首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 412 毫秒
1.
Proliferative resistance to transforming growth factor β (TGF‐β) is regarded as a critical turning point in the malignant progression of many cancer types. In melanoma this resistance is associated with more aggressive metastatic behaviour. A recent study by our group identified proliferative and invasive subtypes of melanoma cultures and found that these are, respectively, susceptible and resistant to TGF‐β suppression of proliferation. Here, using previously characterised proliferative and invasive phenotype melanoma cultures, we explored molecular responses involved in modulating susceptibility to TGF‐β‐mediated inhibition of proliferation. The Id2 gene was identified as being expressed more strongly in invasive phenotype cells less susceptible to TGF‐β repression than in proliferative phenotype cells. We correlated TGF‐β repression of Id2 gene expression in proliferative phenotype cells with p15Ink4b induction and cell cycle arrest. Furthermore, ectopic Id2 expression in proliferative phenotype cells counteracted p15Ink4b induction and consequently protected them from TGF‐β‐mediated inhibition of proliferation. We conclude that transition to increased aggressiveness in melanoma cells requires Id2 upregulation to suppress TGF‐β induction of p15Ink4b and thus help to circumvent TGF‐β‐mediated inhibition of proliferation.  相似文献   

2.
The sry‐related high‐mobility box (SOX)‐2 protein has recently been proven to play a significant role in progression, metastasis, and clinical prognosis spanning several cancer types. Research on the role of SOX2 in melanoma is limited and currently little is known about the mechanistic function of this gene in this context. Here, we observed high expression of SOX2 in both human melanoma cell lines and primary melanomas in contrast to melanocytic nevi. This overexpression in melanoma can, in part, be explained by extra gene copy numbers of SOX2 in primary samples. Interestingly, we were able to induce SOX2 expression, mediated by SOX4, via TGF‐β1 stimulation in a time‐dependent manner. Moreover, the knockdown of SOX2 impaired TGF‐β‐induced invasiveness. This phenotype switch can be explained by SOX2‐mediated cross talk between TGF‐β and non‐canonical Wnt signaling. Thus, we propose that SOX2 is involved in the critical TGF‐β signaling pathway, which has been shown to correlate with melanoma aggressiveness and metastasis. In conclusion, we have identified a novel downstream factor of TGF‐β signaling in melanoma, which may have further implications in the clinic.  相似文献   

3.
The discoidin domain receptor 1 (DDR1) is a member of the receptor tyrosine kinase family that signals in response to collagen and that has been implicated in cancer progression. In the present study, we investigated the expression and role of DDR1 in human melanoma progression. Immunohistochemical staining of human melanoma specimens (n = 52) shows high DDR1 expression in melanoma lesions that correlates with poor prognosis. DDR1 expression was associated with the clinical characteristics of Clark level and ulceration and with BRAF mutations. Downregulation of DDR1 by small interfering RNA (siRNA) in vitro inhibited melanoma cells malignant properties, migration, invasion, and survival in several human melanoma cell lines. A DDR tyrosine kinase inhibitor (DDR1‐IN‐1) significantly inhibited melanoma cell proliferation in vitro, and ex vivo and in tumor xenografts, underlining the promising potential of DDR1 inhibition in melanoma.  相似文献   

4.
Ret transgenic mouse model of skin malignant melanoma is characterized by the overexpression of the human ret transgene in melanin‐containing cells. Transgenic mice spontaneously develop skin tumors with metastases in lymph nodes, lungs, liver, brain, and the bone marrow. Tumor lesions show typical melanoma morphology and express melanoma‐associated antigens. Although transgenic mice demonstrate an accumulation of melanoma antigen‐specific memory and effector T cells, their anti‐tumor effects could be blocked by highly immunosuppressive leukocytes enriched in the tumor microenvironment and in the periphery. Here, we discuss the role of one of the most potent immunosuppressive subset, regulatory T cells, in the melanoma progression in this model.  相似文献   

5.
6.
7.
Background aimsThe aim of this study was to engineer sizable three-dimensional cartilage-like constructs using stem cells isolated from human dental pulp stem cells (DPSCs).MethodsHuman DPSCs were isolated from teeth extracted for orthodontic treatment and enriched further using immuno-magnetic bead selection for stem cell marker CD146. Chondrogenic lineage differentiation of DPSCs induced using recombinant transforming growth factor β3 (TGFβ3) was verified by pellet culture. Because the use of recombinant proteins is associated with rapid degradation and difficult in vivo administration, we constructed the recombinant adeno-associated viral vector encoding human TGFβ3 and determined the best multiplicity of infection for DPSCs. Transduced DPSCs were seeded on poly-l-lactic acid/polyethylene glycol (PLLA/PEG) electrospun fiber scaffolds demonstrating proper attachment, proliferation and viability as shown by scanning electron microscopy micrographs and CCK-8 cell counting kit. Scaffolds seeded with DPSCs were implanted in the back of nude mice.ResultsTransduced DPSCs highly expressed human TGFβ3 for up to 48 days and expressed chondrogenic markers collagen IIa1, Sox9 and aggrecan, as verified by immunohistochemistry and messenger RNA (mRNA). Immunohistochemistry for TGFβ3/DPSC constructs (n = 5/group) showed cartilage-like matrix formation with glycosaminoglycans. In vivo constructs with TGFβ3/DPSCs showed higher collagen type II and Sox9 mRNA expression relative to non-transduced DPSC constructs (n = 5/group). Western blot analysis confirmed this expression pattern on the protein level (n = 3/group).ConclusionsImmuno-selected DPSCs can be successfully differentiated toward chondrogenic lineage, while expressing the chondrogenic inducing factor. Seeded on PLLA/PEG electrospun scaffold, human DPSCs formed three-dimensional cartilage constructs that could prove useful in future treatment of cartilage defects.  相似文献   

8.
9.
Fusion hybrids between normal macrophages and Cloudman S91 melanoma cells were shown earlier to have increased metastatic potential, along with high expression of β1,6‐N‐acetylglucosaminyltransferase  V and β1,6‐branched oligosaccharides. Curiously, hybrids, but not parental melanoma cells, also produced ‘coarse melanin’– autophagic vesicles with multiple melanosomes. As β1,6‐branched oligosaccharides were known to be associated with metastasis, and coarse melanin had been described in invasive human melanomas, we looked for potential relationships between the two. Using lectin‐ and immunohistochemistry, we analyzed cell lines producing coarse melanin for β1,6‐branched oligosaccharides: gp100/pmel‐17 (a melanosomal structural component) and CD63 (a late endosome/lysosome component associated with melanoma and certain other human cancers). Cell lines used in this study were (i) hybrid 94‐H48, a highly metastatic, macrophage–melanoma experimental fusion hybrid; (ii) 6neo mouse melanoma cells, the weakly metastatic, parental fusion partner; and (iii) SKmel‐23, a human melanoma cell line derived from a metastasis. Coarse melanin granules were prominent both in hybrids and in SKmel‐23 cells, and co‐localized with stains for β1,6‐branched oligosaccharides, gp100/pmel 17, and CD63. This is the first report of this phenotype being expressed in vitro, although co‐expression of β1,6‐branched oligosaccharides and coarse melanin was recently shown to be a common and pervasive characteristic in archival specimens of human melanomas, and was most prominent in metastases. The results suggest that pathways of melanogenesis in melanoma may differ significantly from those in normal melanocytes. In vitro expression of this phenotype provides new biological systems for more detailed analyses of its genesis and regulation at the molecular genetic level.  相似文献   

10.
Genomic rearrangements resulting in activating kinase fusions have been increasingly described in a number of cancers including malignant melanoma, but their frequency in specific melanoma subtypes has not been reported. We used break‐apart fluorescence in situ hybridization (FISH) to identify genomic rearrangements in tissues from 59 patients with various types of malignant melanoma including acral lentiginous, mucosal, superficial spreading, and nodular. We identified four genomic rearrangements involving the genes BRAF, RET, and ROS1. Of these, three were confirmed by Immunohistochemistry (IHC) or sequencing and one was found to be an ARMC10‐BRAF fusion that has not been previously reported in melanoma. These fusions occurred in different subtypes of melanoma but all in tumors lacking known driver mutations. Our data suggest gene fusions are more common than previously thought and should be further explored particularly in melanomas lacking known driver mutations.  相似文献   

11.
Over the past decades, the incidence of cutaneous melanoma in developed countries has increased faster than any other cancer. Although most patients have localized disease at the time of diagnosis and are cured by surgical excision of the primary tumor, melanoma can be highly malignant and the survival dramatically decreases for advanced stage melanomas. It is thus necessary to understand the progression of this disease. Cell migration and invasion promote tumor metastasis, the major cause of melanoma cancer morbidity and death. In this study, we investigated the role of the TGFβ/Smad signaling pathway in melanoma tumor progression and found TGFβ to potently inhibit both cell migration and invasion in human melanoma cell lines, established from different patients. Furthermore, we elucidated the molecular mechanisms by which TGFβ exerts its effects and found the plasminogen activation system (PAS) to play a central role in the regulation of these effects. We found TGFβ to strongly up-regulate the Plasminogen Activator Inhibitor-1 (PAI-1) in melanoma cells, leading to reduced plasmin generation and activity and, in turn to inhibition of cell migration and invasion. Together, our results define TGFβ as a potent suppressor of tumor progression in cutaneous melanoma, inhibiting both cell migration and invasion.  相似文献   

12.
Melanoma represents a significant malignancy in humans and dogs. Different from genetically engineered models, sporadic canine melanocytic neoplasms share several characteristics with human disease that could make dogs a more relevant preclinical model. Canine melanomas rarely arise in sun‐exposed sites. Most occur in the oral cavity, with a subset having intra‐epithelial malignant melanocytes mimicking the in situ component of human mucosal melanoma. The spectrum of canine melanocytic neoplasia includes benign lesions with some analogy to nevi, as well as invasive primary melanoma, and widespread metastasis. Growing evidence of distinct subtypes in humans, differing in somatic and predisposing germ‐line genetic alterations, cell of origin, epidemiology, relationship to ultraviolet radiation and progression from benign to malignant tumors, may also exist in dogs. Canine and human mucosal melanomas appear to harbor BRAF, NRAS, and c‐kit mutations uncommonly, compared with human cutaneous melanomas, although both species share AKT and MAPK signaling activation. We conclude that there is significant overlap in the clinical and histopathological features of canine and human mucosal melanomas. This represents opportunity to explore canine oral cavity melanoma as a preclinical model.  相似文献   

13.
To determine the contribution by tenascin X (Tnx) gene expression to corneal stromal angiogenesis, the effects were determined of its loss on this response in TNX knockout (KO) mice. In parallel, the effects of such a loss were evaluated on vascular endothelial growth factor (VEGF) and transforming growth factor β1 (TGFβ1) gene and protein expression in fibroblasts and macrophages in cell culture. Histological, immunohistochemical and quantitative RT‐PCR changes determined if Tnx gene ablation on angiogenic gene expression, inflammatory cell infiltration and neovascularization induced by central corneal stromal cauterization. The role was determined of Tnx function in controlling VEGF‐A or TGFβ1 gene expression by comparing their expression levels in ocular fibroblasts and macrophages obtained from wild‐type (WT) and body‐wide Tnx KO mice. Tnx was up‐regulated in cauterized cornea. In Tnx KO, macrophage invasion was attenuated, VEGF‐A and its cognate receptor mRNA expression along with neovascularization were lessened in Tnx KOs relative to the changes occurring in their WT counterpart. Loss of Tnx instead up‐regulated in vivo mRNA expression of anti‐angiogenic VEGF‐B but not VEGF‐A. On the other hand, TGFβ1 mRNA expression declined in Tnx KO cultured ocular fibroblasts. Loss of Tnx gene expression caused VEGF‐A expression to decline in macrophages. Tnx gene expression contributes to promoting TGFβ1 mRNA expression in ocular fibroblasts and VEGF‐A in macrophages, macrophage invasion, up‐regulation of VEGF‐A expression and neovascularization in an injured corneal stroma. On the other hand, it suppresses anti‐angiogenic VEGF‐B mRNA expression in vivo.  相似文献   

14.
15.
Next‐generation sequencing has enabled genetic and genomic characterization of melanoma to an unprecedent depth. However, the high mutational background plus the limited depth of coverage of whole‐genome sequencing performed on cutaneous melanoma samples make the identification of novel driver mutations difficult. We sought to explore the somatic mutation portfolio in exonic and gene regulatory regions in human melanoma samples, for which we performed targeted sequencing of tumors and matched germline DNA samples from 89 melanoma patients, identifying known and novel recurrent mutations. Two recurrent mutations found in the RPS27 promoter associated with decreased RPS27 mRNA levels in vitro. Data mining and IHC analyses revealed a bimodal pattern of RPS27 expression in melanoma, with RPS27‐low patients displaying worse prognosis. In vitro characterization of RPS27‐high and RPS27‐low melanoma cell lines, as well as loss‐of‐function experiments, demonstrated that high RPS27 status provides increased proliferative and invasive capacities, while low RPS27 confers survival advantage in low attachment and resistance to therapy. Additionally, we demonstrate that 10 other cancer types harbor bimodal RPS27 expression, and in those, similarly to melanoma, RPS27‐low expression associates with worse clinical outcomes. RPS27 promoter mutation could thus represent a mechanism of gene expression modulation in melanoma patients, which may have prognostic and predictive implications.  相似文献   

16.
The protein melanoma inhibitory activity (MIA) is known to be expressed in melanoma and to support melanoma progression. Interestingly, previous studies also observed the expression of MIA in nevi. Concentrating on these findings, we revealed that MIA expression is correlated with a senescent state in melanocytes. Induction of replicative or oncogene‐induced senescence resulted in increased MIA expression in vitro. Notably, MIA knockdown in senescent melanocytes reduced the percentage of senescence‐associated beta‐Gal‐positive cells and enhanced proliferation. Using the melanoma mouse model Tg(Grm1), MIA‐deficient mice supported the impact of MIA on senescence by showing a significantly earlier tumor onset compared to controls. In melanocytes, MIA knockdown led to a downregulation of the cell cycle inhibitor p21 in vitro and in vivo. In contrast, after induction of hTERT in human melanoma cells, p21 regulation by MIA was lost. In summary, our data show for the first time that MIA is a regulator of cellular senescence in human and murine melanocytes.  相似文献   

17.
Chronic sun‐damaged (CSD) melanoma represents 10%–20% of cutaneous melanomas and is characterized by infrequent BRAF V600E mutations and high mutational load. However, the order of genetic events or the extent of intra‐tumor heterogeneity (ITH) in CSDhigh melanoma is still unknown. Ultra‐deep targeted sequencing of 40 cancer‐associated genes was performed in 72 in situ or invasive CMM, including 23 CSDhigh cases. In addition, we performed whole exome and RNA sequencing on multiple regions of primary tumor and multiple in‐transit metastases from one CSDhigh melanoma patient. We found no significant difference in mutation frequency in melanoma‐related genes or in mutational load between in situ and invasive CSDhigh lesions, while this difference was observed in CSDlow lesions. In addition, increased frequency of BRAF V600K, NF1, and TP53 mutations (p < .01, Fisher's exact test) was found in CSDhigh melanomas. Sequencing of multiple specimens from one CSDhigh patient revealed strikingly limited ITH with >95% shared mutations. Our results provide evidence that CSDhigh and CSDlow melanomas are distinct molecular entities that progress via different genetic routes.  相似文献   

18.
19.
Chemokine signals mediated by Sdf1/Cxcl12 through the chemokine receptor Cxcr4 are thought to play an instructive role in tumor migration and organ‐specific metastasis. We have used a small aquarium fish model to contribute to a better understanding of how the course of melanoma development is influenced by Sdf1 signals in vivo. We studied oncogene‐induced skin tumor appearance and progression in the transgenic medaka (Oryzias latipes) melanoma model. Similar to humans, invasive medaka melanomas show increased levels of sdf1, cxcr4, and cxcr7 gene expression. Stable transgenic fish lines overexpressing sdf1 exclusively in pigment cells showed a reduction in melanoma appearance and progression. Remarkably, diminished levels of functional Cxcr7, but not of Cxcr4b, resulted in strongly reduced melanoma invasiveness and a repression of melanoma. Our results thereby indicate that Sdf1 signals via Cxcr7 are able to constrain melanoma growth in vivo and that these signals influence tumor outcome.  相似文献   

20.
Tryptase‐positive mast cells populate melanomas, but it is not known whether tryptase impacts on melanoma progression. Here we addressed this and show that melanoma growth is significantly higher in tryptase‐deficient (Mcpt6?/?) versus wild‐type mice. Histochemical analysis showed that mast cells were frequent in the tumor stroma of both wild‐type and Mcpt6?/? mice, and also revealed their presence within the tumor parenchyma. Confocal microscopy analysis revealed that tryptase was taken up by the tumor cells. Further, tryptase‐positive granules were released from mast cells and were widely distributed within the tumor tissue, suggesting that tryptase could impact on the tumor microenvironment. Indeed, gene expression analysis showed that the absence of Mcpt6 caused decreased expression of numerous genes, including Cxcl9, Tgtp2, and Gbp10, while the expression of 5p‐miR3098 was enhanced. The levels of CXCL9 were lower in serum from Mcpt6?/? versus wild‐type mice. In further support of a functional impact of tryptase on melanoma, recombinant tryptase (Mcpt6) was taken up by cultured melanoma cells and caused reduced proliferation. Altogether, our results indicate a protective role of mast cell tryptase in melanoma growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号