首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.

Background

The p73 protein is a tumor suppressor that shares structural and functional similarity with p53. p73 is expressed in two major isoforms; the TA isoform that interacts with p53 pathway, thus acting as tumor suppressor and the N-terminal truncated ΔN isoform that inhibits TAp73 and p53 and thus, acts as an oncogene.

Results

By employing a drug repurposing approach, we found that protoporphyrin IX (PpIX), a metabolite of aminolevulinic acid applied in photodynamic therapy of cancer, stabilizes TAp73 and activates TAp73-dependent apoptosis in cancer cells lacking p53. The mechanism of TAp73 activation is via disruption of TAp73/MDM2 and TAp73/MDMX interactions and inhibition of TAp73 degradation by ubiquitin ligase Itch. Finally, PpIX showed potent antitumor effect and inhibited the growth of xenograft human tumors in mice.

Conclusion

Our findings may in future contribute to the successful repurposing of PpIX into clinical practice.
  相似文献   

2.

Aims

It has been shown that nerve growth factor-β (NGF-β) promoted the initiation and progression of many tumors, and we have previously demonstrated that the expression of NGF-β was associated with tumor stage, nerve infiltration and lymph node metastasis in human hilar cholangiocarcinoma. However, whether NGF-β promotes tumor progression in human cholangiocarcinoma requires further investigation. Therefore, we aimed to determine the effects of NGF-β on the progression of human cholangiocarcinoma.

Methods

Human cholangiocarcinoma QBC939 stable cell lines with over-expressed or silenced NGF-β genes were generated with pEGFP-N1-NGF-β and pGPU6/GFP/Neo-NGF-β-shRNA recombinant plasmids. Cell proliferation assay, colony formation assay, cell cycle analysis, apoptosis assay and tumorigenicity assay were performed to evaluate the role of NGF-β in the progression of human cholangiocarcinoma. In addition, human lymphatic endothelial cells were co-cultured with QBC939 culture supernatants, and the cell proliferation and migration abilities of the lymphatic endothelial cells were evaluated.

Results

Forced expression of NGF-β in QBC939 cell lines promoted proliferation, colony formation and tumorigenicity in these cells and inhibited the apoptosis. However, down-regulation of NGF-β inhibited proliferation, colony formation and tumorigenicity, and increased the apoptotic rate of QBC939 cells. In addition, the NGF-β gain-of-function induced a high expression of vascular endothelial growth factor C and enhanced the proliferation and migration of lymphatic endothelial cells, while NGF-β loss-of-function showed opposite effects.

Conclusions

We concluded that NGF-β promoted tumor progression in human cholangiocarcinoma QBC939 cells. Our results provided a new concept to understand the role of NGF-β in cholangiocarcinoma progression, and might provide important information for the development of new targeted therapies in human cholangiocarcinoma.  相似文献   

3.

Background

Thoracic aortic dissection (TAD) is one of the most severe aortic diseases. The study aimed to explore the potential role of heat shock protein 27 (HSP27) in the pathogenesis of TAD using an in vitro model of oxidative stress in vascular smooth muscle cells (VSMCs).

Methods

HSP27 was analyzed in aortic surgical specimens from 12 patients with TAD and 8 healthy controls. A lentiviral vector was used to overexpress HSP27 in rat aortic VSMCs. Cell proliferation and apoptosis were measured under oxidative stress induced by H2O2.

Results

HSP27 expression was significantly higher in aortic tissue from patients with TAD and VSMCs in the aortic media were the main cell type producing HSP27. Elevated oxidative stress was also detected in the TAD samples. Overexpression of HSP27 significantly attenuated H2O2-induced inhibition of cell proliferation. Furthermore, HSP27 was found to decrease H2O2-induced cell apoptosis and oxidative stress.

Conclusions

These results suggest that HSP27 expression promotes VSMC viability, suppresses cell apoptosis, and confers protection against oxidative stress in TAD.
  相似文献   

4.

Background

To analyze the p42.3 gene expression in gastric cancer (GC) cell, find the relationship between protein structure and function, establish the regulatory network of p42.3 protein molecule and then to obtain the optimal regulatory pathway.

Methods

The expression of p42.3 gene was analyzed by RT-PCR, Western Blot and other biotechnologies. The relationship between the spatial conformation of p42.3 protein molecule and its function was analyzed using bioinformatics, MATLAB and related knowledge about protein structure and function. Furthermore, based on similarity algorithm of spatial layered spherical coordinate, we compared p42.3 molecule with several similar structured proteins which are known for the function, screened the characteristic nodes related to tumorigenesis and development, and established the multi variable relational model between p42.3 protein expression, cell cycle regulation and biological characteristics in the level of molecular regulatory networks. Finally, the optimal regulatory network was found by using Bayesian network.

Results

(1) The expression amount of p42.3 in G1 and M phase was higher than that in S and G2 phase; (2) The space coordinate systems of different structural domains of p42.3 protein were established in Matlab7.0 software; (3) The optimal pathway of p42.3 gene in protein regulatory network in gastric cancer is Ras protein, Raf-1 protein, MEK, MAPK kinase, MAPK, tubulin, spindle protein, centromere protein and tumor.

Conclusion

It is of vital significance for mechanism research to find out the action pathway of p42.3 in protein regulatory network, since p42.3 protein plays an important role in the generation and development of GC.
  相似文献   

5.

Objectives

To explore the functional effects of miR-1284 on gastric cancer cells.

Results

Overexpression of miR-1284 significantly reduced SGC-7901 cell proliferation, but improved apoptosis. However, miR-1284 suppression displayed the inversed impacts. Furthermore, the protein levels of p27, Bax, procaspase-3 and active caspase-3 were up-regulated by miR-1284 overexpression, but were down-regulated by miR-1284 suppression. The level of Bcl-2 was down-regulated by miR-1284 overexpression, while it was up-regulated by miR-1284 suppression. The level of p21 was unaffected.

Conclusion

These results suggest that miR-1284 overexpression might be a suppressor for gastric cancer via controlling of cell proliferation and apoptosis.
  相似文献   

6.

Background

To determine the correlation of cyclin-dependent kinase inhibitor 1B (p27) expression with clinicopathologic features in nasopharyngeal carcinoma (NPC), including patient prognosis.

Methods

Real-time PCR and immunohistochemistry were used to examine the mRNA and protein expressions of p27 in NPC and nasopharyngeal tissues. The relationship of p27 expression levels with clinical features and prognosis of NPC patients was analyzed.

Results

The expression level of p27 mRNA was markedly lower in NPC tissues than that in the nasopharyngeal tissues (P?=?0.0006). Specific p27 protein staining by immunohistochemistry was found in the nuclei and cytoplasm of nasopharyngeal and malignant epithelial cells but decreased expression was observed in NPC samples compared to normal epithelium samples (P?=?0.002). In addition, low levels of p27 protein were inversely correlated with the status of T classification (p?=?0.002) and clinical stage (p?=?0.019) of NPC patients. Patients with lower p27 expression had a significantly shorter overall survival time than did patients with high p27 expression. Multivariate analysis suggested that the level of p27 expression was not an independent prognostic indicator (p?=?0.682) for NPC survival.

Conclusion

Low level of p27 expression is a potential unfavorable prognostic factor for patients with NPC.

Virtual slides

The virtual slide (s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1915282782109343.
  相似文献   

7.
8.
9.

Background

The breakdown of alveolar barrier dysfunction contributes to Lipopolysaccharide stimulated pulmonary edema and acute lung injury. Actin cytoskeleton has been implicated to be critical in regulation of epithelial barrier. Here, we performed in vivo and in vitro study to investigate role of TLR4-p38 MAPK-Hsp27 signal pathway in LPS-induced ALI.

Methods

For in vivo studies, 6–8-week-old C57 mice were used, Bronchoalveolar lavage Fluid /Blood fluorescent ratio, wet-to-dry lung weight ratio, as well as protein concentrations and neutrophil cell counts in BALF were detected as either directly or indirectly indicators of pulmonary alveolar barrier dysfunction. And hematoxylin and eosin staining was performed to estimate pulmonary injury. The in vitro explorations of transepithelial permeability were achieved through transepithelial electrical resistance measurement and testing of FITC-Dextran transepithelial flux in A549. In addition, cytoskeletal rearrangement was tested through F-actin immunostaining. And SB203580 was used to inhibit p38 MAPK activation, while siRNA was administered to genetically knockdown specific protein.

Results

We showed that LPS triggered activation of p38 MAPK, rearrangement of cytoskeleton which resulted in severe epithelial hyperpermeability and lung edema. A549 pretreated with TLR4 siRNA、p38 MAPK siRNA and its inhibitor SB203580 displayed a lower permeability and fewer stress fibers formation after LPS stimulation, accompanied with lower phosphorylation level of p38 MAPK and Hsp27, which verified the involvement of TLR4-p38 MAPK-Hsp27 in LPS-evoked alveolar epithelial injury. Inhibition of p38 MAPK activity with SB203580 in vivo attenuated pulmonary edema formation and hyperpermeability in response to LPS.

Conclusions

Our study demonstrated that LPS increased alveolar epithelial permeability both in vitro and in vivo and that TLR4- p38 MAPK- Hsp27 signal pathway dependent actin remolding was involved in this process.
  相似文献   

10.
11.

Background

Preimplantation genetic diagnosis (PGD) is now widely used to select embryos free of chromosomal copy number variations (CNV) from chromosome balanced translocation carriers. However, it remains a difficulty to distinguish in embryos between balanced and structurally normal chromosomes efficiently.

Methods

For this purpose, genome wide preimplantation genetic haplotyping (PGH) analysis was utilized based on single nucleotide polymorphism (SNP) microarray. SNPs that are heterozygous in the carrier and, homozygous in the carrier’s partner and carrier’s family member are defined as informative SNPs. The haplotypes including the breakpoint regions, the whole chromosomes involved in the translocation and the corresponding homologous chromosomes are established with these informative SNPs in the couple, reference and embryos. In order to perform this analysis, a reference either a translocation carrier’s family member or one unbalanced embryo is required. The positions of translocation breakpoints are identified by molecular karyotypes of unbalanced embryos. The recombination of breakpoint regions in embryos could be identified.

Results

Eleven translocation families were enrolled. 68 blastocysts were analyzed, in which 42 were unbalanced or aneuploid and the other 26 were balanced or normal chromosomes. Thirteen embryos were transferred back to patients. Prenatal cytogenetic analysis of amniotic fluid cells was performed. The results predicted by PGH and karyotypes were totally consistent.

Conclusions

With the successful clinical application, we demonstrate that PGH was a simple, efficient, and popularized method to distinguish between balanced and structurally normal chromosome embryos.
  相似文献   

12.

Background

Our purpose was to determine if aging had an influence on muscle blood flow independent of habitual physical activity levels.

Methods

Blood flow was measured in the femoral artery by Doppler ultrasound after cuff occlusion of 10 minutes. Active and inactive older subjects (73 ± 7 years) were compared to active and inactive young subjects (26 ± 6 years).

Results

Peak blood flow capacity when normalized to lean muscle mass was related to activity level (p < 0.001), but not to age. Specifically, the young active group had higher peak blood flows than the young inactive (p = 0.031) or older inactive (p = 0.005) groups. Resting blood flow and conductance were not significantly different between groups. Mean arterial pressure was significantly higher in the older compared to young group (p = 0.002). Conductance was related to both activity (p = 0.002) and age (p = 0.003). A prolonged time for blood flow to recover was found in the older compared to the young group (p = 0.038) independent of activity status.

Conclusions

The prolonged recovery time in the older subjects may suggest a reduced vascular reactivity associated with increased cardiovascular disease risk. Peak blood flow capacity is maintained in older subjects by physical activity. In summary, maximal flow capacity and prolonged recovery of blood flow are influenced by different mechanisms in young and older active and inactive subjects.
  相似文献   

13.

Background

Metformin is the most commonly used first-line medicine for type II diabetes mellitus. Acting via AMP-activated protein kinase, it has been used for more than 60 years and has an outstanding safety record. Metformin also offers protection against cancer, but its precise mechanisms remain unclear.

Methods

We first examined the cytotoxic effects of metformin in the HeLa human cervical carcinoma and ZR-75-1 breast cancer cell lines using assays of cell viability, cleaved poly-ADP-ribose polymerase, and Annexin V-fluorescein isothiocyanate apoptosis, as well as flow cytometric analyses of the cell cycle profile and reactive oxygen species (ROS). We later clarified the effect of metformin on p53 protein stability using transient transfection and cycloheximide chase analyses.

Results

We observed that metformin represses cell cycle progression, thereby inducing subG1 populations, and had induced apoptosis through downregulation of p53 protein and a target gene, differentiated embryo chondrocyte 1 (DEC1). In addition, metformin increased intracellular ROS levels, but N-acetyl cysteine, a ROS scavenger, failed to suppress metformin-induced apoptosis. Further results showed that metformin disrupted the electron transport chain and collapsed the mitochondrial membrane potential, which may be the cause of the elevated ROS levels. Examination of the mechanisms underlying metformin-induced HeLa cell death revealed that reduced stability of p53 in metformin-treated cells leads to decreases in DEC1 and induction of apoptosis.

Conclusion

The involvement of DEC1 provides new insight into the positive or negative functional roles of p53 in the metformin-induced cytotoxicity in tumor cells.
  相似文献   

14.

Objectives

We evaluated the potential effects of aspirin combined with vitamin D3 on cell proliferation and apoptosis in oral cancer cells.

Results

Compared to the untreated control or individual drug, the combinations of aspirin and vitamin D3 significantly decreased the rates of cell proliferation by CCK-8 assay, and caused higher rates of cell apoptosis in both CAL-27 and SCC-15 cells by Annexin V-FITC apoptosis assay and flow cytometry. Remarkably, the combined treatment with aspirin and vitamin D3 significantly suppressed the expression of Bcl-2 protein and p-Erk1/2 protein, examined by western blot analysis.

Conclusions

Our study demonstrates that aspirin and vitamin D3 have biological activity against two human OSCC cell lines and their activity is synergistic or additive when two drugs used in combination with therapeutic concentrations. The combination of aspirin and vitamin D3 may be an effective approach for inducing cell death in OSCC.
  相似文献   

15.
16.

Background

Cell division is positively regulated by cyclin-dependent kinases (CDKs) partnered with cyclins and negatively regulated by CDK inhibitors. In the frog, Xenopus laevis, three types of CDK inhibitors have been described: p27Xic1 (Xic1) which shares sequence homology with both p21Cip1 and p27Kip1 from mammals, p16Xic2 (Xic2) which shares sequence homology with p21Cip1, and p17Xic3 (Xic3) which shares sequence homology with p27Kip1. While past studies have demonstrated that during DNA polymerase switching, Xic1 is targeted for protein turnover dependent upon DNA, Proliferating Cell Nuclear Antigen (PCNA), and the ubiquitin ligase CRL4Cdt2, little is known about the processes that regulate Xic2 or Xic3.

Methods

We used the Xenopus interphase egg extract as a model system to examine the regulation of Xic2 by proteolysis and phosphorylation.

Results

Our studies indicated that following primer synthesis during the initiation of DNA replication, Xic2 is targeted for DNA- and PCNA-dependent ubiquitin-mediated proteolysis and that Cdt2 can promote Xic2 turnover. Additionally, during interphase, Xic2 is phosphorylated by CDK2 at Ser-98 and Ser-131 in a DNA-independent manner, inhibiting Xic2 turnover. In the presence of double-stranded DNA ends, Xic2 is also phosphorylated at Ser-78 and Ser-81 by a caffeine-sensitive kinase, but this phosphorylation does not alter Xic2 turnover. Conversely, in the presence or absence of DNA, Xic3 was stable in the Xenopus interphase egg extract and did not exhibit a shift indicative of phosphorylation.

Conclusions

During interphase, Xic2 is targeted for DNA- and PCNA-dependent proteolysis that is negatively regulated by CDK2 phosphorylation. During a response to DNA damage, Xic2 may be alternatively regulated by phosphorylation by a caffeine-sensitive kinase. Our studies suggest that the three types of Xenopus CDK inhibitors, Xic1, Xic2, and Xic3 appear to be uniquely regulated which may reflect their specialized roles during cell division or early development in the frog.
  相似文献   

17.

Objectives

To evaluate MDCK and MDCK-SIAT1 cell lines for their ability to produce the yield of influenza virus in different Multiplicities of Infection.

Results

Yields obtained for influenza virus H1N1 grown in MDCK-SIAT1 cell was almost the same as MDCK; however, H3N2 virus grown in MDCK-SIAT1 had lower viral titers in comparison with MDCK cells. The optimized MOIs to infect the cells on plates and microcarrier were selected 0.01 and 0.1 for H1N1 and 0.001 and 0.01 for H3N2, respectively.

Conclusions

MDCK-SIAT1 cells may be considered as an alternative mean to manufacture cell-based flu vaccine, especially for the human strains (H1N1), due to its antigenic stability and high titer of influenza virus production.
  相似文献   

18.
19.

Background

Gestational trophoblastic disease (GTD) is a heterogeneous group of disorders characterized by abnormal trophoblast tissue. Molar and non-molar hydropic placental changes are the most common forms of GTD. Differential diagnosis of GTD is sometimes problematic. Recently, p53 expression was identified as a good marker for distinguishing GTD types.

Aims

Comparison of p53 expression in partial hydatidiform mole (PHM) and hydropic abortion.

Methods

In this prospective cross-sectional study, molar and non-molar hydropic pregnancy specimens were collected. Immunohistochemical staining, based on the Labeled Streptavidin Biotin (LSAB) technique, was carried out on multiple 4 mm paraffin block sections prepared from formalin-fixed trophoblastic tissues. Polymer-based Envision was used to assess p53 tumor suppressor protein immunoreactivity. p53 expression was then compared between both groups.

Results

In the study, 40 patients were included: 20 with confirmed PHM and 20 with hydropic pregnancy. p53 protein was positive in 60% of patients with PHM and 25% of patients with hydropic pregnancy. The p53 positive rate was significantly higher in patients with PHM (p = 0.027). Moreover, patients with PHM had a significantly high grade of staining (p<0.001).

Conclusion

Our findings indicate that immunohistochemical analysis of p53 protein can be used to distinguish PHM and hydropic pregnancy.
  相似文献   

20.

Objective

To use HIV-1 based lentivirus components to produce gene integration and the formation of a stable cell line in the packaging cell line without viral infection.

Results

A co-transfection of a Human Embryonic Kidney (HEK) 293 packaging cell line with Gag–pol (GP) and a transfer vector, without the envelope vector, produces a stable cell line after 2 weeks of selection. Furthermore, a matrix protein deficient GP in the packaging vector enhances this integration. This supports that, in theory, unexported lentiviral cores produced within the packaging cell can infect itself without requiring the release of any lentiviral particles.

Conclusion

If the packaging cell is also the target cell, then gene integration leading to a stable cell line can be accomplished without viral particle infection.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号