首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Paradoxically, symbiotic dinitrogen (N2) fixers are abundant in nitrogen (N)‐rich, phosphorus (P)‐poor lowland tropical rain forests. One hypothesis to explain this pattern states that N2 fixers have an advantage in acquiring soil P by producing more N‐rich enzymes (phosphatases) that mineralise organic P than non‐N2 fixers. We assessed soil and root phosphatase activity between fixers and non‐fixers in two lowland tropical rain forest sites, but also addressed the hypothesis that arbuscular mycorrhizal (AM) colonisation (another P acquisition strategy) is greater on fixers than non‐fixers. Root phosphatase activity and AM colonisation were higher for fixers than non‐fixers, and strong correlations between AM colonisation and N2 fixation at both sites suggest that the N–P interactions mediated by fixers may generally apply across tropical forests. We suggest that phosphatase enzymes and AM fungi enhance the capacity of N2 fixers to acquire soil P, thus contributing to their high abundance in tropical forests.  相似文献   

2.
A long‐standing debate in ecology deals with the role of nitrogen and phosphorus in management and restoration of aquatic ecosystems. It has been argued that nutrient reduction strategies to combat blooms of phytoplankton or floating plants should solely focus on phosphorus (P). The underlying argument is that reducing nitrogen (N) inputs is ineffective because N2‐fixing species will compensate for N deficits, thus perpetuating P limitation of primary production. A mechanistic understanding of this principle is, however, incomplete. Here, we use resource competition theory, a complex dynamic ecosystem model and a 32‐year field data set on eutrophic, floating‐plant dominated ecosystems to show that the growth of non‐N2‐fixing species can become N limited under high P and low N inputs, even in the presence of N2 fixing species. N2‐fixers typically require higher P concentrations than non‐N2‐fixers to persist. Hence, the N2 fixers cannot deplete the P concentration enough for the non‐N2‐fixing community to become P limited because they would be outcompeted. These findings provide a testable mechanistic basis for the need to consider the reduction of both N and P inputs to most effectively restore nutrient over‐enriched aquatic ecosystems.  相似文献   

3.

Aims

The extent to which the spatial and temporal patterns of soil microbial and available nutrient pools hold across different Mediterranean forest types is unclear impeding the generalization needed to consolidate our understanding on Mediterranean ecosystems functioning.

Methods

We explored the response of soil microbial, total, organic and inorganic extractable nutrient pools (C, N and P) to common sources of variability, namely habitat (tree cover), soil depth and season (summer drought), in three contrasting Mediterranean forest types: a Quercus ilex open woodland, a mixed Q. suber and Q. canariensis woodland and a Pinus sylvestris forest.

Results

Soil microbial and available nutrient pools were larger beneath tree cover than in open areas in both oak woodlands whereas the opposite trend was found in the pine forest. The greatest differences in soil properties between habitat types were found in the open woodland. Season (drought effect) was the main driver of variability in the pine forest and was related to a loss of microbial nutrients (up to 75 % loss of Nmic and Pmic) and an increase in microbial ratios (Cmic/Nmic, Cmic/Pmic) from Spring to Summer in all sites. Nutrient pools consistently decreased with soil depth, with microbial C, N and P in the top soil being up to 208 %, 215 % and 274 % larger than in the deeper soil respectively.

Conclusions

Similar patterns of variation emerged in relation to season and soil depth across the three forest types whereas the direction and magnitude of the habitat (tree cover) effect was site-dependent, possibly related to the differences in tree species composition and forest structure, and thus in the quality and distribution of the litter input.  相似文献   

4.
Marine nitrogen‐fixing cyanobacteria play a central role in the open‐ocean microbial community by providing fixed nitrogen (N) to the ocean from atmospheric dinitrogen (N2) gas. Once thought to be dominated by one genus of cyanobacteria, Trichodesmium, it is now clear that marine N2‐fixing cyanobacteria in the open ocean are more diverse, include several previously unknown symbionts, and are geographically more widespread than expected. The next challenge is to understand the ecological implications of this genetic and phenotypic diversity for global oceanic N cycling. One intriguing aspect of the cyanobacterial N2 fixers ecology is the range of cellular interactions they engage in, either with cells of their own species or with photosynthetic protists. From organelle‐like integration with the host cell to a free‐living existence, N2‐fixing cyanobacteria represent the range of types of interactions that occur among microbes in the open ocean. Here, we review what is known about the cellular interactions carried out by marine N2‐fixing cyanobacteria and where future work can help. Discoveries related to the functional roles of these specialized cells in food webs and the microbial community will improve how we interpret their distribution and abundance patterns and contributions to global N and carbon (C) cycles.  相似文献   

5.
Nitrogen (N) deposition is a component of global change that has considerable impact on belowground carbon (C) dynamics. Plant growth stimulation and alterations of fungal community composition and functions are the main mechanisms driving soil C gains following N deposition in N‐limited temperate forests. In N‐rich tropical forests, however, N deposition generally has minor effects on plant growth; consequently, C storage in soil may strongly depend on the microbial processes that drive litter and soil organic matter decomposition. Here, we investigated how microbial functions in old‐growth tropical forest soil responded to 13 years of N addition at four rates: 0 (Control), 50 (Low‐N), 100 (Medium‐N), and 150 (High‐N) kg N ha?1 year?1. Soil organic carbon (SOC) content increased under High‐N, corresponding to a 33% decrease in CO2 efflux, and reductions in relative abundances of bacteria as well as genes responsible for cellulose and chitin degradation. A 113% increase in N2O emission was positively correlated with soil acidification and an increase in the relative abundances of denitrification genes (narG and norB). Soil acidification induced by N addition decreased available P concentrations, and was associated with reductions in the relative abundance of phytase. The decreased relative abundance of bacteria and key functional gene groups for C degradation were related to slower SOC decomposition, indicating the key mechanisms driving SOC accumulation in the tropical forest soil subjected to High‐N addition. However, changes in microbial functional groups associated with N and P cycling led to coincidentally large increases in N2O emissions, and exacerbated soil P deficiency. These two factors partially offset the perceived beneficial effects of N addition on SOC storage in tropical forest soils. These findings suggest a potential to incorporate microbial community and functions into Earth system models considering their effects on greenhouse gas emission, biogeochemical processes, and biodiversity of tropical ecosystems.  相似文献   

6.
Climate change will affect semiarid ecosystems through severe droughts that increase the competition for resources in plant and microbial communities. In these habitats, adaptations to climate change may consist of thinning—that reduces competition for resources through a decrease in tree density and the promotion of plant survival. We deciphered the functional and phylogenetic responses of the microbial community to 60 years of drought induced by rainfall exclusion and how forest management affects its resistance to drought, in a semiarid forest ecosystem dominated by Pinus halepensis Mill. A multiOMIC approach was applied to reveal novel, community‐based strategies in the face of climate change. The diversity and the composition of the total and active soil microbiome were evaluated by 16S rRNA gene (bacteria) and ITS (fungal) sequencing, and by metaproteomics. The microbial biomass was analyzed by phospholipid fatty acids (PLFAs), and the microbially mediated ecosystem multifunctionality was studied by the integration of soil enzyme activities related to the cycles of C, N, and P. The microbial biomass and ecosystem multifunctionality decreased in drought‐plots, as a consequence of the lower soil moisture and poorer plant development, but this decrease was more notable in unthinned plots. The structure and diversity of the total bacterial community was unaffected by drought at phylum and order level, but did so at genus level, and was influenced by seasonality. However, the total fungal community and the active microbial community were more sensitive to drought and were related to ecosystem multifunctionality. Thinning in plots without drought increased the active diversity while the total diversity was not affected. Thinning promoted the resistance of ecosystem multifunctionality to drought through changes in the active microbial community. The integration of total and active microbiome analyses avoids misinterpretations of the links between the soil microbial community and climate change.  相似文献   

7.
Increased atmospheric carbon dioxide (CO2) concentrations and nitrogen (N) deposition induced by human activities have greatly influenced the stoichiometry of N and phosphorus (P). We used model forest ecosystems in open‐top chambers to study the effects of elevated CO2 (ca. 700 μmol mol?1) alone and together with N addition (100 kg N ha?1 yr?1) on N to P (N : P) ratios in leaves, stems and roots of five tree species, including four non‐N2 fixers and one N2 fixer, in subtropical China from 2006 to 2009. Elevated CO2 decreased or had no effects on N : P ratios in plant tissues of tree species. N addition, especially under elevated CO2, lowered N : P ratios in the N2 fixer, and this effect was significant in the stems and the roots. However, only one species of the non‐N2 fixers showed significantly lower N : P ratios under N addition in 2009, and the others were not affected by N addition. The reductions of N : P ratios in response to elevated CO2 and N addition were mainly associated with the increases in P concentrations. Our results imply that elevated CO2 and N addition could facilitate tree species to mitigate P limitation by more strongly influencing P dynamics than N in the subtropical forests.  相似文献   

8.
Emissions of the trace gas nitrous oxide (N2O) play an important role for the greenhouse effect and stratospheric ozone depletion, but the impacts of climate change on N2O fluxes and the underlying microbial drivers remain unclear. The aim of this study was to determine the effects of sustained climate change on field N2O fluxes and associated microbial enzymatic activities, microbial population abundance and community diversity in an extensively managed, upland grassland. We recorded N2O fluxes, nitrification and denitrification, microbial population size involved in these processes and community structure of nitrite reducers (nirK) in a grassland exposed for 4 years to elevated atmospheric CO2 (+200 ppm), elevated temperature (+3.5 °C) and reduction of summer precipitations (?20%) as part of a long‐term, multifactor climate change experiment. Our results showed that both warming and simultaneous application of warming, summer drought and elevated CO2 had a positive effect on N2O fluxes, nitrification, N2O release by denitrification and the population size of N2O reducers and NH4 oxidizers. In situ N2O fluxes showed a stronger correlation with microbial population size under warmed conditions compared with the control site. Specific lineages of nirK denitrifier communities responded significantly to temperature. In addition, nirK community composition showed significant changes in response to drought. Path analysis explained more than 85% of in situ N2O fluxes variance by soil temperature, denitrification activity and specific denitrifying lineages. Overall, our study underlines that climate‐induced changes in grassland N2O emissions reflect climate‐induced changes in microbial community structure, which in turn modify microbial processes.  相似文献   

9.
Drought duration and intensity are expected to increase with global climate change. How changes in water availability and temperature affect the combined plant–soil–microorganism response remains uncertain. We excavated soil monoliths from a beech (Fagus sylvatica L.) forest, thus keeping the understory plant–microbe communities intact, imposed an extreme climate event, consisting of drought and/or a single heat‐pulse event, and followed microbial community dynamics over a time period of 28 days. During the treatment, we labeled the canopy with 13CO2 with the goal of (i) determining the strength of plant–microbe carbon linkages under control, drought, heat and heat–drought treatments and (ii) characterizing microbial groups that are tightly linked to the plant–soil carbon continuum based on 13C‐labeled PLFAs. Additionally, we used 16S rRNA sequencing of bacteria from the Ah horizon to determine the short‐term changes in the active microbial community. The treatments did not sever within‐plant transport over the experiment, and carbon sinks belowground were still active. Based on the relative distribution of labeled carbon to roots and microbial PLFAs, we determined that soil microbes appear to have a stronger carbon sink strength during environmental stress. High‐throughput sequencing of the 16S rRNA revealed multiple trajectories in microbial community shifts within the different treatments. Heat in combination with drought had a clear negative effect on microbial diversity and resulted in a distinct shift in the microbial community structure that also corresponded to the lowest level of label found in the PLFAs. Hence, the strongest changes in microbial abundances occurred in the heat–drought treatment where plants were most severely affected. Our study suggests that many of the shifts in the microbial communities that we might expect from extreme environmental stress will result from the plant–soil–microbial dynamics rather than from direct effects of drought and heat on soil microbes alone.  相似文献   

10.
El Niño–La Niña cycles strongly influence dry and wet seasons in the tropics and consequently nitrous oxide (N2O) emissions from tropical rainforest soils. We monitored whole‐system and soil chamber N2O fluxes during 5‐month‐long droughts in the Biosphere 2 tropical forest to determine how rainfall changes N2O production. A consistent pattern of N2O flux changes during drought and subsequent wetting emerged from our experiments. Soil surface drying during the first days of drought, presumably increased gas transport out of the soil, which increased N2O fluxes. Subsequent drying caused an exponential decrease in whole‐system (4.0±0.1% day?1) and soil chamber N2O flux (8.9±0.8% day?1; south chamber; and 13.7±1.1% day?1; north chamber), which was highly correlated with soil moisture content. Soil air N2O concentration ([N2O]) and flux measurements revealed that surface N2O production persisted during drought. The first rainfall after drought triggered a N2O pulse, which amounted to 25% of drought‐associated reduction in N2O flux and 1.3±0.4% of annual N2O emissions. Physical displacement of soil air by water and soil chemistry changes during drought could not account for the observed N2O pulse. We contend that osmotic stress on the microbial biomass must have supplied the N source for pulse N2O, which was produced at the litter–soil interface. After the pulse, N2O fluxes were consistently 90% of predrought values. Nitrate change rate, nutrient, [N2O], and flux analyses suggested that nitrifiers dominated N2O production during the pulse and denitrifiers during wet conditions. N2O flux measurements in Biosphere 2, especially during the N2O pulse, demonstrate that large‐scale integration methods, such as flux towers, are essential for improving ecosystem N2O flux estimates.  相似文献   

11.
基于喀斯特峰丛洼地草丛、灌丛、次生林、原生林4个生态系统24个样地(20 m × 20 m)的系统取样调查, 研究了喀斯特峰丛洼地不同生态系统群落的结构组成与生物多样性特征, 选取代表植物群落和土壤性质的35个指标, 对不同生态系统及整个喀斯特脆弱生态系统植物群落与土壤主要养分、土壤矿质养分和土壤微生物间的相互关系进行了主成分分析与典范相关分析。结果表明: 沿草丛、灌丛、次生林、原生林的顺向演替发展, 重要值(importance value, IV)>10.00的科、属、种及物种多样性最大值出现在次生林, 群落结构最佳值出现在顶级群落原生林; 喀斯特峰丛洼地景观异质性高, 各生态系统影响因子不同, 土壤微生物在喀斯特脆弱生态系统处于主导地位, 其次为灌丛; 不同集团因子的典范相关分析表明, 植物多样性指标与土壤氮素、Al2O3、Fe2O3、土壤微生物生物量碳(Cmic)、真菌和细菌关系密切。因此, 在喀斯特脆弱生态系统恢复与重建过程中, 应针对不同生态系统制定相应的培育管理措施。  相似文献   

12.
Summary Nitrogen mineralization, nitrification, denitrification, and microbial biomass were evaluated in four representative ecosystems in east-central Minnesota. The study ecosystems included: old field, swamp forest, savanna, and upland pin oak forest. Due to a high regional water table and permeable soils, the upland and wetland ecosystems were separated by relatively short distances (2 to 5 m). Two randomly selected sites within each ecosystem were sampled for an entire growing season. Soil samples were collected at 5-week intervals to determine rates of N cycling processes and changes in microbial biomass. Mean daily N mineralization rates during five-week in situ soil incubations were significantly different among sampling dates and ecosystems. The highest annual rates were measured in the upland pin oak ecosystem (8.6 g N m–2 yr–1), and the lowest rates in the swamp forest (1.5 g N m–2 yr–1); nitrification followed an identical pattern. Denitrification was relatively high in the swamp forest during early spring (8040 g N2O–N m–2 d–1) and late autumn (2525 g N2O–N m–2 d–1); nitrification occurred at rates sufficient to sustain these losses. In the well-drained uplands, rates of denitrification were generally lower and equivalent to rates of atmospheric N inputs. Microbial C and N were consistently higher in the swamp forest than in the other ecosystems; both were positively correlated with average daily rates of N mineralization. In the subtle landscape of east-central Minnesota, rates of N cycling can differ by an order of magnitude across relatively short distances.  相似文献   

13.
Drought extent and severity have increased and are predicted to continue to increase in many parts of the world. Understanding tree vulnerability to drought at both individual and species levels is key to ongoing forest management and preparation for future transitions in community composition. The influence of subsurface hydrologic processes is particularly important in water‐limited ecosystems, and is an under‐studied aspect of tree drought vulnerability. With California's 2013–2016 extraordinary drought as a natural experiment, we studied four co‐occurring woodland tree species, blue oak (Quercus douglasii), valley oak (Quercus lobata), gray pine (Pinus sabiniana), and California juniper (Juniperus californica), examining drought vulnerability as a function of climate, lithology and hydrology using regional aerial dieback surveys and site‐scale field surveys. We found that in addition to climatic drought severity (i.e., rainfall), subsurface processes explained variation in drought vulnerability within and across species at both scales. Regionally for blue oak, severity of dieback was related to the bedrock lithology, with higher mortality on igneous and metamorphic substrates, and to regional reductions in groundwater. At the site scale, access to deep subsurface water, evidenced by stem water stable isotope composition, was related to canopy condition across all species. Along hillslope gradients, channel locations supported similar environments in terms of water stress across a wide climatic gradient, indicating that subsurface hydrology mediates species’ experience of drought, and that areas associated with persistent access to subsurface hydrologic resources may provide important refugia at species’ xeric range edges. Despite this persistent overall influence of the subsurface environment, individual species showed markedly different response patterns. We argue that hydrologic niche segregation can be a useful lens through which to interpret these differences in vulnerability to climatic drought and climate change.  相似文献   

14.
Anthropogenic nitrogen (N) deposition is an expanding problem that affects the functioning and composition of forest ecosystems, particularly the decomposition of forest litters. Legumes play an important role in the nitrogen cycle of forest ecosystems. Two litter types were chosen from Zijin Mountain in China: Robinia pseudoacacia leaves from a leguminous forest (LF) and Liquidambar formosana leaves from a non-leguminous forest (NF). The litter samples were mixed into original forest soils and incubated in microcosms. Then, they were treated by five forms of N addition: NH4 +, NO3 ?, urea, glycine, and a mixture of all four. During a 6-month incubation period, litter mass losses, soil microbial biomass, soil pH, and enzyme activities were investigated. Results showed that mixed N and NO3 ?-N addition significantly accelerated the litter decomposition rates of LF leaves, while mixed N, glycine-N, and urea-N addition significantly accelerated the litter decomposition rates of NF leaves. Litter decomposition rates and soil enzyme activities under mixed N addition were higher than those under single form of N additions in the two forest types. Nitrogen addition had no significant effects on soil pH and soil microbial biomass. The results indicate that nitrogen addition may alter microbial allocation to extracellular enzyme production without affecting soil microbial biomass, and then affected litter decomposition process. The results further reveal that mixed N is a more important factor in controlling litter decomposition process than single form of N, and may seriously affect soil N cycle and the release of carbon stored belowground.  相似文献   

15.
青杨雌雄株叶际微生物群落多样性和结构的差异   总被引:2,自引:0,他引:2  
【目的】本论文探究了青杨雌雄株的叶际微生物的群落结构差异及其主要环境影响因素。【方法】以河北小五台山的天然青杨林为研究对象,采用基于16S rRNA/ITS1基因的MiSeq高通量测序技术,分析了青杨雌雄株叶际细菌和真菌的群落结构,并耦合分析其与叶片理化性质的相关性。【结果】测序结果表明细菌和真菌的多样性指数ACE、Chao1、Shannon、Simpson在雌雄株间都无显著性差异(P>0.05)。Metastats组间群落显著性差异分析表明,在门水平,青杨雌雄株叶际细菌和真菌都无显著差异。而在属水平,青杨雌雄株的叶际细菌Amnibacterium和Spingomonas及真菌Aureobasidium、Elmerina、Exobasidium、Endoconidioma、Monilinia和Rhodotorula的相对丰度在雌雄株叶际有显著差异(P<0.05)。基于OTUs的菌群分析表明,青杨雌株和雄株的叶际环境上都有其各自的特有菌群,如雌株的特有真菌Pringsheimia(0.15%)和细菌Chitinophaga(0.04%)。RDA冗余分析表明,叶片含水量与青杨叶际真菌的群落结构有显著相关性(P<0.05),而未发现青杨细菌群落结构与测定的叶片理化性质有显著相关。【结论】青杨雌雄株叶际微生物在属水平有显著分异的菌属,且可能受叶片理化性质影响,该结果为揭示雌雄异株植物的叶际微生物差异有重要借鉴意义。  相似文献   

16.
Reforestation is common to restore degraded ecosystems, but tree‐species choice often neglects ongoing environmental changes. We evaluated the performance of planted seedlings of two oak species at two sites in a Mediterranean mountain (Sierra Nevada, SE Spain): one located within the current altitudinal forest range (1,600–1,760 m), and one above the upper forest limit (1,970–2,120 m). The forest service planted 1,350 seedlings of the deciduous Pyrenean oak and the evergreen Holm oak in a postfire successional shrubland. After 2 years, seedlings were monitored for survival, and a subset of 110 Pyrenean oaks and 185 Holm oaks were harvested for analyses of biomass and foliar nutrient status, δ13C, and δ18O. Both species showed the highest survival and leaf N status above the upper forest limit, and survival increased with altitude within each plot. The deciduous oak benefited most from planting at higher altitude, and it also had greater biomass at the higher site. Correlations between foliar N, δ18O, and δ13C across elevations indicate tighter stomatal control of water loss and greater water‐use efficiency with increasing plant N status at higher altitude, which may represent a so‐far overlooked positive feedback mechanism that could foster uphill range shifts in water‐limited mountain regions. Given ongoing trends and future projections of increasing temperature and aridity throughout the Mediterranean region, tree‐species selection for forest restoration should target forecasted climatic conditions rather than those prevailing in the past. This study highlights that ecosystem restoration provides an opportunity to assist species range shifts under rapidly changing climate.  相似文献   

17.
Nitrogen (N) fixation is the main source of ‘new’ N for N-limited ecosystems like subarctic and arctic tundra. This crucial ecosystem function is performed by a wide range of N2 fixer (diazotroph) associations that could differ fundamentally in their timing and amount of N release to the soil. To assess the importance of different associative N2 fixers for ecosystem N cycling, we tracked 15N-N2 into four N2-fixer associations (with a legume, lichen, free-living, moss) and into soil, microbial biomass and non-diazotroph-associated plants 3 days and 5 weeks after in situ labelling. In addition, we tracked 13C from 13CO2 labelling to assess if N and C fixation are linked. Three days after labelling, half of the fixed 15N was recovered in the legume soils, indicating a fast release of fixed N2. Within 5 weeks, the free-living N2 fixers released two-thirds of the fixed 15N into the soil, whereas the lichen and moss retained the fixed 15N. Carbon and N2 fixation were linked in the lichen shortly after labelling, in free-living N2 fixers 5 weeks after labelling, and in the moss at both sampling times. The four investigated N2-fixer associations released fixed N2 at different rates into the soil, and non-diazotroph-associated plants have no access to ‘new’ N within several weeks after N2 fixation. Although legumes and free-living N2 fixers are immediate sources of ‘new’ N for N-limited tundra ecosystems, lichens and especially mosses, do not contribute to increase the N pool via N2 fixation in the short term.  相似文献   

18.
Short-term effects of ozone (O3) on phyllosphere fungi were studied by examining fungal populations from leaves of giant sequoia (Sequoiadendron giganteum (Lindl.) Buchholz) and California black oak (Quercus kelloggii Newb.). Chronic effects of both O3 and sulfur dioxide (SO2) were studied by isolating fungi from leaves of mature Valencia orange (Citrus sinensis L.) trees. In this chronic-exposure experiment, mature orange trees were fumigated in open-top chambers at the University of California, Riverside, for 4 years with filtered air, ambient air plus filtered air (1:1), ambient air, or filtered air plus SO2 at 9.3 parts per hundred million. Populations of Alternaria alternata (Fr.) Keissler and Cladosporium cladosporioides (Fres.) de Vries, two of the four most common fungi isolated from orange leaves, were significantly reduced by chronic exposure to ambient air. In the short-term experiments, seedlings of giant sequoia or California black oak were fumigated in open-top chambers in Sequoia National Park for 9 to 11 weeks with filtered air, ambient air, or ambient air plus O3. These short-term fumigations did not significantly affect the numbers of phyllosphere fungi. Exposure of Valencia orange trees to SO2 at 9.3 parts per hundred million for 4 years reduced the number of phyllosphere fungi isolated by 75% compared with the number from the filtered-air treatment and reduced the Simpson diversity index value from 3.3 to 2.5. A significant chamber effect was evident since leaves of giant sequoia and California black oak located outside of chambers had more phyllosphere fungi than did seedlings within chambers. Results suggest that chronic exposure to ambient ozone or SO2 in polluted areas can affect phyllosphere fungal communities, while short-term exposures may not significantly disturb phyllosphere fungi.  相似文献   

19.
Forests respond to increasing intensities and frequencies of drought by reducing growth and with higher tree mortality rates. Little is known, however, about the long‐term consequences of generally drier conditions and more frequent extreme droughts. A Holm oak forest was exposed to experimental rainfall manipulation for 13 years to study the effect of increasing drought on growth and mortality of the dominant species Quercus ilex, Phillyrea latifolia, and Arbutus unedo. The drought treatment reduced stem growth of A. unedo (?66.5%) and Q. ilex (?17.5%), whereas P. latifolia remained unaffected. Higher stem mortality rates were noticeable in Q. ilex (+42.3%), but not in the other two species. Stem growth was a function of the drought index of early spring in the three species. Stem mortality rates depended on the drought index of winter and spring for Q. ilex and in spring and summer for P. latifolia, but showed no relation to climate in A. unedo. Following a long and intense drought (2005–2006), stem growth of Q. ilex and P. latifolia increased, whereas it decreased in A. unedo. Q. ilex also enhanced its survival after this period. Furthermore, the effect of drought treatment on stem growth in Q. ilex and A. unedo was attenuated as the study progressed. These results highlight the different vulnerabilities of Mediterranean species to more frequent and intense droughts, which may lead to partial species substitution and changes in forest structure and thus in carbon uptake. The response to drought, however, changed over time. Decreased intra‐ and interspecific competition after extreme events with high mortality, together with probable morphological and physiological acclimation to drought during the study period, may, at least in the short term, buffer forests against drier conditions. The long‐term effects of drought consequently deserve more attention, because the ecosystemic responses are unlikely to be stable over time.Nontechnical summaryIn this study, we evaluate the effect of long‐term (13 years) experimental drought on growth and mortality rates of three forest Mediterranean species, and their response to the different intensities and durations of natural drought. We provide evidence for species‐specific responses to drought, what may eventually lead to a partial community shift favoring the more drought‐resistant species. However, we also report a dampening of the treatment effect on the two drought‐sensitive species, which may indicate a potential adaptation to drier conditions at the ecosystem or population level. These results are thus relevant to account for the stabilizing processes that would alter the initial response of ecosystem to drought through changes in plant physiology, morphology, and demography compensation.  相似文献   

20.
In order to investigate the annual variation of soil respiration and its components in relation to seasonal changes in soil temperature and soil moisture in a Mediterranean mixed oak forest ecosystem, we set up a series of experimental treatments in May 1999 where litter (no litter), roots (no roots, by trenching) or both were excluded from plots of 4 m2. Subsequently, we measured soil respiration, soil temperature and soil moisture in each plot over a year after the forest was coppiced. The treatments did not significantly affect soil temperature or soil moisture measured over 0–10 cm depth. Soil respiration varied markedly during the year with high rates in spring and autumn and low rates in summer, coinciding with summer drought, and in winter, with the lowest temperatures. Very high respiration rates, however, were observed during the summer immediately after rainfall events. The mean annual rate of soil respiration was 2.9 µ mol m?2 s?1, ranging from 1.35 to 7.03 µmol m?2 s?1. Soil respiration was highly correlated with temperature during winter and during spring and autumn whenever volumetric soil water content was above 20%. Below this threshold value, there was no correlation between soil respiration and soil temperature, but soil moisture was a good predictor of soil respiration. A simple empirical model that predicted soil respiration during the year, using both soil temperature and soil moisture accounted for more than 91% of the observed annual variation in soil respiration. All the components of soil respiration followed a similar seasonal trend and were affected by summer drought. The Q10 value for soil respiration was 2.32, which is in agreement with other studies in forest ecosystems. However, we found a Q10 value for root respiration of 2.20, which is lower than recent values reported for forest sites. The fact that the seasonal variation in root growth with temperature in Mediterranean ecosystems differs from that in temperate regions may explain this difference. In temperate regions, increases in size of root populations during the growing season, coinciding with high temperatures, may yield higher apparent Q10 values than in Mediterranean regions where root growth is suppressed by summer drought. The decomposition of organic matter and belowground litter were the major components of soil respiration, accounting for almost 55% of the total soil respiration flux. This proportion is higher than has been reported for mature boreal and temperate forest and is probably the result of a short‐term C loss following recent logging at the site. The relationship proposed for soil respiration with soil temperature and soil moisture is useful for understanding and predicting potential changes in Mediterranean forest ecosystems in response to forest management and climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号