首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fibroblast growth factors (FGFs) comprise a large family of signaling molecules that involve cell patterning, mobilization, differentiation, and proliferation. Various FGFs, including FGF-1, FGF-2, and FGF-5, have been shown to play a role in cytoprotection during adverse cardiac events; however, whether FGF-8 is a cytoprotective remains unclear. The current study was designed to evaluate the effect of FGF-8 treatment on oxidative stress-induced apoptosis in H9c2 cells. Cells were divided into three groups: control, H2O2 (400 µm H2O2), and H2O2 + FGF-8 (4 ng/ml FGF-8). Our results suggest apoptosis was significantly (p < 0.05) enhanced in the H2O2 group relative to control. Moreover, a significant (p < 0.05) decline in apoptosis was observed in the H2O2 + FGF-8 group compared to H2O2-treated cells as evidenced by TUNEL staining, a cell death detection ELISA, and cell viability. Levels of downstream apoptotic mediators, caspase-3 and caspase-9, were significantly (p < 0.05) upregulated following H2O2 treatment but were abrogated following FGF-8 application. Expression levels of Forkhead box protein O1 (FoxO-1), MnSOD, catalase, pAKT, and p-mTOR were significantly (p < 0.05) reduced in the H2O2 group (p < 0.05). Notably, these levels were significantly (p < 0.05) reversed following FGF-8 treatment. Our data, for the first time, suggest FGF-8 is an anti-apoptotic mediator in oxidative-stressed H9c2 cells. Furthermore, our data demonstrate that apoptotic inhibition by FGF-8 is consequent to FoxO-1 oxidative detoxification as well as augmentation to the PI3K/AKT cell survival pathway.  相似文献   

2.
In the present study, we determined the protective role of lutein against Aβ 25–35 peptide-induced oxidative stress and apoptosis in bEND.3 cells. Cell viability was determined through MTT assay. Reactive oxygen species, lipid peroxides, and antioxidant enzyme activities were evaluated to analyze the oxidative stress status. NF-κB and Nrf-2 downstream target protein expressions were determined through western blot. Apoptosis was analyzed through caspase activities and subG1 accumulation. The results showed that Aβ 25–35 significantly increased (p < 0.001) oxidative stress biomarkers. Aβ 25–35 significantly up-regulated NF-κB nuclear expression and down-regulated Nrf-2 levels and HO-1 and, NQO-1 expressions. Aβ 25–35 induced apoptosis through decreasing mitochondrial membrane potential and increasing caspase 9 and 3 activities. Lutein pre-treatment significantly (p < 0.001) improved cell viability and decreased ROS levels (p < 0.001) and lipid peroxidation (p < 0.01). Lutein prevented Aβ 25–35-induced NF-κB nuclear expressions and up-regulated Nrf-2 expressions. Further, lutein also improved mitochondrial membrane potential and down-regulated caspase activities and subG1 accumulation. The present study shows the protective role of lutein against Aβ 25–35-induced toxicity by modulating Nrf-2 and NF-κB expressions in cerebrovascular endothelial cells.  相似文献   

3.
The parameters of the electrode region of an electrode microwave discharge in nitrogen are studied by emission spectroscopy. The radial and axial distributions of the intensities of the bands of the second (N2(C 3Π u B 3Π g )) and first (N2(B 3Π g A 3Σ u + )) positive systems of molecular nitrogen and the first negative system of nitrogen ions (N 2 + (B 2Σ u + X 2Σ g + )), the radial profiles of the electric field E and the electron density N e , and the absolute populations of the vibrational levels v C = 0–4 of the C 3Π u excited state of N2 and the vibrational level v Bi = 0 of the B 2Σ u + excited state of a molecular nitrogen ion are determined. The population temperature of the first vibrational level T V of the ground electronic state X 1Σ g + of N2 and the excitation temperature T C of the C 3Π u state in the electrode region of the discharge are measured. The radius of the spherical region and the spatially integrated plasma emission spectra are studied as functions of the incident microwave power and gas pressure. A method for determining the electron density and the microwave field strength from the plasma emission characteristics is described in detail.  相似文献   

4.
The bithorax (BX) complex of Drosophila is a complex polygenic region with a multifactorial system of regulation. One of the levels of the regulatory system of the BX complex is its association with the nuclear skeleton structures through a specific interaction of the M/SAR DNA with the nuclear matrix proteins. In the present work, M/SAR elements were mapped on the molecular-genetic map of the region. All of the elements examined were found to colocalize with regulatory elements and form clusters that restrict/bracket the genetically active domains. All M/SAR DNA revealed was shown to bins specifically to the purified Drosophila melanogaster lamin.  相似文献   

5.
Aspidospermine is an indole alkaloid with biological properties associated with combating parasites included in the genera Plasmodium, Leishmania and Trypanossoma. The present study evaluated the cytotoxicity (resazurin test), genotoxicity (comet assay) and mechanism of action (gene expression analysis via qRT-PCR) of this alkaloid in human HepG2 cells. The results demonstrated that treatment with aspidospermine was both cytotoxic (starting at 75 μM) and genotoxic (starting at 50 μM). There was no significant modulation of the expression of the following genes: GSTP1 and GPX1 (xenobiotic metabolism); CAT (oxidative stress); TP53 and CCNA2 (cell cycle); HSPA5, ERN1, EIF2AK3 and TRAF2 (endoplasmic reticulum stress); CASP8, CASP9, CASP3, CASP7, BCL-2, BCL-XL BAX and BAX (apoptosis); and PCBP4, ERCC4, OGG1, RAD21 and MLH1 (DNA repair). At a concentration of 50 μM (non-cytotoxic, but genotoxic), there was a significant increase in the expression of CYP1A1 (xenobiotic metabolism) and APC (cell cycle), and at a concentration of 100 μM, a significant increase in the expression of CYP1A1 (xenobiotic metabolism), GADD153 (endoplasmic reticulum stress) and SOD (oxidative stress) was detected, with repression of the expression of GR (xenobiotic metabolism and oxidative stress). The results of treatment with aspidospermine at a 100 μM concentration (the dose indicated in the literature to achieve 89 % reduction of the growth of L. amazonensis) suggest that increased oxidative stress and an unfolded protein response (UPR) occurred in HepG2 cells. For the therapeutic use of aspidospermine (antiparasitic), chemical alteration of the molecule to achieve a lower cytotoxicity/genotoxicity in host cells is recommended.  相似文献   

6.
New data on the species composition and comparative analysis of gamasid mites occurring on small mammals in the semi-desert territories of Saratov Trans-Volga region are reported. In all, 18 species of gamasid mites (9 genera, 5 families) were found, including 9 species which had not been previously recorded in the region: Hypoaspis (Stratiolaelaps) miles Berlese, 1882, H. (Geolaelaps) heselhausi Oudemans, 1912, H. (G.) lubrica Oudemans et Voigts, 1904, Laelaps multispinosus Banks, 1909, L. jettmari Vitzthum, 1930, Cyrtolaelaps mucronatus G. et. R. Canestrini, 1881, Haemogamasus citelli Bregetova et Nelzina, 1952, Hirstionyssus eusoricis Bregetova, 1956, and Hi. ellobii Bregetova, 1956; 5 of these species are new to Saratov Province.  相似文献   

7.
In order to investigate the mechanism of apoptosis in rat intestinal epithelial cells (IEC-6) induced by hydrogen peroxide (H2O2), IEC-6 cells were subjected to 20 μmol/L H2O2 and cell proliferation activity was determined using 3-(4,5-dimethyl-2-yl)-2,5-diphenyltetrazolium bromide. Cell morphology was observed by microscopy and cell apoptosis was detected by acridine orange and ethidium bromide staining and the portion of apoptotic cells was measured by flow cytometry. Genes and proteins related to cell apoptosis were detected by RT-PCR and Western blotting, and the mitochondrial membrane potential was evaluated by fluorescence probes. Results: Significant morphology damage was caused by exposure to H2O2, and results showed that ROS generation significantly increased (P < 0.01). The activity of superoxide dismutase decreased significantly (P < 0.05), malondialdehyde content increased (P < 0.05), and expression of both catalase and glutathione peroxidase decreased significantly (P < 0.05) in the H2O2 treatment group. Mitochondrion membrane potential was reduced, cytochrome released into the cytoplasm and caspase-9 and caspase-3 were significantly increased (P < 0.01) after treatment with H2O2. Moreover, the ratio of Bax/Bcl-2 and apoptosis were significantly increased (P < 0.01) in the H2O2 group. In conclusion, the present study indicated that the mitochondrial pathway plays a vital role in H2O2 induced IEC-6 cell apoptosis.  相似文献   

8.
An increase in oxidative stress is a key factor responsible for neurotoxicity induction and cell death leading to neurodegenerative diseases including Parkinson’s and Alzheimer’s diseases. Plant phenolics exert diverse bioactivities i.e., antioxidant, anti-inflammatory, and neuroprotective effects. Herein, phenolic compounds, namely protocatechuic aldehyde (PCA) constituents of Hydnophytum formicarum Jack. including vanillic acid (VA) and trans-ferulic acid (FA) found in Spilanthes acmella Murr., were explored for anti-neurodegenerative properties using an in vitro model of oxidative stress-induced neuroblastoma SH-SY5Y cells. Exposure of the neuronal cells with H2O2 resulted in the decrease of cell viability, but increasing in the level of reactive oxygen species (ROS) together with morphological changes and inducing cellular apoptosis. SH-SY5Y cells pretreated with 5 µM of PCA, VA, and FA were able to attenuate cell death caused by H2O2-induced toxicity, as well as decreased ROS level and apoptotic cells after 24 h of treatment. Pretreated SH-SY5Y cells with phenolic compounds also helped to upregulate H2O2-induced depletion of the expressions of sirtuin-1 (SIRT1) and forkhead box O (FoxO) 3a as well as induce the levels of antioxidant (superoxide dismutase (SOD) 2 and catalase) and antiapoptotic B-cell lymphoma 2 (Bcl-2) proteins. The findings suggest that these phenolics might be promising compounds against neurodegeneration.  相似文献   

9.
Genetic resistance to soybean stem canker, caused by the fungus Diaporthe phaseolorum var. meridionalis (Dpm), is controlled by five major, dominant, nonallelic genes Rdm1 to Rdm5. A genomic region containing the Rdm4 and Rdm5 genes was first described in Hutcheson soybean, where they were found to confer specific resistance to Argentinean physiological races of Dpm. Here, we report the genetic mapping of Rdm4 and Rdm5 loci using two pheno- and genotypically characterized F2:3 populations derived from Hutcheson cultivar. The mapping populations were screened with amplified fragment length polymorphism (AFLP) markers using bulk segregant analysis, and with simple sequence repeat (SSR) markers. Linkage analysis indicated that the Rdm4 and Rdm5 resistance loci were located in a genomic region collinear with the molecular linkage group (MLG) A2 (chromosome 8) of the soybean genetic map. The linkage group contains two SSR markers, Sat_162 and Satt233, flanking the Rdm4 and Rdm5 loci. These SSR will be useful to increase the efficiency of selection in breeding programs aimed to incorporate Rdm4 and Rdm5 genes into soybean elite germplasm.  相似文献   

10.
11.
The extensive use of copper and booster biocides in antifouling (AF) paints has raised environmental concerns and the need to develop new AF agents. In the present study, 18 alkaloids derived from terrestrial plants were initially evaluated for AF activity using laboratory bioassays with the bryozoan Bugula neritina and the barnacle Balanus albicostatus. The results showed that 4 of the 18 alkaloids were effective in inhibiting larval settlement of B. neritina, with an EC50 range of 6.18 to 43.11 μM, and 15 of the 18 alkaloids inhibited larval settlement of B. albicostatus, with EC50 values ranging from 1.18 to 67.58 μM. Field trials that incorporated five alkaloids respectively into paints with 20% w/w indicated an in situ AF efficiency of evodiamine, strychnine, camptothecin (CPT), and cepharanthine, with the most potent compound being CPT, which also exhibited stronger AF efficiency than the commercial antifoulants cuprous oxide and zinc pyrithione in the field over a period of 12 months. Further field trials with different CPT concentrations (0.1 to 20% w/w) in the paints suggested a concentration-dependent AF performance in the natural environment, and the effective concentrations to significantly inhibit settlement of biofoulers in the field were ≥?0.5% w/w (the efficiency of 0.5% w/w lasted for 2 months). Moreover, CPT toxicity against the crustacean Artemia salina, the planktonic microalgae Phaeodactylum tricornutum and Isochrysis galbana, was examined. The results showed that 24 h LC50 of CPT against A. salina was 20.75 μM, and 96 h EC50 (growth inhibition) values of CPT to P. tricornutum and I. galbana were 55.81 and 6.29 μM, respectively, indicating that CPT was comparatively less toxic than several commercial antifoulants previously reported. Our results suggest the novel potential application of CPT as an antifoulant.  相似文献   

12.
13.
It is known that somatic mutations arising during animal growth and ageing contribute to the development of neurodegenerative and other animal diseases. For plants, several studies showed that small-scale somatic DNA mutations accumulated during Arabidopsis life cycle. However, there is a lack of data on the influence of environmental stresses on somatic DNA mutagenesis in plants. In this study, we analyzed the effects of ultraviolet C (UV-C) irradiation, high soil salinity, and cadmium (CdI3) stresses on the level of small-scale somatic DNA mutations in Arabidopsis thaliana. The number of DNA mutations was examined in the Actin2 3′UTR (Actin-U1), ITS1-5.8rRNA-ITS2 (ITS), and ribulose-1,5-biphosphate carboxylase/oxygenase (rbcL) DNA regions. We found that somatic mutation levels considerably increased in CdI3-treated Arabidopsis plants, while the mutation levels declined in the UV-C- and NaCl-treated A. thaliana. Cadmium is a mutagen that is known to inhibit DNA repair processes. The detected stress-induced alterations in somatic DNA mutation levels were accompanied by markedly increased expression of base excision repair genes (AtARP, AtDME, AtDML2, AtDML3, AtMBD4, AtROS, AtUNG, and AtZDP), nucleotide excision repair genes (AtDDB1a, AtRad4, and AtRad23a), mismatch repair genes (AtMSH2, AtMSH3, and AtMSH7), and photoreactivation genes (AtUVR2, AtUVR3). Thus, the results demonstrated that UV-C, high soil salinity, and cadmium stresses influence both the level of DNA mutations and expression of DNA repair genes. Salt- and UV-induced activation of DNA repair genes could contribute to the stress-induced decrease in somatic mutation level.  相似文献   

14.
15.
16.
The RNA binding protein quaking (QKI), a key member of the STAR family, as an upstream gene could involve in much process including cell proliferation, apoptosis, differentiation and so on. However, the roles of QKI in germ cell, especially in swine testis (ST) cells, was not clear currently. And apoptosis plays important roles in the growth and development. The purpose of the present study was to clarify the relationship between QKI and apoptosis in ST cells. Firstly, our results showed that pEF1α-QKI and shQKI3 have clear effects on expression levels of QKI. Secondly, we established that QKI directly binds to WT1 3′UTR by binding with QRE-1 (2046–2052 bp, ACTAAC) only. Furthermore, QKI overexpression significantly increased the expression levels of WT1 and Bcl-2. QKI also has the effect on delaying the degradation of WT1 mRNA. In addition, we verified that QKI had a significantly suppressed apoptosis in ST cells. Finally, pBI-WT1 could make up for shQKI3-induced decrease in WT1, Bcl-2 mRNA levels and suppress apoptosis in ST cells. The results demonstrated that QKI was an important regulatory factor that affects apoptosis by targeting WT1 gene.  相似文献   

17.
The effect of mutations in the genes encoding glutathione, glutaredoxin, thioredoxin, and thioredoxin reductase on the response of growing Escherichia coli to oxidative stress was studied. The gshA mutants defective in glutathione synthesis had the lowest resistance to high doses of H2O2, whereas the trxB mutants defective in thioredoxin reductase synthesis had the highest resistance to this oxidant, exceeding that of the parent strain. Among the studied mutants, the trxB cells demonstrated the highest basic levels of catalase activity and intracellular glutathione; they were able to rapidly reach the normal GSH level after oxidative stress. At the same time, these bacteria showed high frequency of induced mutations. The expression of the katG and sulA genes suggests that, having different sensitivity to high oxidant concentrations, the studied mutants differ primarily in their ability to induce the antioxidant genes of the OxyR and SOS regulons.  相似文献   

18.

Background

Oxidative stress can induce cell injury in vascular endothelial cells, which is the initial event in the development of atherosclerosis. Although quantitative real-time polymerase chain reaction (qRT-PCR) has been widely used in gene expression studies in oxidative stress injuries, using carefully validated reference genes has not received sufficient attention in related studies. The objective of this study, therefore, was to select a set of stably expressed reference genes for use in qRT-PCR normalization in oxidative stress injuries in human umbilical vein endothelial cells (HUVECs) induced by hydrogen peroxide (H2O2).

Results

Using geNorm analysis, we found that five stably expressed reference genes were sufficient for normalization in qRT-PCR analysis in HUVECs treated with H2O2. Genes with the most stable expression according to geNorm were U6, TFRC, RPLP0, GAPDH, and ACTB, and according to NormFinder were ALAS1, TFRC, U6, GAPDH, and ACTB.

Conclusion

Taken together, our study demonstrated that the expression stability of reference genes may differ according to the statistical program used. U6, TFRC, RPLP0, GAPDH, and ACTB was the optimal set of reference genes for studies on gene expression performed by qRT-PCR assays in HUVECs under oxidative stress study.
  相似文献   

19.
Climate change is anticipated to affect freshwater resources, but baseline data on the functioning of tropical watersheds is lacking, limiting efforts that seek to predict how watershed processes, water supply, and streamflow respond to anticipated changes in climate and vegetation change, and to management. To address this data gap, we applied the distributed hydrology soil vegetation model (DHSVM) across 88 watersheds spanning a highly constrained, 4500 mm mean annual rainfall (MAR) gradient on Hawai‘i Island to quantify stream flow at 3-h time-steps for eight years in response to the independent and interactive effects of (1) large observed decrease in MAR; (2) projected warming and altered precipitation; and (3) four scenarios of forest invasion by the high water-demanding non-native tree species Psidium cattleianum. The model captured 62% of variability in measured flow at daily time scales, 95% at monthly time scales, and 98% at annual time scales. We found that low DHSVM modeled flow (Q 90) and storm flow (Q 10) responses to observed declines in rainfall dwarfed those of projected temperature increase or invasion, with flow decline positively correlated with MAR. As a percentage of streamflow, temperature and invasion reductions were negatively correlated with MAR. By comparison, warming alone had little effect on Q 90 or Q 10, but both decreased with increasing P. cattleianum cover, and projected effects of declining MAR were accentuated when combined with P. cattleianum and warming. Restoration mitigated some effects of climate warming by increasing stream base flows, with the relative effects of restoration being larger in drier versus wetter watersheds. We conclude that potential changes in climate in tropical environments are likely to exert significant effects on streamflow, but managing vegetation can provide mitigating benefits.  相似文献   

20.

Objectives

To analyze the anti-insect mechanism of viral pesticide AcMNPV-BmK IT(P10/PH) in the host Spodoptera frugiperda 9 (Sf9) cells.

Results

Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV)- mediated expression of BmK IT, regulated by P10 protein promoter (P10) and polyhedrosis promoter (PH), promoted the replication of progeny virus in host Sf9 cells. AcMNPV-BmK IT(P10) could accelerate the budding process (or speed) of budded virus (BV) in Sf9 cells. The impact of AcMNPV-BmK IT(P10) on the nuclear polymerization of filamentous actin (F-actin) participated in regulating the accelerated budding process. Unexpectedly, both AcMNPV-BmK IT(P10) and AcMNPV-BmK IT(PH) delayed the nuclear polymerization of F-actin and promoted the clearance of F-actin in the nucleus. SfP53, an important apoptosis factor, was involved in the regulation of AcMNPV-BmK IT(P10/PH) in Sf9 cells. AcMNPV-BmK IT(P10/PH) could also delay and promote the nuclear recruitment of SfP53 after 27 h post infection (h p.i.).

Conclusion

SfP53 and F-actin are the targets of viral pesticide AcMNPV-BmK IT (P10/PH) in host Sf9 cells, which provides the experimental basis for the development of recombinant baculovirus biopesticides.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号