首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
We investigated the common assumption that severing stems and petioles under water preserves the hydraulic continuity in the xylem conduits opened by the cut when the xylem is under tension. In red maple and white ash, higher percent loss of conductivity (PLC) in the afternoon occurred when the measurement segment was excised under water at native xylem tensions, but not when xylem tensions were relaxed prior to sample excision. Bench drying vulnerability curves in which measurement samples were excised at native versus relaxed tensions showed a dramatic effect of cutting under tension in red maple, a moderate effect in sugar maple, and no effect in paper birch. We also found that air injection of cut branches (red and sugar maple) at pressures of 0.1 and 1.0 MPa resulted in PLC greater than predicted from vulnerability curves for samples cut 2 min after depressurization, with PLC returning to expected levels for samples cut after 75 min. These results suggest that sampling methods can generate PLC patterns indicative of repair under tension by inducing a degree of embolism that is itself a function of xylem tensions or supersaturation of dissolved gases (air injection) at the moment of sample excision. Implications for assessing vulnerability to cavitation and levels of embolism under field conditions are discussed.  相似文献   

2.
Xylem resistance to water stress‐induced cavitation is an important trait that is associated with drought tolerance of plants. The level of xylem cavitation experienced by a plant is often assessed as the percentage loss in conductivity (PLC) at different water potentials. Such measurements are constructed with samples that are excised underwater at native tensions. However, a recent study concluded that cutting conduits under significant tension induced cavitation, even when samples were held underwater during cutting. This resulted in artificially increased PLC because of what we have termed a ‘tension‐cutting artefact’. We tested the hypothesized tension‐cutting artefact on five species by measuring PLC at native tension compared with after xylem tensions had been relaxed. Our results did not support the tension‐cutting artefact hypothesis, as no differences were observed between native and relaxed samples in four of five species. In a fifth species (Laurus nobilis), differences between native and relaxed samples appear to be due to vessel refilling rather than a tension‐cutting effect. We avoided the tension‐cutting artefact by cutting samples to slightly longer than their measurement length and subsequent trimming of at least 0.5 cm of sample ends prior to measurement.  相似文献   

3.
A recent study found that cutting shoots under water while xylem was under tension (which has been the standard protocol for the past few decades) could produce artefactual embolisms inside the xylem, overestimating hydraulic vulnerability relative to shoots cut under water after relaxing xylem tension (Wheeler et al. 2013). That study also raised the possibility that such a ‘Wheeler effect’ might occur in studies of leaf hydraulic vulnerability. We tested for such an effect for four species by applying a modified vacuum pump method to leaves with minor veins severed, to construct leaf xylem hydraulic vulnerability curves. We tested for an impact on leaf xylem hydraulic conductance (Kx) of cutting the petiole and minor veins under water for dehydrated leaves with xylem under tension compared with dehydrated leaves after previously relaxing xylem tension. Our results showed no significant ‘cutting artefact’ for leaf xylem. The lack of an effect for leaves could not be explained by narrower or shorter xylem conduits, and may be due to lesser mechanical stress imposed when cutting leaf petioles, and/or to rapid refilling of emboli in petioles. These findings provide the first validation of previous measurements of leaf hydraulic vulnerability against this potential artefact.  相似文献   

4.
Xylem recovery from embolism was studied in Laurus nobilis L. stems that were induced to cavitate by combining negative xylem pressure potentials (PX = ?1.1 MPa) with positive air pressures (PC) applied using a pressure collar. Xylem refilling was measured by recording the percentage loss of hydraulic conductance (PLC) with respect to the maximum 2 min, 20 min and 15 h after pressure release. Sodium orthovanadate (an inhibitor of many ATP‐ases) strongly inhibited xylem refilling while fusicoccin (a stimulator of the plasma membrane H+‐ATPase) promoted complete embolism reversal. So, the refilling process was interpreted to result from energy‐dependent mechanisms. Stem girdling induced progressively larger inhibition to refilling the nearer to the embolized stem segment phloem was removed. The starch content of wood parenchyma was estimated as percentages of ray and vasicentric cells with high starch content with respect to the total, before and after stem embolism was induced. A closely linear positive relationship was found to exist between recovery from PLC and starch hydrolysis. This, was especially evident in vasicentric cells. A mechanism for xylem refilling based upon starch to sugar conversion and transport into embolized conduits, assisted by phloem pressure‐driven radial mass flow is proposed.  相似文献   

5.
《植物生态学报》2016,40(8):834
To maintain long-distance water transport in woody plants is critical for their survival, growth and development. Water under tension is in a metastable state and prone to cavitation and embolism, which leads to loss of hydraulic conductance, reduced productivity, and eventually plant death. In face to water stress-induced cavitation, plants either reduce frequency of embolism occurrence through cavitation resistance with specialized anatomical struc- ture, or/and form a metabolically active embolism repair mechanism. For the xylem embolism and repair, however, there are controversies regarding the occurring frequency, conditions and underlying mechanisms. In this review paper, we first examined the process, temporal dynamics and frequency of xylem embolism and repair. Then, we summarized hypotheses for the mechanisms of the novel refilling in xylem embolism repair, including the osmotic hypothesis, the reverse osmotic hypothesis, the phloem-driven refilling hypothesis, and the phloem unloading hypothesis. We further compared differences in xylem embolism and repair between conifers and angiosperms tree species, and examined the trade-offs between cavitation resistance and xylem recovery performance. Finally, we proposed four priorities in future research in this field: (1) to improve measuring technology of xylem embolism; (2) to test hypotheses for the mechanisms of the novel refilling in xylem embolism repair and the signal triggering xylem refilling; (3) to explore species-specific trait differences related to xylem embolism and repair and their underlying trade-off relationships; and (4) to enhance studies on the relationship between the involvement of carbon metabolism and aquaporins expression in xylem embolism and repair.  相似文献   

6.
 在两种水分供给(干旱胁迫和适宜水分,土壤含水量分别为田间持水量的30%~40%和70%~80%)下,研究了耐旱树种元宝枫(Acer truncatum)和 中生树种女贞(Ligustrum lucidum )木质部栓塞(以导水率(Percentage loss of hydraulic conductivity, PLC)损失程度衡量)对P素添加的 响应。结果发现,两个树种PLC的日变化均呈现出先上升后降低的规律,表明木质部栓塞的形成与恢复是植物体的一种平常事件;除适宜水分条 件的女贞外,P素可以显著提高元宝枫和遭受干旱胁迫时女贞的PLC;两种水分条件下,干旱胁迫时元宝枫木质部栓塞明显高于适宜水分供给时 。女贞的PLC在两种水分状况下无显著差异;树种间,干旱胁迫促进了元宝枫木质部的栓塞形成,明显高于同等水分条件下的女贞。该研究结果 证实了“木质部限流耐旱假设”。  相似文献   

7.
Direct visualization shows enhanced embolism of xylem samples when they are collected under tension.Embolism resistance is a critically important trait for evaluating the ability of plants to survive and recover from drought periods and predicting future drought-induced forest decline (Choat et al., 2012). However, recent publications have provided evidence that some measurement techniques used to evaluate the hydraulic function and vulnerability to cavitation of plant organs may be prone to artifacts (Sperry et al., 2012; Cochard et al., 2013; Torres-Ruiz et al., 2014; Trifilò et al., 2014). The discovery of these artifacts has raised questions regarding the reliability of some previously published plant hydraulics data, in particular data relating to the refilling of embolized xylem conduits while the xylem is under tension. In this context, Wheeler et al. (2013) reported that sampling plant organs by cutting while the xylem is under tension can induce artificial increases in the degree of embolism at the moment of sample excision, even when cuts are made under water. The methodology applied by Wheeler et al. (2013), however, did not allow the visualization of embolized or functional vessels, and native embolism levels could not be determined in intact plants before any cutting was done.Whereas Scoffoni and Sack (2014) showed that the artifact described by Wheeler et al. (2013) has no impact on leaf xylem hydraulic conductance, there is some uncertainty about its importance in stems or shoots (Trifilò et al., 2014; Venturas et al., 2014). The results of Wheeler et al. (2013) indicate that more embolism could be induced by cutting samples that are under midrange xylem tension (e.g. at midday or under conditions of water stress). Potential overestimation of embolism due to changes in the xylem tension during the day has important implications for our understanding of plant water relations, since they could erroneously suggest that daily patterns of embolism formation and repair are routine in many woody plant species. Debate continues regarding the implications of a cutting artifact for the existence of a mechanism that allows plants to repair embolism while the xylem is under tension, so-called novel refilling (Salleo et al., 1996; Cochard and Delzon, 2013; Sperry, 2013; Delzon and Cochard, 2014). To avoid the excision artifact, Wheeler et al. (2013) recommended the relaxation of the xylem tension prior to excision by rehydrating plant tissue for anywhere between 2 min and 2 h. However, recent results from Trifilò et al. (2014) indicated that the rehydration procedures used by Wheeler et al. (2013) for relaxing the samples might favor xylem refilling and embolism repair (rehydration artifact), suggesting that the artifact resides in the relaxing procedure rather than in the cutting procedure. In light of these data, the assessment of the artifact described by Wheeler et al. (2013) using noninvasive techniques on intact plants, such as direct observation using x-ray microtomography (micro-CT; McElrone et al., 2013; Cochard et al., 2014) or magnetic resonance imaging (Choat et al., 2010; Zwieniecki et al., 2013), is useful to visually assess changes in embolism after cutting stems.  相似文献   

8.
It was recently reported that cutting artefacts occur in some species when branches under tension are cut, even under water. We used non‐destructive magnetic resonance imaging (MRI) to investigate the change in xylem water distribution at the cellular level in Vitis coignetiae standing stems before and after relaxing tension. Less than 3% of vessels were cavitated when stems under tension were cut under water at a position shorter than the maximum vessel length (MVL) from the MRI point, in three of four plants. The vessel contents remained at their original status, and cutting artefact vessel cavitation declined to <1% when stems were cut at a position farther than the MVL from the MRI point. Water infiltration into the originally cavitated vessels after cutting the stem, i.e. vessel refilling, was found in <1% of vessels independent of cutting position on three of nine plants. The results indicate that both vessel cavitation and refilling occur in xylem tissue under tension following stem cutting, but its frequency is quite small, and artefacts can be minimized altogether if the distance between the monitoring position and the cutting point is longer than the MVL.  相似文献   

9.
Embolism reversal in rice plants was studied by testing the plant's ability to refill embolized conduits while xylem pressures were substantially negative. Intact, potted plants were water-stressed to a xylem pressure of -1.88 ± 0.1 MPa and a 66.3 ± 3.8% loss of xylem conductivity (PLC) by cavitation. Stressed plants were carefully rewatered, allowing xylem pressure to rise, but not above the theoretical threshold of c. -0.15 MPa for embolism collapse. Despite xylem pressures being more negative than this threshold, the PLC fell significantly (28.5 ± 5.6%), indicating the refilling of vessels. Above c. -1.0 MPa, almost all plants regained their maximum hydraulic conductivity. Dye uptake experiments showed the same pattern of embolism refilling despite negative pressure. Refilling was prevented in plants that were light-starved for 5 d, suggesting the unknown mechanism is dependent on metabolic energy. Results are among the first showing that herbaceous plants can reverse embolism without bulk xylem pressures rising near or above atmospheric.  相似文献   

10.
Embolism and the refilling of xylem vessels are intrinsic to the ability of plants to handle the transport of water under tension. Although the formation of an embolized vessel is an abiotic process, refilling against the pressure gradient requires biological activity to provide both the energy and the water needed to restore xylem transport capacity. Here, we present an analysis of the dynamics of embolism and refilling in Populus trichocarpa and follow temporal dynamics of co‐occurring changes in expression level of aquaporins. Under mesic conditions, we found that the percent loss of conductance (PLC) varied diurnally by as much as 20%, suggesting a continuous embolism/refilling cycle. An increase in water stress tilted the balance between the two processes and increased the PLC to as much as 80%. Subsequent re‐watering resulted in the reversal of water stress and recovery of PLC to pre‐stress levels. Stem parenchyma cells responded to drought stress with considerable up‐regulation of the PIP1 subfamily of water channels but not the PIP2 subfamily. Even more significant was the finding that PoptrPIP1.1 and PoptrPIP1.3 genes were up‐regulated in response to embolism, but not to water stress, and were down‐regulated after embolism removal, suggesting a local ability of plants to sense an embolism presence.  相似文献   

11.
The annual course of xylem embolism in twigs of adult beech trees was monitored, and compared to concurrent changes of tree water status and hydraulic resistances. Xylem embolism was quantified in 1-year-old apical twigs by the hydraulic conductivity as a percentage of the maximum measured after removal of air emboli. Tree and root hydraulic resistances were estimated from water potential differences and sap flux measurements. The considerable degree of twig embolism found in winter (up to 90% loss of hydraulic conductivity) may be attributed to the effect of freeze-thaw cycles in the xylem. A partial recovery from winter embolism occurred in spring, probably because of the production of new functional xylem. Xylem embolism fluctuated around 50% throughout the summer, without significant changes. Almost complete refilling of apical twigs was observed early in autumn. A significant negative correlation was found between xylem embolism and precipitation; thus, an active role of rainfall in embolism reversion is hypothesized. Tree and root hydraulic resistances were found to change throughout the growing period. A marked decrease of hydraulic resistance preceded the refilling of apical twigs in the autumn. Most of the decrease in total tree resistance was estimated to be located in the root compartment.  相似文献   

12.
The kinetics of leaf vein recovery from cavitation-induced embolism was studied in plants of sunflower cv. Margot, together with the impact of vein embolism on the overall leaf hydraulic conductance (Kleaf). During the air-dehydration of leaves to leaf water potentials (Psi L) of -1.25 MPa, Kleaf was found to decrease by about 46% with respect to values recorded in well-hydrated leaves. When leaves, previously dehydrated to Psi L= -1.1 MPa (corresponding to the turgor loss point), were put in contact with water, Kleaf recovered completely in 10 min and so did leaf water potential. Functional vein density was estimated in both dehydrating and rehydrating leaves in terms of total length of red-stained veins infiltrated with a Phloxine B solution per unit leaf surface area. Veins were found to embolize (unstained) with kinetics showing a linear relationship with Kleaf so that about a 70% loss of functional veins corresponded with a Kleaf loss of 46%. Cavitated veins recovered from embolism within 10 min from the beginning of leaf rehydration. These data indicate that: (a) leaves of sunflower underwent substantial vein embolism during dehydration; (b) vein embolism and leaf hydraulic efficiency apparently recovered from dehydration completely and rapidly upon rehydration; (c) vein refilling occurred while conduits were still at more negative xylem pressures than those required for spontaneous bubble dissolution on the basis of Henry's law. The possible consistent contribution of vital mechanisms for vein refilling is discussed.  相似文献   

13.
It is well known that xylem embolism can be repaired by bark water uptake and that the sugar required for embolism refilling can be provided by corticular photosynthesis. However, the relationship between corticular photosynthesis and embolism repair by bark water uptake is still poorly understood. In this study, the role of corticular photosynthesis in embolism repair was assessed using Salix matsudana branch segments dehydrated to ?1.9 MPa (P50, water potential at 50% loss of conductivity). The results indicated that corticular photosynthesis significantly promoted water uptake and nonstructural carbohydrate (NSC) accumulation in the bark and xylem during soaking, thereby effectively enhancing the refilling of the embolized vessels and the recovery of hydraulic conductivity. Furthermore, the influence of the extent of dehydration on the embolism refilling enhanced by corticular photosynthesis was investigated. The enhanced refilling effects were much higher in the mildly dehydrated (?1.5 MPa) and moderately dehydrated (?1.9 MPa) branch segments than in the severely dehydrated (?2.2 MPa) branch segments. This study provides evidence that corticular photosynthesis plays a crucial role in xylem embolism repair by bark water uptake for mildly and moderately dehydrated branches.  相似文献   

14.
Vulnerability curves (VCs) measure the ability of vessels to retain metastable water without embolisms that lower the hydraulic conductivity of stems. The fastest method of measuring VCs is the centrifuge technique and the Cochard cavitron is a method that allows measurement of hydraulic conductivity of stems while they are spinning. This paper describes the pattern of embolism that results after spinning the stems of hybrid aspen (Populus tremula×P. tremuloides) and two hybrid cottonwoods (P38P38 P. balsamifera×P. simonii and Northwest, which is a hybrid of P. deltoides×P. balsamifera). It is recognized that the pattern of embolism induced in a centrifuge ought to differ from the pattern during natural dehydration of plants because the profiles of tension vs distance greatly differ under the two modes of inducing stress. The pattern of embolism was visualized by a staining technique and quantified by traditional measurements of percentage loss conductivity (PLC) performed on subsample segments excised from spun stems. We found a pattern of embolism approximating that expected from theory: (1) PLC near the axis of rotation exceeded the average; (2) PLC was quite high near the ends of the stems, even though tension ought to be zero; (3) large vessels cavitated before small vessels; (4) more embolism occurred near the base than near the apex of the stems. However, we could not always scale up from subsample conductivity and PLC to whole‐stem conductivity. This pattern of embolism is interpreted in terms of vessel diameter and vessel length.  相似文献   

15.
When they are hydraulically isolated, embolized xylem vessels can be refilled, while adjacent vessels remain under tension. This implies that the pressure of water in the refilling vessel must be equal to the bubble gas pressure, which sets physical constraints for recovery. A model of water exudation into the cylindrical vessel and of bubble dissolution based on the assumption of hydraulic isolation is developed. Refilling is made possible by the turgor of the living cells adjacent to the refilling vessel, and by a reflection coefficient below 1 for the exchange of solutes across the interface between the vessel and the adjacent cells. No active transport of solutes is assumed. Living cells are also capable of importing water from the water-conducting vessels. The most limiting factors were found to be the osmotic potential of living cells and the ratio of the volume of the adjacent living cells to that of the embolized vessel. With values for these of 1.5 MPa and 1, respectively, refilling times were in the order of hours for a broad range of possible values of water conductivity coefficients and effective diffusion distances for dissolved air, when the xylem water tension was below 0.6 MPa and constant. Inclusion of the daily pattern for xylem tension improved the simulations. The simulated gas pressure within the refilling vessel was in accordance with recent experimental results. The study shows that the refilling process is physically possible under hydraulic isolation, while water in surrounding vessels is under negative pressure. However, the osmotic potentials in the refilling vessel tend to be large (in the order of 1 MPa). Only if the xylem water tension is, at most, twice atmospheric pressure, the reflection coefficient remains close to 1 (0.95) and the ratio of the volume of the adjacent living cells to that of the embolized vessel is about 2, does the osmotic potential stay below 0.4 MPa.  相似文献   

16.
In vivo magnetic resonance imaging of xylem vessel contents in woody lianas   总被引:1,自引:0,他引:1  
Previous reports suggest that in some plant species the refilling of embolized xylem vessels can occur while negative pressure exists in the xylem. The aim of this experiment was to use non‐destructive nuclear magnetic resonance imaging (MRI) to study the dynamics of xylem cavitation and embolism repair in‐vivo. Serial 1H‐MRI was used to monitor the contents of xylem vessels in stems of two dicotyledonous (Actinidia deliciosa and Actinidia chinensis, kiwifruit) and one monocotyledonous (Ripogonum scandens, supplejack) species of woody liana. The configuration of the horizontal wide bore magnet and probe allowed the imaging of woody stems up to 20 mm in diameter. Tests using excised stems confirmed that the image resolution of 78 µm and digital image subtraction could be used to detect the emptying and refilling of individual vessels. Imaging was conducted on both intact plants and excised shoots connected to a water supply. In the case of Ripogonum the excised shoots were long enough to allow the distal end of the shoot, including all leaves, to be exposed to ambient conditions outside the building while the proximal end was inside the MRI magnet. In total, six stems were monitored for 240 h while the shoots were subjected to treatments that included light and dark periods, water stress followed by re‐watering, and the covering of all leaves to prevent transpiration. The sudden emptying of water‐filled vessels occurred frequently while xylem water potential was low (below ?0.5 MPa for Actinidia, ?1.0 MPa for Ripogonum), and less frequently after xylem water potential approached zero at the end of water‐stress treatments. No refilling of empty vessels was observed at any time in any of the species examined. It is concluded that embolism repair under negative pressure does not occur in the species examined here. Embolism repair may be more likely in species with narrower xylem vessels, but further experiments are required with other species before it can be concluded that repair during transpiration is a widespread phenomenon.  相似文献   

17.
Among woody plants, grapevines are often described as highly vulnerable to water‐stress induced cavitation with emboli forming at slight tensions. However, we found native embolism never exceeded 30% despite low xylem water potentials (Ψx) for stems of field grown vines. The discrepancy between native embolism measurements and those of previous reports led us to assess vulnerability curve generation using four separate methods and alterations (i.e. segment length and with/without flushing to remove embolism prior to measurement) of each. Centrifuge, dehydration and air‐injection methods, which rely on measurement of percentage loss of hydraulic conductivity (PLC) in detached stems, were compared against non‐invasive monitoring of xylem cavitation with nuclear magnetic resonance (NMR) imaging. Short segment air‐injection and flushed centrifuge stems reached >90 PLC at Ψx of‐0.5 and ?1.5 MPa, respectively, whereas dehydration and long‐segment air‐injection measurements indicated no significant embolism at Ψx > ?2.0 MPa. Observations from NMR agreed with the dehydration and long segment air‐injection methods, showing the majority of vessels were still water‐filled at Ψx > ?1.5 MPa. Our findings show V. vinifera stems are far less vulnerable to water stress‐induced cavitation than previously reported, and dehydration and long segment air‐injection techniques are more appropriate for long‐vesseled species and organs.  相似文献   

18.
Vulnerability to water-stress-induced embolism and variation in the degree of native embolism were measured in lateral roots of four co-occurring neotropical savanna tree species. Root embolism varied diurnally and seasonally. Late in the dry season, loss of root xylem conductivity reached 80% in the afternoon when root water potential (psi root) was about -2.6 MPa, and recovered to 25-40% loss of conductivity in the morning when psi root was about -1.0 MPa. Daily variation in psi root decreased, and root xylem vulnerability and capacitance increased with rooting depth. However, all species experienced seasonal minimum psi root close to complete hydraulic failure independent of their rooting depth or resistance to embolism. Predawn psi root was lower than psi soil when psi soil was relatively high (> -0.7 MPa) but became less negative than psi soil, later in the dry season, consistent with a transition from a disequilibrium between plant and soil psi induced by nocturnal transpiration to one induced by hydraulic redistribution of water from deeper soil layers. Shallow longitudinal root incisions external to the xylem prevented reversal of embolism overnight, suggesting that root mechanical integrity was necessary for recovery, consistent with the hypothesis that if embolism is a function of tension, refilling may be a function of internal pressure imbalances. All species shared a common relationship in which maximum daily stomatal conductance declined linearly with increasing afternoon loss of root conductivity over the course of the dry season. Daily embolism and refilling in roots is a common occurrence and thus may be an inherent component of a hydraulic signaling mechanism enabling stomata to maintain the integrity of the hydraulic pipeline in long-lived structures such as stems.  相似文献   

19.
During plant water transport, the water in the conducting tissue (xylem) is under tension. The system is then in a metastable state and prone to bubble development and subsequent embolism blocking further water transport. It has recently been demonstrated, that embolism can be repaired under tension (= novel refilling). A model (Pit Valve Mechanism = PVM) has also been suggested which is based on the development of a special meniscus in the pores (pits) between adjacent conduits. This meniscus is expected to be able to isolate embolized conduits from neighbouring conduits during embolism repair. In this contribution the stability of this isolating meniscus against perturbations is considered which inevitably occur in natural environments. It can be shown that pit shape affects the stability of PVM fundamentally in the case of perturbation. The results show that a concave pit shape significantly supports the stability of PVM. Concave pit shape should thus be of selective value for species practicing novel refilling.  相似文献   

20.
Diurnal variation in petiole specific hydraulic conductivity and simultaneous measurements of leaf water potential were recorded in red maple, tulip tree and fox grape. Petiole specific conductivity was determined from in situ measurements of water flow into the distal (leaf‐bearing) end of an attached petiole as a function of applied hydrostatic pressure and petiole dimensions. The hydraulic properties of the petiole dominated the measurements, indicating that this technique can be used for rapid estimates of petiole hydraulic conductivity. There was a significant decrease in petiole specific conductivity associated with increasingly more negative leaf water potentials in maple and tulip tree, but not in grape. Petiole specific conductivity increased during the afternoon while the plant was actively transpiring and the xylem sap was under tension. The recovery of petiole conductivity during the afternoon suggests that hydraulic conductivity reflects a dynamic balance between a loss of hydraulic conductivity with increasing water stress, and its restoration as tension within the xylem decreases. Three experimental manipulations were applied to red maple and tulip tree to examine the sensitivity of diurnal changes in petiole conductivity to various physiological perturbations. Both phloem girdling and application of HgCl2 to the transpiration stream resulted in a marked decrease in the degree to which petiole specific conductivity recovered as xylem tension relaxed during the afternoon. Delivery of a surfactant to the xylem, however, did not significantly alter the relation between leaf water potential and petiole hydraulic conductivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号