首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The acidicole behavior of many species is given by their inability to acquire enough P in alkaline soil, but reasons for acidicole (syn. calcifuge) behavior of Trifolium arvense have never been studied experimentally. We asked how emergence of seedlings, the survival of plants, the growth of aboveground organs, the nodulation and the growth of roots of this species is affected by different N, P and K supply in alkaline soil. In the years 2010 and 2011, we performed a pot experiment (ten N, P and K fertilizer treatments) with seeding of T. arvense into alkaline soil. The acidicole behavior of T. arvense proved to be connected with the inability of seedlings to acquire enough P during their emergence. In all treatments, T. arvense was not able to flower in the seeding year and in the second year it flowered only in P treatments. This indicates the biennial character of the species in the case of late seeding and points to a strong P limitation of flowering and seeds production in plants grown on alkaline soil. Without P addition, T. arvense was not able to develop beyond the seedling stage. Nodulation was positively affected by P application and negatively by N application. Although T. arvense is a typical species for P poor soils, it does not suffer from P toxicity under high P supply. We concluded that the acidicole behavior of T. arvense is based on its P limitation when growing on alkaline soil.  相似文献   

2.
3.
Summary The responses of white clover (cv NZ Grasslands Huia grown in four UK hill soil types) to additions of lime and P, to inoculation with Rhizobium and mycorrhizal fungi, and to differences in soil water status were assessed in pot and field experiments. With a deep peat soil in pots, shoot production, nodulation and N fixation by clover were increased by 160, 130 and 85% respectively following inoculation with mycorrhiza, but in the field, despite a doubling of root infection, there was no response in growth. On a brown earth soil in the field inoculation with one endophyte (Glomus mosseae L1) out of four tested depressed production of white clover shoots by 42% but enhanced that of leeks (Allium porrum) by 50%; the others were without effect. With dry peaty podzol and brown earth soils in pots, clover shoot production was highest with added P when a water holding capacity of 80% was maintained, but roots from the latter had only 2.6 compared to 68 nodules per plant from the former. Further work is required to explain poor nodulation in the brown earth soils.  相似文献   

4.
A green house study was conducted on the effect of P and Zn on nodulation and N fixation in chickpea (Cicer arietinum L.) in a loamy sand (Typic Torripsamments) using treatment combinations of five levels of P (0, 25, 50, 100 and 250 ppm), and six levels of Zn (0, 5, 10, 20, 40 and 100 ppm). The number, dry matter and leghaemoglobin content of nodules, and amount of N fixed generally increased with Zn alone upto 19 ppm and P alone upto 50 ppm, and decreased with their higher levels. Application of 25 to 50 ppm P and 5 to 10 ppm Zn counteracted to a greater extent the adverse effect of 40 and 100 ppm Zn, and 250 ppm P, resp. Maximum nodulation and N fixation (91 to 145% over zero P and Zn, at maturity) was recorded with 25 to 50 ppm P applied along with 5 to 10 ppm Zn. At 64 days, depletion in soil-N was noted, particularly when P was applied, whereas at maturity there was a gain in soil-N, ranging from 10.5 to 44.5 kg/2×106 kg soil depending upon P and Zn treatments. The increase in nodulation and N fixation with balanced P and Zn nutrition might be attributed to an increase in leghaemoglobin, and K and Fe concentration in nodules, and increased plant growth, resulting into enhanced activity of N fixing organisms. The results showed that balanced P and Zn nutrition is essential not only for plant growth but also for maximum activity of Rhizobium for N fixation. Work done at Harvana Agricultural University, Hissar, India.  相似文献   

5.
接种不同VA菌根真菌对红三叶草利用不同磷源的影响   总被引:4,自引:1,他引:4  
宋勇春  冯固  李晓林 《生态学报》2001,21(9):1506-1511
以红三叶草为材料,利用三室隔网培养方法,研究了施用不同磷源条件下,接种VA菌根真菌(Glomusmosseae和Glomusversiforme)对外加有机磷源及土壤有机磷的利用效率.植物生长10周后,测定植株干物重、含磷量、菌根侵染率及根系长度.结果表明接种菌根真菌能明显增加植株干物重和含磷量.接种条件下无机磷(KH2PO4)对植株生长的促进作用大于有机磷(Na-phytate)处理,接种Glomusversoiforme的作用明显大于接种Glomusmosseae.接种Glomusmosseae,植株对磷酸二氢钾中磷的吸收量明显大于植酸钠,而接种Glomusversiforme时则植株对植酸钠的磷吸收量明显高于磷酸二氢钾.上述结果说明接种两菌种对不同磷源的作用不同,接种Glomusmosseae可提高磷酸二氢钾中磷的利用率,接种Glomusversiforme则可提高对植酸钠的磷利用率.  相似文献   

6.
The effects of vesicular-arbuscular mycorrhizal (VAM) colonisation on phosphorus (P) uptake and growth of clover (Trifolium subterraneum L.) in response to soil compaction were studied in three pot experiments. P uptake and growth of the plants decreased as the bulk density of the soil increased from 1.0 to 1.6 Mg m-3. The strongest effects of soil compaction on P uptake and plant growth were observed at the highest P application (60 mg kg-1 soil). The main observation of this study was that at low P application (15 mg kg-1 soil), P uptake and shoot dry weight of the plants colonised by Glomus intraradices were greater than those of non-mycorrhizal plants at similar levels of compaction of the soil. However, the mycorrhizal growth response decreased proportionately as soil compaction was increased. Decreased total P uptake and shoot dry weight of mycorrhizal clover in compacted soil were attributed to the reduction in the root length. Soil compaction had no significant effect on the percentage of root length colonised. However, total root length colonised was lower (6.6 m pot-1) in highly compacted soil than in slightly compacted soil (27.8 m pot-1). The oxygen content of the soil atmosphere measured shortly before the plants were harvested varied from 0.18 m3m-3 in slightly compacted soil (1.0 Mg m-3) to 0.10 m3m-3 in highly compacted soil (1.6 Mg m-3).  相似文献   

7.
8.
Douglas-fir seedlings were grown in containers in peat-vermiculite or mineral soil each amended with different levels of concentrated superphosphate (CSP) or a granulated North Carolina phosphate rock (RP). Media dilute acid-fluoride extractable phosphorus (DAP), seedling photosynthesis, weights, and tissue P concentrations were measured at 65±3 and 105±3 days. DAP was highly correlated with soluble fertilizer P (but not total P) added at the beginning of the experiment. Considerable soluble P was lost from peat-vermiculite but not from the mineral soil. Seedling total P content was proportional to the amount of soluble P per container at both harvests, but was greater for a given level of soluble P in the organicversus the mineral medium. Added soluble P increased foliar P concentrations, plant P content, and dry weight. Net carbon uptake was highly correlated with added levels of soluble P, foliar P concentrations, and with total P content. The internal efficiency of P from the RP source was less than P from CSP with respect to P contentversus growth, net CO2 uptake, and net photosynthesis rates. At the end of the experiment, seedling P content plus DAP remaining in the media for the higher fertilizer rates accounted for 75% of the originally added soluble P in the mineral soils, but only 15% of the originally added soluble P in the organic media.  相似文献   

9.
Effects of mineral nitrogen (2, 4, 6 and 8 m M NH4NO3) and nodulation with Rhizobium on frost hardiness in seedlings of white clover ( Trifolium repens ) have been studied. Seedlings of a population from Bodø (67°N lat.) were grown in Leonard jars under controlled conditions in a phytotron. For induction of frost hardening, plants were first exposed to 12 h photoperiod conditions for 2 weeks at 18°C, then for 2 weeks at 6°C and finally for 2 weeks at 0.5°C. Frost hardiness after treatments at 6 and 0.5°C was significantly enhanced by increasing nitrogen supply and was positively correlated with total nitrogen content of the stolons. Frost hardiness of nodulated plants correlated to the tissue nitrogen concentration. Content of soluble proteins in stolons decreased during hardening at 6°C but did not change during treatment at 0.5°C. There were minor changes in total amount of free amino acids during hardening. Both absolute and relative amounts of proline and arginine increased, and those of asparagine decreased during hardening. Absolute amounts of all free amino acids increased with increasing nitrogen supply, but the changes during hardening were similar in all treatments. There was a significant increase in the content of soluble carbohydrates during hardening. However, this increase was inversely related to nitrogen supply.  相似文献   

10.
The effects of sugarcane plantation intercropped with soybean on plant growth, yield, enzyme activity, nitrogen and phosphorus contents, the microbe quantity of rhizosphere soil were investigated. Results showed that dry weight of biomass and yield under sugarcane/soybean intercropping were increased by 35.44 and 30.57 % for sugarcane, and decreased by 16.12 and 9.53 % (100-grain weight) for soybean, respectively. The nitrogenase activity of intercropping soybean nodule was significantly increased by 57.4 % as compared with that in monoculture models. The urease activities of intercrops sugarcane and soybean were promoted by 89 and 81 % as compared to that of the monoculture models, respectively. The effective nitrogen and phosphorus contents of rhizospheric soil of intercrops sugarcane and soybean were increased by 66 and 311.7 %, respectively, as compared to those in the monoculture system. Microbe number of rhizosphere soil in the intercropping pattern increased significantly as compared to those in the monoculture models. The quantities of bacteria, fungi, and actinomyces increased by 42.62, 14.5 and 78.5 % in the intercropping sugarcane, while the intercropping soybean increased by 188, 183 and 73 %, respectively. Therefore, growing sugarcanes in combination with soybean can be considered a good agriculture management practice, helping to promote plant growth, yield and increase soil nutrients.  相似文献   

11.
A pot experiment was conducted to evaluate the influence of an ethylene (C2H4) precursor, L-methionine (L-MET) added to soil on the growth, nodulation and chemical composition of a leguminous tree,Albizia lebbeck L. Benth (black ciris). L-Methionine (10-9 to 10-1 gkg-1 soil) was applied as a soil drench to established uniform seedlings ofAlbizia lebbeck L. L-MET treatments had significant effects on all the plant growth parameters monitored. Plants responded positively to low to medium L-MET concentrations (10-9 to 10-3 gkg-1 soil) while high levels of L-MET had either negative or no effects. An L-MET treatment of 10-6 gkg-1 soil was the most effective in increasing shoot height, plant girth, dry weights of shoot and roots, number and dry weight of nodules and total biomass. The chemical analysis of the plant material revealed that the highest N, P and K contents were present in plants exposed to 10-6 gL-MET kg-1 soil, while Ca and Mg contents were maximum with 10-5 g L-MET kg-1 soil. A similar trend was observed with the uptake of these elements by the plant. A significant quadratic dose-response relationship was found in all cases when each individual parameter was regressed against log [L-MET] excluding the control. Since, attempts were made to prevent any nutritional and water stress, the plant response to L-MET was most likely caused by substrate-dependent microbial production of ethylene in the rhizosphere. ei]A C Borstlap  相似文献   

12.
13.
14.
BACKGROUND AND AIMS: Legume nitrogen is derived from two different sources, symbiotically fixed atmospheric N(2) and soil N. The effect of genetic variability of root and nodule establishment on N acquisition and seed protein yield was investigated under field conditions in pea (Pisum sativum). In addition, these parameters were related to the variability in preference for rhizobial genotypes. METHODS: Five different spring pea lines (two hypernodulating mutants and three cultivars), previously identified in artificial conditions as contrasted for both root and nodule development, were characterized under field conditions. Root and nodule establishment was examined from the four-leaf stage up to the beginning of seed filling and was related to the patterns of shoot dry matter and nitrogen accumulation. The genetic structure of rhizobial populations associated with the pea lines was obtained by analysis of nodule samples. The fraction of nitrogen derived from symbiotic fixation was estimated at the beginning of seed filling and at physiological maturity, when seed protein content and yield were determined. KEY RESULTS: The hypernodulating mutants established nodules earlier and maintained them longer than was the case for the three cultivars, whereas their root development and nitrogen accumulation were lower. The seed protein yield was higher in 'Athos' and 'Austin', the two cultivars with increased root development, consistent with their higher N absorption during seed filling. CONCLUSION: The hypernodulating mutants did not accumulate more nitrogen, probably due to the C cost for nodulation being higher than for root development. Enhancing exogenous nitrogen supply at the end of the growth cycle, by increasing the potential for root N uptake from soil, seems a good option for improving pea seed filling.  相似文献   

15.
Nassiri  M.  Elgersma  A. 《Plant and Soil》2002,246(1):107-121
The effects of applied nitrogen (N) on dynamics of regrowth, dry matter (DM) allocation and leaf characteristics of grass and clover were investigated. Binary mixtures and monocultures of the diploid perennial ryegrass cultivars Barlet (erect) and Heraut (prostrate) and the white clovers cvs. Alice (large-leaved) and Gwenda (small-leaved) were established in a field experiment. Grass monocultures received three levels of N application (0, 140 or 280 kg N ha–1), and mixtures 150 kg N ha–1 (+N) or no N (–N). N was applied split over the season. Application of N reduced the average clover content in the DM of the mixtures from 43 to 12%. Due to defoliation, clover lost relatively more leaf area and less DM than grass, leading to a lower clover fraction in the leaf area index (LAI) of the stubble at the start of the next regrowth. In the –N mixtures, the clover fraction of the biomass and of the LAI increased within successive regrowth periods. In the +N mixtures, large-leaved Alice maintained its content during summer, mainly due to its greater petiole length which increased in response to N. The opposite was observed for Gwenda. At each harvest, the content of small-leaved Gwenda in the LAI and DM was lower than in the stubble at the start of regrowth. The allocation of DM to the petioles of Alice led to a decrease in the leaf weight ratio (LWR) in the +N mixtures, while Gwenda had a higher LWR and specific leaf area (SLA) in the +N mixtures than in the –N mixtures. There was little or no effect of ryegrass cultivar on competition with white clover.  相似文献   

16.
17.
Elgersma  Anjo  Hassink  Jan 《Plant and Soil》1997,197(2):177-186
To increase our insight into the above- and belowground N flows in grass and grass-clover swards relations between crop and soil parameters were studied in a cutting trial with perennial ryegrass (Lolium perenne) monocultures and ryegrass–white clover (Trifolium repens) mixtures. The effects of clover cultivar on herbage yield, the amount of clover-derived nitrogen, apparent N transfer to companion grass, dynamics of N and organic matter in the soil were estimated.The grass monocultures had very low DM yields (<2.1 t ha-1) and a low N concentration in the harvested herbage. During 1992–1995 the annual herbage DM yield in the mixtures ranged from 7.0 to 14.3 t ha-1, the white clover DM yield from 2.4 to 11.2 t ha-1 and the mean annual clover content in the herbage DM harvested from 34 to 78%. Mixtures with the large-leaved clover cv. Alice yielded significantly more herbage and clover DM and had a higher clover content than mixtures with small/medium-leaved cvs. Gwenda and Retor. Grass cultivar did not consistently affect yield, botanical composition or soil characteristics.The apparent N2 fixation was very high, ranging from 150 to 545 kg N ha-1 in the different mixtures. For each tonne of clover DM in the harvested herbage 49 to 63 kg N was harvested, while the apparent N transfer from clover to grass varied between 55 and 113 kg N ha-1 year-1.The net N mineralization rate was lower under monocultures than under mixtures. The C mineralization and the amounts of C and N in active soil organic matter fractions were similar for monocultures and mixtures, but the C:N ratio of the active soil organic matter fractions were higher under grass than under mixtures. This explains the lower N mineralization under grass.  相似文献   

18.
J. R. Caradus 《Plant and Soil》1992,146(1-2):209-217
Ninety eight white clover genotypes were cloned and grown in pots at two levels of phosphorus (P) supply in soil. After harvest the nitrogen (N) and P content of shoot (leaf, petiole and unrooted stolon), stolon and root tissue was determined. Broad sense heritabilities for %N, %P, and proportion of total N or P in each tissue type were calculated. Heritabilities ranged from 0.22 to 0.68. They were generally higher for %P than %N; and higher in shoot and stolon tissue than root tissue for %P, %N, and proportion of N or P. Level of P in which plants were grown had little effect on heritability values. Genotypes from bred cultivars differed from those collected from hill country pastures for plant size, and partitioning of N and P to shoot, stolon and root. Relationships between plant characters were examined to determine the consequences of selection.  相似文献   

19.
Recent control of atmospheric SO2 pollution is leading to important soil sulphur impoverishment. Plasticity could be a mechanism allowing species to adapt to this rapid global change. Trifolium repens L. is a key grassland species whose performances in community are strongly linked to nitrogen availability. Plasticity of three white clover lines contrasting in their ability to use atmospheric N2 or soil N was assessed by analysing a set of functional traits along a gradient of nitrogen and sulphur fertilisation applied on a poor soil. White clover traits showed high morphological and physiological plasticity. Nitrogen appeared to be the most limiting factor for the VLF (Very Low Fixation) line. S was the element that modulated the most traits for the nitrogen fixing lines NNU (Normal Nitrate Uptake) and LNU (Low Nitrate Uptake). As expected, N fertilisation inhibited white clover fixation, but we also observed that N2 fixation was enhanced when S was added. S fertilisation increased nodule length as well as the proportion of nodules containing leghaemoglobin. S fertilisation, with a direct effect and an indirect effect through N2 fixation, increases white clover performances particularly with regards to photosynthesis and potential vegetative reproduction. The important plasticity in response to S availability should allow it to adapt to a large range of abiotic conditions, but its sensitivity to S nutrition would be a disadvantage for competition in a situation of soil sulphur impoverishment. In contrast, S fertilisation could help maintain this species when nitrogen status is against it.  相似文献   

20.
The relationships between increasing nitrogen fertilization and growth, maximum CO2 assimilation and the initial slope of the CO2 response curve were studied in 2 ecotypes of wild strawberry, Fragaria chiloensis (L.) Duchn. Nitrogen accumulation of CA11, an ecotype from a low-nutrient dune site, was greater at all nitrogen concentrations than that of RCP37, an ecotype from a higher-nutrient strand site. Maximum CO2 assimilation, total Rubisco activity, dry weight, and initiation of leaves and crowns were higher in CAI1 than RCP37 as nitrogen treatment was increased from 0 to 200 mg l-1, whereas these parameters were lower in CAl1 when fertilized at 300 mg T1, but not in RCP37. The mean leaf area of CA11 was greater than RCP37 when grown with no supplemental nitrogen, but mean leaf area of the 2 lines was similar under nitrogen fertilization. Maximum CO2 assimilation and carboxylation efficiency increased with increasing leaf nitrogen in both clones. At equivalent concentrations of leaf nitrogen, RCP37 had higher CO2 assimilation and carboxylation efficiency than CA11 and the difference between the 2 clones increased as ieaf nitrogen increased. Thus, RCP37 had a higher photosynthetic nitrogen use efficiency than CA11. However, at a given applied nitrogen level, CA11 allocated more nitrogen to a unit of leaf area so that photosynthetic rates were higher than RCP37, except at the highest application of 300 mg l-1. The high nitrogen accumulation capacity and resource allocation to fruiting structures (crowns) in CA11 leads us to suggest that this clone may possess genes that could increase fruit yield in cultivated strawberry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号