in the chloroplast stroma and in the cytosol, the sum of their concentrations amounting to 151 and 121 millimolar, respectively, whereas the amino acid concentrations in the vacuole are one order of magnitude lower. The amino acid concentrations in the phloem sap are found to be not very different from the cytosolic concentrations, whereas the sieve tube concentration of sucrose is found to be one order of magnitude higher than in the cytosol. It is concluded that the phloem loading results in a preferential extraction of sucrose from the source cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号