首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
While glycosyltransferases are restrictively expressed in invertebrate model organisms, little is known of their glycan end products. One such restrictively expressed glycoepitope was localized to sensory and epithelial cells of leech and Caenorhabditis elegans using the Lan3‐2 monoclonal antibody. A biological function for the neural Lan3‐2 epitope was previously determined in the leech. Here we report on the chemical structure of this mannosidic epitope harvested from whole Hirudo medicinalis. Crude glycans were liberated from glycoproteins by hydrazinolysis. Re‐N‐acetylated glycans were subjected to immunoaffinity purification. The affinity‐purified glycans were fractioned by size chromatography into oligosaccharides and polysaccharides. Lan3‐2 oligosaccharide structure was characterized by gas chromatography of alditol acetates, methylation analysis, 500 MHz 1H NMR spectroscopy, matrix‐assisted laser desorption/ionization mass spectrometry, and electrospray ionization tandem MS‐MS of permethylated derivatives. The predominant components of the Lan3‐2 oligosaccharide fraction were a series of linear β‐(1,4)‐linked mannose polymers. The homologous expression of the Lan3‐2 epitope in C. elegans will facilitate the exploration of its glycosylation pathway. Other invertebrates expressing the Lan3‐2 epitope are Planaria dugesia, Capitella sp. I and Lumbriculus variegatus. The glycoepitope was not detected in the diploblastic animals Hydra littoralis and Aptaisia sp. or in deuterostomes.  相似文献   

2.
3.
This study examined the effects of β‐carotene on antioxidant status in rats with chronic alcohol consumption. At the beginning of experiment (week 0), according to both the plasma aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities, rats (n = 24) were divided into 3 groups and fed with a standard diet (group C), a diet containing ethanol (group E), or a diet containing ethanol and β‐carotene (group E+B). After 10 weeks, plasma AST and ALT, fat accumulation in the liver, antioxidant enzyme activities in erythrocytes and the liver, malondialdehyde (MDA), and α‐tocopherol and retinol in plasma and hepatic samples were analyzed. The chronic alcohol diet significantly increased AST and ALT levels in plasma, and these changes were prevented by supplementing the diet with β‐carotene. Glutathione (GSH) in erythrocytes and in the liver was significantly elevated in rats fed with a diet containing β‐carotene. The results indicate that β‐carotene supplementation can prevent ethanol‐induced liver damage and increase GSH concentrations in erythrocytes and the liver. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
The β‐carotene embedded amylose microparticles (BC‐AmMPs) were prepared in one‐step by utilizing the unique catalytic activity of amylosucrase from Deinococcus geothermalis (DgAS), which synthesizes linear amylose chains using sucrose as the sole substrate. Synthesized amylose chains self‐assembled with β‐carotene to form well‐defined spherical microparticles with an encapsulation yield of 65%. The BC‐AmMPs produced (average diameter ~8 µm) were bright orange due to the embedded β‐carotene, and this was confirmed by Raman analysis. XRD showed BC‐AmMPs had a B‐type amylose crystal structure with a degree of crystallinity lower than that of AmMPs. This lower crystallinity of AmMP after BC encapsulation was confirmed by DSC analysis. Decreased enthalpy of gelatinization (ΔHgel) of BC‐AmMP implied that molecular order within the amylose microstructure was influenced by the presence of BC. The stability of BC against environmental stresses, such as UV light and oxidative stress, was significantly enhanced by its encapsulation. The authors propose a new approach to the preparation of an amylose based carrier system for active compounds or expensive food ingredients with poor stabilities during storage or processing. Given that amylose is a safe food material, the devised encapsulation system will find wide range of practical applications in the food industry. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1640–1646, 2017  相似文献   

5.
The number of rachis nodes (spikelets) on a wheat spike is a component of grain yield that correlates with flowering time. The genetic basis regulating flowering in cereals is well understood, but there are reports that flowering time can be modified at a high frequency by selective breeding, suggesting that it may be regulated by both epigenetic and genetic mechanisms. We investigated the role of DNA methylation in regulating spikelet number and flowering time by treating a semi‐spring wheat with the demethylating agent, Zebularine. Three lines with a heritable increase in spikelet number were identified. The molecular basis for increased spikelet number was not determined in 2 lines, but the phenotype showed non‐Mendelian inheritance, suggesting that it could have an epigenetic basis. In the remaining line, the increased spikelet phenotype behaved as a Mendelian recessive trait and late flowering was associated with a deletion encompassing the floral promoter, FTB1. Deletion of FT‐B1 delayed the transition to reproductive growth, extended the duration of spike development, and increased spikelet number under different temperature regimes and photoperiod. Transiently disrupting DNA methylation can generate novel flowering behaviour in wheat, but these changes may not be sufficiently stable for use in breeding programs.  相似文献   

6.
The recently emerged CRISPR/Cas9 approach represents an efficient and versatile genome editing tool for producing genetically modified animals. Β‐carotene oxygenase 2 (BCO2) is a key enzyme in the progress of β‐carotene metabolism and is associated with yellow adipose tissue color in sheep. We have recently demonstrated targeted multiplex mutagenesis in sheep and have generated a group of BCO2‐disrupted sheep by zygote injection of the CRISPR/Cas9 components. Here, we show that biallelic modification of BCO2 resulted in yellow fat, compared with the fat color in monoallelic individuals and wild types (snow‐flower white). We subsequently characterized the effects of gene modifications at genetic levels employing sequencing and Western blotting, highlighting the importance of the BCO2 gene for the determination of fat color in sheep. These results indicate that genetic modification via CRISPR/Cas9 holds great potential for validating gene functions as well as for generating desirable phenotypes for economically important traits in livestock.  相似文献   

7.
Biosynthesis of asymmetric carotenoids such as α‐carotene and lutein in plants and green algae involves the two enzymes lycopene β‐cyclase (LCYB) and lycopene ε‐cyclase (LCYE). The two cyclases are closely related and probably resulted from an ancient gene duplication. While in most plants investigated so far the two cyclases are encoded by separate genes, prasinophyte algae of the order Mamiellales contain a single gene encoding a fusion protein comprised of LCYB, LCYE and a C‐terminal light‐harvesting complex (LHC) domain. Here we show that the lycopene cyclase fusion protein from Ostreococcus lucimarinus catalyzed the simultaneous formation of α‐carotene and β‐carotene when heterologously expressed in Escherichia coli. The stoichiometry of the two products in E. coli could be altered by gradual truncation of the C‐terminus, suggesting that the LHC domain may be involved in modulating the relative activities of the two cyclase domains in the algae. Partial deletions of the linker region between the cyclase domains or replacement of one or both cyclase domains with the corresponding cyclases from the green alga Chlamydomonas reinhardtii resulted in pronounced shifts of the α‐carotene‐to‐β‐carotene ratio, indicating that both the relative activities of the cyclase domains and the overall structure of the fusion protein have a strong impact on the product stoichiometry. The possibility to tune the product ratio of the lycopene cyclase fusion protein from Mamiellales renders it useful for the biotechnological production of the asymmetric carotenoids α‐carotene or lutein in bacteria or fungi.  相似文献   

8.
Dormancy‐associated MADS‐box (DAM) genes play an important role in endodormancy phase transition. We investigated histone modification in the DAM homolog (PpMADS13‐1) from Japanese pear, via chromatin immunoprecipitation–quantitative PCR, to understand the mechanism behind the reduced expression of the PpMADS13‐1 gene towards endodormancy release. Our results indicated that the reduction in the active histone mark by trimethylation of the histone H3 tail at lysine 4 contributed to the reduction of PpMADS13‐1 expression towards endodormancy release. In contrast, the inactive histone mark by trimethylation of the histone H3 tail at lysine 27 in PpMADS13‐1 locus was quite low, and these levels were more similar to a negative control [normal mouse immunoglobulin G (IgG)] than to a positive control (AGAMOUS) in endodormancy phase transition. The loss of histone variant H2A.Z also coincided with the down‐regulation of PpMADS13‐1. Subsequently, we investigated the PpMADS13‐1 signalling cascade and found that PpCBF2, a pear C‐repeated binding factor, regulated PpMADS13‐1 expression via interaction of PpCBF2 with the 5′‐upstream region of PpMADS13‐1 by transient reporter assay. Furthermore, transient reporter assay confirmed no interaction between the PpMADS13‐1 protein and the pear FLOWERING LOCUS T genes. Taken together, our results enhance understanding of the molecular mechanisms underlying endodormancy phase transition in Japanese pear.  相似文献   

9.
Metabolic syndrome is marked by perturbed glucocorticoid (GC) signaling, systemic inflammation, and altered immune status. Dehydroepiandrosterone (DHEA), a major circulating adrenal steroid and dietary supplement, demonstrates antiobesity, anti‐inflammatory, GC‐opposing and immune‐modulating activity when administered to rodents. However, plasma DHEA levels failed to correlate with metabolic syndrome and oral replacement therapy provided only mild benefits to patients. Androstene‐3β,7β,17β‐triol (β‐AET) an anti‐inflammatory metabolite of DHEA, also exhibits GC‐opposing and immune‐modulating activity when administered to rodents. We hypothesized a role for β‐AET in obesity. We now report that plasma levels of β‐AET positively correlate with BMI in healthy men and women. Together with previous studies, the observations reported here may suggest a compensatory role for β‐AET in preventing the development of metabolic syndrome. The β‐AET structural core may provide the basis for novel pharmaceuticals to treat this disease.  相似文献   

10.
11.
The T‐cell antigen receptor is a heterodimeric αβ protein (TCR) expressed on the surface of T‐lymphocytes, with each chain of the TCR comprising three complementarity‐determining regions (CDRs) that collectively form the antigen‐binding site. Unlike antibodies, which are closely related proteins that recognize intact protein antigens, TCRs classically bind, via their CDR loops, to peptides (p) that are presented by molecules of the major histocompatibility complex (MHC). This TCR‐pMHC interaction is crucially important in cell‐mediated immunity, with the specificity in the cellular immune response being attributable to MHC polymorphism, an extensive TCR repertoire and a variable peptide cargo. The ensuing structural and biophysical studies within the TCR‐pMHC axis have been highly informative in understanding the fundamental events that underpin protective immunity and dysfunctional T‐cell responses that occur during autoimmunity. In addition, TCRs can recognize the CD1 family, a family of MHC‐related molecules that instead of presenting peptides are ideally suited to bind lipid‐based antigens. Structural studies within the CD1‐lipid antigen system are beginning to inform us how lipid antigens are specifically presented by CD1, and how such CD1‐lipid antigen complexes are recognized by the TCR. Moreover, it has recently been shown that certain TCRs can bind to vitamin B based metabolites that are bound to an MHC‐like molecule termed MR1. Thus, TCRs can recognize peptides, lipids, and small molecule metabolites, and here we review the basic principles underpinning this versatile and fascinating receptor recognition system that is vital to a host's survival.  相似文献   

12.
Oncidium ‘Gower Ramsey’ (Onc. GR) is a popular cut flower, but its colour is limited to bright yellow. The β‐ring carotene hydroxylase (BCH2) gene is involved in carotenoid biogenesis for pigment formation. However, the role of BCH2 in Onc. GR is poorly understood. Here, we investigated the functions of three BCH2 genes, BCH‐A2, BCH‐B2 and BCH‐C2 isolated from Onc. GR, to analyse their roles in flower colour. RT‐PCR expression profiling suggested that BCH2 was mainly expressed in flowers. The expression of BCH‐B2 remained constant while that of BCH‐A2 gradually decreased during flower development. Using Agrobacterium tumefaciens to introduce BCH2 RNA interference (RNAi), we created transgenic Oncidium plants with down‐regulated BCH expression. In the transgenic plants, flower colour changed from the bright yellow of the wild type to light and white‐yellow. BCH‐A2 and BCH‐B2 expression levels were significantly reduced in the transgenic flower lips, which make up the major portion of the Oncidium flower. Sectional magnification of the flower lip showed that the amount of pigmentation in the papillate cells of the adaxial epidermis was proportional to the intensity of yellow colouration. HPLC analyses of the carotenoid composition of the transgenic flowers suggested major reductions in neoxanthin and violaxanthin. In conclusion, BCH2 expression regulated the accumulation of yellow pigments in the Oncidium flower, and the down‐regulation of BCH‐A2 and BCH‐B2 changed the flower colour from bright yellow to light and white‐yellow.  相似文献   

13.
The biological underpinnings linking stress to Alzheimer's disease (AD) risk are poorly understood. We investigated how corticotrophin releasing factor (CRF), a critical stress response mediator, influences amyloid‐β (Aβ) production. In cells, CRF treatment increases Aβ production and triggers CRF receptor 1 (CRFR1) and γ‐secretase internalization. Co‐immunoprecipitation studies establish that γ‐secretase associates with CRFR1; this is mediated by β‐arrestin binding motifs. Additionally, CRFR1 and γ‐secretase co‐localize in lipid raft fractions, with increased γ‐secretase accumulation upon CRF treatment. CRF treatment also increases γ‐secretase activity in vitro, revealing a second, receptor‐independent mechanism of action. CRF is the first endogenous neuropeptide that can be shown to directly modulate γ‐secretase activity. Unexpectedly, CRFR1 antagonists also increased Aβ. These data collectively link CRF to increased Aβ through γ‐secretase and provide mechanistic insight into how stress may increase AD risk. They also suggest that direct targeting of CRF might be necessary to effectively modulate this pathway for therapeutic benefit in AD, as CRFR1 antagonists increase Aβ and in some cases preferentially increase Aβ42 via complex effects on γ‐secretase.  相似文献   

14.
Metallo‐β‐lactamases (MBLs) are some of the best known β‐lactamases produced by common Gram‐positive and Gram‐negative pathogens and are crucial factors in the rise of bacterial resistance against β‐lactam antibiotics. Although many types of β‐lactamase inhibitors have been successfully developed and used in clinical settings, no MBL inhibitors have been identified to date. Nitrocefin, checkerboard and time‐kill assays were used to examine the enzyme behaviour in vitro. Molecular docking calculation, molecular dynamics simulation, calculation of the binding free energy and ligand‐residue interaction decomposition were used for mechanistic research. The behaviour of the enzymes in vivo was investigated by a mouse infection experiment. We showed that theaflavin‐3,3´‐digallate (TFDG), a natural compound lacking antibacterial activities, can inhibit the hydrolysis of MBLs. In the checkerboard and time‐kill assays, we observed a synergistic effect of TFDG with β‐lactam antibiotics against methicillin‐resistant Staphylococcus aureus BAA1717. Molecular dynamics simulations were used to identify the mechanism of the inhibition of MBLs by TFDG, and we observed that the hydrolysis activity of the MBLs was restricted by the binding of TFDG to Gln242 and Ser369. Furthermore, the combination of TFDG with β‐lactam antibiotics showed effective protection in a mouse Staphylococcus aureus pneumonia model. These findings suggest that TFDG can effectively inhibit the hydrolysis activity of MBLs and enhance the antibacterial activity of β‐lactam antibiotics against pathogens in vitro and in vivo.  相似文献   

15.
Chondrosarcoma is a type of highly malignant tumour with a potent capacity to invade locally and cause distant metastasis. Chondrosarcoma shows a predilection for metastasis to the lungs. Tumour necrosis factor (TNF)‐α is a key cytokine involved in inflammation, immunity, cellular homeostasis and tumour progression. Integrins are the major adhesive molecules in mammalian cells and have been associated with metastasis of cancer cells. However, the effects of TNF‐α in migration and integrin expression in chondrosarcoma cells are largely unknown. In this study, we found that TNF‐α increased the migration and the expression of αvβ3 integrin in human chondrosarcoma cells. Activations of MAPK kinase (MEK), extracellular signal‐regulating kinase (ERK) and nuclear factor‐κB (NF‐κB) pathways after TNF‐α treatment were demonstrated, and TNF‐α‐induced expression of integrin and migration activity was inhibited by the specific inhibitor and mutant of MEK, ERK and NF‐κB cascades. Taken together, our results indicated that TNF‐α enhances the migration of chondrosarcoma cells by increasing αvβ3 integrin expression through the MEK/ERK/NF‐κB signal transduction pathway. J. Cell. Physiol. 226: 792–799, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
17.
Tuberculosis is still affecting millions of people worldwide, and new resistant strains of Mycobacterium tuberculosis are being found. It is therefore necessary to find new compounds for treatment. In this paper, we report the synthesis and in vitro testing of peptidyl β‐aminoboronic acids and β‐aminoboronates with anti‐tubercular activity. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

18.
19.
β‐dystroglycan (β‐DG) is a widely expressed transmembrane protein that plays important roles in connecting the extracellular matrix to the cytoskeleton, and thereby contributing to plasma membrane integrity and signal transduction. We previously observed nuclear localization of β‐DG in cultured cell lines, implying the existence of a nuclear targeting mechanism that directs it to the nucleus instead of the plasma membrane. In this study, we delineate the nuclear import pathway of β‐DG, characterizing a functional nuclear localization signal (NLS) in the β‐DG cytoplasmic domain, within amino acids 776–782. The NLS either alone or in the context of the whole β‐DG protein was able to target the heterologous GFP protein to the nucleus, with site‐directed mutagenesis indicating that amino acids R779 and K780 are critical for NLS functionality. The nuclear transport molecules Importin (Imp)α and Impβ bound with high affinity to the NLS of β‐DG and were found to be essential for NLS‐dependent nuclear import in an in vitro reconstituted nuclear transport assay; cotransfection experiments confirmed the dependence on Ran for nuclear accumulation. Intriguingly, experiments suggested that tyrosine phosphorylation of β‐DG may result in cytoplasmic retention, with Y892 playing a key role. β‐DG thus follows a conventional Impα/β‐dependent nuclear import pathway, with important implications for its potential function in the nucleus. J. Cell. Biochem. 110: 706–717, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
5α‐Androst‐16‐en‐3α‐ol (α‐androstenol) is an important contributor to human axilla sweat odor. It is assumed that α‐andostenol is excreted from the apocrine glands via a H2O‐soluble conjugate, and this precursor was formally characterized in this study for the first time in human sweat. The possible H2O‐soluble precursors, sulfate and glucuronide derivatives, were synthesized as analytical standards, i.e., α‐androstenol, β‐androstenol sulfates, 5α‐androsta‐5,16‐dien‐3β‐ol (β‐androstadienol) sulfate, α‐androstenol β‐glucuronide, α‐androstenol α‐glucuronide, β‐androstadienol β‐glucuronide, and α‐androstenol β‐glucuronide furanose. The occurrence of α‐androstenol β‐glucuronide was established by ultra performance liquid chromatography (UPLC)/MS (heated electrospray ionization (HESI)) in negative‐ion mode in pooled human sweat, containing eccrine and apocrine secretions and collected from 25 female and 24 male underarms. Its concentration was of 79 ng/ml in female secretions and 241 ng/ml in male secretions. The release of α‐androstenol was observed after incubation of the sterile human sweat or α‐androstenol β‐glucuronide with a commercial glucuronidase enzyme, the urine‐isolated bacteria Streptococcus agalactiae, and the skin bacteria Staphylococcus warneri DSM 20316, Staphylococcus haemolyticus DSM 20263, and Propionibacterium acnes ATCC 6919, reported to have β‐glucuronidase activities. We demonstrated that if α‐ and β‐androstenols and androstadienol sulfates were present in human sweat, their concentrations would be too low to be considered as potential precursors of malodors; therefore, the H2O‐soluble precursor of α‐androstenol in apocrine secretion should be a β‐glucuronide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号