首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The global push to achieve ecosystem restoration targets has resulted in an increased demand for native seeds that current production systems are not able to fulfill. In many countries, seeds used in ecological restoration are often sourced from natural populations. Though providing seed that is reflective of the genetic diversity of a species, wild harvesting often cannot meet the demands for large‐scale restoration and may also result in depletion of native seed resources through over harvesting. To improve seed production and decrease seed costs, seed production systems have been established in several countries to generate native seeds based on agricultural or horticultural production methods or by managing natural populations. However, there is a need to expand these production systems which have a primary focus on herbaceous species to also include slower maturing shrub and tree seed. Here we propose that to reduce the threat of overharvest on the viability of natural populations, seed collection from natural populations should be replaced or supplemented by seed production systems. This overview of seed production systems demonstrates how to maximize production and minimize unintended selection bias so that native seed batches maintain genetic diversity and adaptability to underpin the success of ecological restoration programs.  相似文献   

2.
  • The growing number of restoration projects worldwide increases the demand for seed material of native species. To meet this demand, seeds are often produced through large‐scale cultivation on specialised farms, using wild‐collected seeds as the original sources. However, during cultivation, plants experience novel environmental conditions compared to those in natural populations, and there is a danger that the plants in cultivation are subject to unintended selection and lose their adaptation to natural habitats. Although the propagation methods are usually designed to maintain as much natural genetic diversity as possible, the effectiveness of these measures have never been tested.
  • We obtained seed of five common grassland species from one of the largest native seed producers in Germany. For each species, the seeds were from multiple generations of seed production. We used AFLP markers and a common garden experiment to test for genetic and phenotypic changes during cultivation of these plants.
  • The molecular markers detected significant evolutionary changes in three out of the five species and we found significant phenotypic changes in two species. The only species that showed substantial genetic and phenotypic changes was the short‐lived and predominantly selfing Medicago lupulina, while in the other, mostly perennial and outcrossing species, the observed changes were mostly minor.
  • Agricultural propagation of native seed material for restoration can cause evolutionary changes, at least in some species. We recommend caution, particularly in selfing and short‐lived species, where evolution may be more rapid and effects may thus be more severe.
  相似文献   

3.
Dependence on wild seed sources is often impractical for large‐scale habitat restoration programs. Reliance on commercial seed supplies of unknown provenance and fitness is thereby warranted. Little consideration has been given, however, to how the large volumes of seed required should be sourced. We evaluated commercial and locally collected seed sources for potential use in a New York State‐based, landscape‐scale program for restoring blue lupine Lupinus perennis. Through analysis of microsatellite markers we determined that “native” lupine designations by some commercial suppliers were in fact interspecific hybrids and therefore unreliable; at least two commercial sources, however, were genetically as close to native New York populations as native New York populations were to one other. Common garden experiments revealed that seed source influenced first‐year overwintering survival and subsequent height growth of surviving plants; seed sources more closely related genetically to native New York populations survived better and produced more stems per individual in the field in the area targeted for restoration. We conclude that (1) commercial suppliers often but not always offer reliably characterized seed sources of sufficient genetic similarity to native populations to warrant their use in restoration projects and (2) genetic affinity of potential seed stock to native populations is positively related to its fitness in the environment targeted for restoration.  相似文献   

4.
A common ecological restoration approach is the reestablishment of vegetation using seed mixtures. To preserve the natural genetic pattern of plant species local seed material should be used. Consequently, seed transfer zones (seed production areas and seed provenance regions) have been delineated for ecological restoration in Germany. Although it is assumed that these transfer zones represent genetic variation, there remains a lack of empirical data. In this study, we analyzed whether seed transfer zones reflect the genetic variation of the common grassland species Lathyrus pratensis. We sampled 706 individuals from 37 populations in Bavaria, Germany and analyzed genetic variation using amplified fragment length polymorphisms. In our study, we observed higher levels of genetic variation and fragment rarity in the southern Bavarian populations compared to northern populations. Our analyses revealed a strong genetic differentiation between southern and northern Bavarian populations delineated along the Danube River. However, seed production areas and seed provenance regions reflected genetic variation of L. pratensis only to a limited degree. Our study illustrates that the level of genetic variation within populations strongly depends on population history. Furthermore, the geomorphological and climatic attributes, which have been used to delineate seed provenance regions, do not reduce gene flow among populations. Seed collections for gene banks and seed production should comprise seeds from populations in southern and northern Bavaria representing the strong genetic variation between both regions, but prioritize southern populations due to higher levels of variation.  相似文献   

5.
Wild rice, Oryza rufipogon, has endangered species conservation status and it is subject to in situ conservation in China. To understand the potential of the seed bank in species conservation and population restoration, this study compared the genetic diversity of O. rufipogon plants with that of its soil seed banks in two marshes. A total of 11 pairs of rice SSR primers were used and 9 were polymorphic. Allele frequencies of the seeds differed significantly from those of surface plants and varied between soil layers. Relatively more alleles and higher genetic diversity (H e) were found in plant populations, relative to seed banks. The numbers of germinable seeds and the level of genetic variation in seed banks decreased with the increasing of soil depth, indicating a rapid seed loss. Genetic differentiation was detected between sites and between plant and seed populations, as well as among seeds of different soil strata. Rapid seed loss, partly dormancy loss, and nonrandom seed mortality are discussed as the possible contributors to the pattern of reduced genetic variation within seed banks, compared to plants. These could also be responsible for the considerable genetic differentiation between populations. The seed population held about 72% of the total genetic variation of O. rufipogon in each marsh, indicating the potential of seed banks for restoring population variabilities if the plant populations were lost.  相似文献   

6.
Effective seed storage after sourcing (harvesting or purchasing) is critical to restoration practitioners and native seed producers, as it is key to maintaining seed viability. Inadequate seed storage can lead to a waste of both natural and economic resources when seeds of poor quality are sown. When working with native species with unknown storage behavior, general assumptions can be made based on studies on related species, and standard practices may be applied with caution; however, an investigation should be conducted to understand if specific storage requirements are needed and for how long seeds can be stored before they lose significant viability. In this paper of the Special Issue Standards for Native Seeds in Ecological Restoration, we provide an overview of the key concepts in seed storage and the steps to take for effective storage of native seeds for restoration use.  相似文献   

7.
Seed persistence is the survival of seeds in the environment once they have reached maturity. Seed persistence allows a species, population or genotype to survive long after the death of parent plants, thus distributing genetic diversity through time. The ability to predict seed persistence accurately is critical to inform long‐term weed management and flora rehabilitation programs, as well as to allow a greater understanding of plant community dynamics. Indeed, each of the 420000 seed‐bearing plant species has a unique set of seed characteristics that determine its propensity to develop a persistent soil seed bank. The duration of seed persistence varies among species and populations, and depends on the physical and physiological characteristics of seeds and how they are affected by the biotic and abiotic environment. An integrated understanding of the ecophysiological mechanisms of seed persistence is essential if we are to improve our ability to predict how long seeds can survive in soils, both now and under future climatic conditions. In this review we present an holistic overview of the seed, species, climate, soil, and other site factors that contribute mechanistically to seed persistence, incorporating physiological, biochemical and ecological perspectives. We focus on current knowledge of the seed and species traits that influence seed longevity under ex situ controlled storage conditions, and explore how this inherent longevity is moderated by changeable biotic and abiotic conditions in situ, both before and after seeds are dispersed. We argue that the persistence of a given seed population in any environment depends on its resistance to exiting the seed bank via germination or death, and on its exposure to environmental conditions that are conducive to those fates. By synthesising knowledge of how the environment affects seeds to determine when and how they leave the soil seed bank into a resistance–exposure model, we provide a new framework for developing experimental and modelling approaches to predict how long seeds will persist in a range of environments.  相似文献   

8.
Plants growing at low density can suffer from Allee effects as a result of pollen limitation. Previous studies of Allee effects have focused on the effects of variation among populations in size or density on reproduction. Here, the effects of plant distribution within populations on fitness components are explored in a rare plant, Aconitum napellus ssp. lusitanicum, and ecological and genetic mechanisms underlying these effects are identified. To detect pollen limitation, seed production was compared under natural versus hand-supplemented pollinations on inflorescences of different sizes in natural patches differing both in flower density and in isolation from other patches. Germination rate and juvenile survival of seeds produced in low- and high-density patches were also compared. Pollen-supplemented flowers always produced more seeds than open-pollinated flowers, especially among small plants and plants growing at low density. Offspring produced in low-density patches exhibited lower fitness that those produced in high-density patches. This could have been caused by post-fertilization mechanisms, including inbreeding depression or differential maternal resource allocation. These results show that Allee effects on fitness components (ecological and genetic Allee effects) occur within A. napellus populations at different spatial scales. The spatial distribution of plants seems to be a crucial factor affecting reproductive output and fitness.  相似文献   

9.
Seeds of many species do not germinate immediately after dispersal, but instead may remain indefinitely in a dormant but viable state. Although it is well established that seeds often exhibit diversified patterns of dormancy and germination, the causes and consequences of this variation remain poorly understood. In this study, we investigate the extent to which seed genotypes of the desert mustard Lesquerella fendleri differentially germinate and establish under experimental conditions in a greenhouse. We used a two-way factorial design to compare genotypes of Lesquerella plants derived from seeds that germinated and established at different times and under different soil water regimes. Overall allozyme allele frequencies of Lesquerella plants varied significantly with both germination time and initial soil water availability. Single-locus heterozygosity analyses revealed that seeds sown into initially low water conditions produced plants that were significantly more heterozygous than plants derived from seeds experiencing constantly high water conditions, but heterozygosity did not differ significantly among plants originating from early- and late-germinating seeds. This is the first study to experimentally demonstrate that germination timing and environment can significantly affect the genetic structure of emerging plant populations. The study suggests that germination and survival behavior may (1) play an important role in generating and maintaining the genetic structure of natural plant populations and (2) set the stage for subsequent evolution.  相似文献   

10.
Greater pollination intensity can enhance maternal plant fitness by increasing seed set and seed quality as a result of more intense pollen competition or enhanced genetic sampling. We tested experimentally these effects by varying the pollen load from a single pollen donor on stigmas of female flowers of Dalechampia scandens (Euphorbiaceae) and measuring the effects on seed number and seed mass. Seed set increased rapidly with pollen number at low to moderate pollen loads, and a maximum set of three seeds occurred with a mean pollen load of 19 pollen grains. We did not detect a trade‐off between the number of seeds and seed mass within a fruit. Seed mass increased with increasing pollen load, supporting the hypothesis of enhanced seed quality via increased pollen‐competition intensity or genetic sampling. These results suggest that maternal fitness increases with larger pollen loads, even when the fertilization success is already high. Our results further highlight the importance of high rates of pollen arrival onto stigmas, as mediated by reliable pollinators. Comparing the pollen‐to‐seed response curve obtained in this experiment with those observed in natural populations suggests that pollen limitation may be more severe in natural populations than predicted from greenhouse studies. These results also indicate that declines in pollinator abundance may decrease plant fitness through lowered seed quality before an effect on seed set is detected.  相似文献   

11.
Efforts to improve the diversity of seed resources for important restoration species has become a high priority for land managers in many parts of the world. Relationships between functional trait values and the environment from which seed sources are collected can provide important insights into patterns of local adaptation and guidelines for seed transfer. However, little is known about which functional traits exhibit genetic differentiation across populations of restoration species and thus may contribute to local adaptation. Here, we report the results of a common garden experiment aimed at assessing genetic (including ploidy level) and environmental regulation of several functional traits among populations of Bouteloua gracilis, a dominant C4 grass and the most highly utilized restoration species across much of the Colorado Plateau. We found that leaf size and specific leaf area (SLA) varied significantly among populations, and were strongly correlated with the source population environment from which seeds were collected. However, variation in ploidy level had no significant effect on functional traits. Leaves of plants grown from commercial seed releases were significantly larger and had lower SLA than those from natural populations, a result that is concordant with the overall relation between climate and these two functional traits. We suggest that the patterns of functional trait variation shown here may extend to other grass species in the western USA, and may serve as useful proxies for more extensive genecology research. Furthermore, we argue that care should be taken to develop commercial seed lines with functional trait values that match those of natural populations occupying climates similar to target restoration sites.  相似文献   

12.
Summary Because seed size is often associated with survival and reproduction in plant populations, genetic variation for seed size may be reduced or eliminated by natural selection. To test this hypothesis we assessed genetic sources of variation in seed size in a population ofPhlox drummondii to determine whether genetic differences among seeds influence the size they attain. A diallel cross among 12 plants from a population at Bastrop, Texas, USA allowed us to partition variance in the mass of seeds among several genetic and parental effects. We found no evidence of additive genetic variance or dominance genetic variance for seed mass in the contribution of plants to their offspring. Extranuclear maternal effects accounted for 56% of the variance in seed mass. A small interaction was observed between seed genotype and maternal plant. Results of this study support theory that predicts little genetic variation for traits associated with fitness.  相似文献   

13.
Vegetation structure and plant species diversity of restoration sites are predicted to directly affect pollinator attraction, with potential impacts on gene flow, reproduction, genetic diversity of future generations, and ultimately restoration success. We compared Banksia attenuata R.Br. (Proteaceae) in a low species diversity restoration site and an adjacent natural remnant. We assessed fecundity genetic diversity in adult plants and their offspring, mating system parameters and pollen dispersal using paternity assignment. Results were compared to an earlier study of reproductive functionality within a high species diversity restoration site that was restored in a similar manner, enabling us to investigate any association between plant species diversity and fecundity. Seed set data indicated no significant differences between restored and adjacent natural sites; however, seed set data between restoration sites was significantly different (2.08 ± 0.39 and 6.89 ± 1.12, respectively). The mean number of fruits (follicles) per inflorescence was not significantly different between restoration sites. Genetic diversity of adult plants and their offspring were comparable in all sites. Higher allelic richness and genetic differentiation in one restored site reflected sourcing beyond local provenance. Low correlated paternity indicated high levels of multiple siring of seeds and paternity assignment demonstrated strong genetic connectivity between sites. Reproductive functionality, as measured by fecundity and genetic diversity in the offspring of B. attenuata, is resilient to low species diversity within a restored plant community. We consider our results in the context of establishing seed production areas (SPAs) that maximize the quantity and genetic quality of Banksia seeds for restoration.  相似文献   

14.
The increased translocation of plant species for biodiversity restoration and habitat creation has provoked a debate on provenance and genotypic diversity of the used plant material. Nonlocal provenances are often not adapted to the local environmental conditions, and low population genotypic diversity may result in genetic bottlenecks hampering successful establishment. We tested provenance differentiation of four plant species used in agri‐environment schemes to increase biodiversity of agricultural landscapes (wildflower strips). Provenances were collected close to the experimental field and at four further sites of different distances ranging from 120 to 900 km. In two of these provenances, different levels of genotypic diversity were simulated by sowing seed from a high and low number of mother plants. We found a large provenance differentiation in fitness‐related traits, particularly in seedling emergence. There was no evidence for a general superiority of the local population. The productivity was greater in populations of high genotypic diversity than in those of low diversity, but the effect was only significant in one species. Productivity was also more constant among populations of high diversity, reducing the risk of establishment failure. Our results indicate that the choice of an appropriate provenance and a sufficient genotypic diversity are important issues in ecological restoration. The use of local provenances does not always guarantee the best performance, but a spread of superior alien genotypes can be avoided. A sufficient genotypic diversity of the sown plants might be a biological insurance against fluctuations in ecosystem processes increasing the reliability of restoration measures.  相似文献   

15.
Volis S 《The New phytologist》2011,192(1):237-248
? Both genetic drift and natural selection result in genetic/phenotypic differentiation over space. I analyzed the role of local adaptation in the genetic differentiation of populations of the annual grass Hordeum spontaneum sampled along an aridity gradient. ? The study included the introduction of plants having desert vs nondesert origin into natural (desert) environment, analysis of population differentiation in allozymes and random amplified polymorphic DNA (RAPD) markers vs phenotypic traits (Q(ST) -F(ST) comparison), and planting interpopulation hybrids under simulated desert conditions in a glasshouse. ? The results of the home advantage test, Q(ST) -F(ST) comparison and crossbreeding were consistent with local adaptation; that is, that differentiation of the desert plants from plants of nondesert origin in phenotypic traits was adaptive, giving them home advantage. Each method used provided additional, otherwise unavailable, information, meaning that they should be viewed as complementary rather than alternative approaches. ? Gene flow from adjacent populations (i.e. populations experiencing the desert environment) via seeds (but not pollen) had a positive effect on fitness by enhancing natural selection and counteracting drift. At the same time, the effect of genes from the species distributional core (nondesert plants) by either seed or pollen had a negative fitness effect despite its enriching effect on neutral diversity. The pattern of outbreeding depression observed in interpopulation hybrids (F(1) ) and their segregating progeny (F(2) ) was inconsistent with underdominance, but indicated the presence of additive, dominance and epistatic effects.  相似文献   

16.
Many renaturation projects and compensation areas are based on the use of seeds from regional indigenous wild plants; in the following: native or regional seeds. Despite this, such seeds make up only a small proportion of the total number of seeds used for greening projects; in Germany, for example, it is only around 1% (=200 t per year). Although the market for regional seeds is small, it is highly competitive. High‐priced native seeds compete with flower mixes of unspecified origin and can only be differentiated from them by reliable quality seals. A quality assurance system based on seed legislation (EU Directive 2010/60, preservation mixtures) has been developed in a few European countries. However, quality assurance ends with the sale of the seeds. Thus, seed use remains unmonitored, and often unsuitable material, or material foreign to the region, is planted in restoration areas. Unfortunately, nature conservation has not made seed‐based restoration one of its key issues, neither at the European nor at the national level. Currently there are many different local and regional standards, methods and private certificates that are confusing for users and which provide little continuity and predictability for producers. We recommend the establishment of an EU directive or a broadly agreed recommendation to the EU member states, spearheaded by nature conservation, which would define the standards for producing and using native seeds (e.g. harmonised regions that cross national borders, quality regulations). At the same time, wild plant interest groups should combine existing structures in order to strengthen seed‐based restoration through international cooperation.  相似文献   

17.
The concept of fitness is central to evolutionary biology, yet it is difficult to define and to measure. In plant biology, fitness is often measured as seed count. However, under an array of circumstances, seed count may be a biased proxy of fitness, for example when individuals vary in allocation to sexual versus asexual reproduction. A more subtle example, but also likely to be important in natural populations, is when interindividual variation in conditions during development results in variation in offspring quality among seed parents. In monocarpic (semelparous) plants, this is expected to result from variation in effective season length experienced among individuals that reach reproductive maturity at different times. Here, we manipulate growing season length to ask whether seed count is an accurate representation of parental fitness in the monocarpic herb Lobelia inflata. Simple seed count suggests a paradoxical fitness advantage under constrained‐season length. However, we find that the apparent fitness advantage of a constrained‐season length is overridden by low relative per‐seed fitness. Furthermore, the fitness deficit in the constrained environment is associated primarily with an accelerating decrease in viability and seedling survival in seeds derived from fruits produced progressively later in the season. In this study, the overall fitness value of a seed under a constrained season is 0.774 of that observed under a long season.  相似文献   

18.
Native plant species are routinely planted or sown in ecological restoration projects, but successful establishment and survival depend on where and how seeds are collected. Research suggests that it is important to use locally adapted seeds. Local populations often show a home-site advantage and non-local genotypes may be maladapted to local environmental conditions. Furthermore, intraspecific hybridisation of local and non-local genotypes may have a negative impact on the genetic structure of local populations via mechanisms such as outbreeding depression. Many species show a strong small-scale genetic differentiation between different habitats so that matching habitats of the restoration and donor site can be more important than minimizing geographical separation. It is a challenge to identify appropriate seed sources because strong small-scale population differentiation makes it difficult to delineate geographically defined seed zones to which seed exchange should be limited. Moreover, it is important to consider the genetic diversity of introduced material because it may be crucial to avoid genetic bottlenecks, inbreeding depression and poor establishment of plant populations. Repeated propagation in stock, which is often required to obtain a sufficient amount of seeds, can further reduce genetic diversity and may select for particular genotypes. Negative impacts of improper seed choice for nursery planting stock may become detectable only after many years, especially in long-lived and slow growing plants. Although scientific information on many species remains limited, the increasing demand for translocation of seed means that mandatory regulations are necessary. Guidelines should prescribe a specification of seed provenance, a record of genetic diversity of wild collections and rules for subsequent processing such as direct transfer and propagation of stock or seed orchards. We use a literature review to evaluate current legislation and to develop recommendations for herbaceous and woody species.  相似文献   

19.
Abstract Willamette Valley upland prairie in western Oregon, U.S.A. has been severely degraded and fragmented in the past 150 years after European settlement, resulting in vast population reductions of endemic species. Icaricia icarioides fenderi (Fender's blue butterfly) and Lupinus sulphureus ssp. kincaidii (Kincaid's lupine) are federally listed as Endangered and Threatened Species, respectively. Both are Willamette Valley upland prairie endemics, and Kincaid's lupine is the primary host plant for the Fender's blue butterfly. Attempts to grow Kincaid's lupine have been partially successful in a greenhouse situation; however, propagating plants from field‐sown seed can be tenuous and plant establishment is unpredictable. Kincaid's lupine seeds were planted in the fall 1997 at two different upland prairie sites, and the cohort was followed through the summer 2000. Based on cohort tables the most vulnerable life stages to mortality are the germinant stage and the first growing year. Mechanical scarification of Kincaid's lupine seeds yielded no significant differences in survivorship, maternal function, plant size, and the percentage of seeds germinated compared with unscarified seeds. Differential seed source performance detected at one planting site suggests that underlying differences in population genetics may affect Kincaid's lupine vigor, fitness, and establishment. Future restoration projects for Kincaid's lupine should focus on upland prairie sites with naturally occurring lupine populations because local ecological conditions are favorable for lupine establishment. Moreover, the addition of new individuals to small Kincaid's lupine colonies will buffer against the effects of inbreeding depression and increase the site carrying capacity for Fender's blue butterfly.  相似文献   

20.
Restoration of habitat for endangered species often involves translocation of seeds or individuals from source populations to an area targeted for revegetation. Long-term persistence of a species is dependent on the maintenance of sufficient genetic variation within and among populations. Thus, knowledge and maintenance of genetic variability within rare or endangered species is essential for developing effective conservation and restoration strategies. Genetic monitoring of both natural and restored populations can provide an assessment of restoration protocol success in establishing populations that maintain levels of genetic diversity similar to those in natural populations. California’s vernal pools are home to many endangered plants, thus conservation and restoration are large components of their management. Lasthenia conjugens (Asteraceae) is a federally endangered self-incompatible vernal pool annual with gravity- dispersed seeds. Using the molecular technique of intersimple sequence repeats (ISSRs), this study assessed levels and patterns of genetic variability present within natural and restored populations of L. conjugens. At Travis Air Force Base near Fairfield, California, a vernal pool restoration project is underway. Genetic success of the ecologically based seeding protocol was examined through genetic monitoring of natural and restored populations over a three-year period. Genetic diversity remained constant across the three sampled generations. Diversity was also widely distributed across all populations. We conclude that the protocol used to establish restored populations was successful in capturing similar levels and patterns of genetic diversity to those seen within natural pools. This study also demonstrates how genetic markers can be used to inform conservation and restoration decisions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号