首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
  总被引:2,自引:0,他引:2  
Lateral root formation is profoundly affected by auxins. Here we present data which indicate that light influences the formation of indole-3-acetic acid (IAA) in germinating Arabidopsis seedlings. IAA transported from the developing leaves to the root system is detectable as a short-lived pulse in the roots and is required for the emergence of the lateral root primordia (LRP) during early seedling development. LRP emergence is inhibited by the removal of apical tissues prior to detection of the IAA pulse in the root, but this treatment has minimal effects on LRP initiation. Our results identify the first developing true leaves as the most likely source for the IAA required for the first emergence of the LRP, as removal of cotyledons has only a minor effect on LRP emergence in contrast to removal of the leaves. A basipetal IAA concentration gradient with high levels of IAA in the root tip appears to control LRP initiation, in contrast to their emergence. A significant increase in the ability of the root system to synthesize IAA is observed 10 days after germination, and this in turn is reflected in the reduced dependence of the lateral root emergence on aerial tissue-derived auxin at this stage. We propose a model for lateral root formation during early seedling development that can be divided into two phases: (i) an LRP initiation phase dependent on a root tip-localized IAA source, and (ii) an LRP emergence phase dependent on leaf-derived IAA up to 10 days after germination.  相似文献   

2.
植物侧根发育的研究进展   总被引:2,自引:0,他引:2  
侧根是植物根系的重要组成部分,其发生和发育受到内源植物激素和外界环境因素的共同影响。生长素在侧根发生起始、侧根原基的发育和侧根突破母体表皮等阶段均发挥关键作用。研究侧根的发育和形态解剖结构以及信号调控途径等,都具有重要的理论和实践意义。本文结合近年来的研究进展,综述了拟南芥和水稻侧根发育的详细过程和影响因素,重点关注生长素在侧根原基发生和发育过程中的作用。  相似文献   

3.
Differential screening of a cDNA library for mRNA species that specifically accumulate during auxin-induced lateral root formation in Arabidopsis thaliana led to the isolation of the AIR3 cDNA clone. The corresponding single copy gene consists of 10 exons which encode a protein that possesses all the characteristics of subtilisin-like proteases. The promoter of the AIR3 gene was fused to the gusA (beta-glucuronidase) reporter gene and introduced into Arabidopsis. Expression was almost completely restricted to the outer layers of the parental root at sites of lateral root emergence and could be observed even before protrusion of the newly formed root tip. In the presence of external auxin, GUS activity was visible throughout the parts of the root that are competent for lateral root formation. By digesting structural proteins in the extracellular matrix of cells located above sites of lateral root formation, AIR3 might weaken cell-to-cell connections and thus facilitate lateral root emergence.  相似文献   

4.
Abstract. A gravitational stimulus was used to induce the curvature of the main root of Arabidopsis thaliana. The number of secondary roots increased on the convex side and decreased on the concave side of any curved main root axes in comparison with straight roots used as the control. The same phenomenon was observed with the curved main roots of plants grown on a clinostat and of mutant plants exhibiting random root orientation. The data suggest that the pattern of lateral root formation is associated with curvature but is independent of the environmental stimuli used to induce curvature.  相似文献   

5.
The tomato geneRSI-1 was previously identified as a molecular marker for auxin-induced lateral root initiation. We have further characterized the expression mode of theRSI-1 gene in tomato andArabidopsis thaliana. Northern blot analyses revealed that the gene was induced specifically by auxin in tomato roots and hypocotyls. For experiments with transgenic plants, the 5′ flanking region of theRSI-1 gene was linked to a GUS reporter gene, then transformed into tomato andArabidopsis. In these transgenic tomato plants, GUS activity was detected at the sites of initiation for lateral and adventitious roots. Expression of the fusion gene was auxin-dependent and tissue-specific. This was consistent with results from the northern blot analyses. In transgenicArabidopsis, the overall expression pattern of theRSI-GUS gene, including tissue specificity and auxin inducibility, was comparable to that in transgenic tomato seedlings. These results indicate that an identical regulatory mechanism for lateral root initiation might be conserved in both plants. Thus, the expression mode of theRSI-CUS gene inArabidopsis mutants defective in lateral root development should be investigated to provide details of this process.  相似文献   

6.
BACKGROUND AND AIMS: Development and architecture of plant roots are regulated by phytohormones. Cytokinin (CK), synthesized in the root cap, promotes cytokinesis, vascular cambium sensitivity, vascular differentiation and root apical dominance. Auxin (indole-3-acetic acid, IAA), produced in young shoot organs, promotes root development and induces vascular differentiation. Both IAA and CK regulate root gravitropism. The aims of this study were to analyse the hormonal mechanisms that induce the root's primary vascular system, explain how differentiating-protoxylem vessels promote lateral root initiation, propose the concept of CK-dependent root apical dominance, and visualize the CK and IAA regulation of root gravitropiosm. KEY ISSUES: The hormonal analysis and proposed mechanisms yield new insights and extend previous concepts: how the radial pattern of the root protoxylem vs. protophloem strands is induced by alternating polar streams of high IAA vs. low IAA concentrations, respectively; how differentiating-protoxylem vessel elements stimulate lateral root initiation by auxin-ethylene-auxin signalling; and how root apical dominance is regulated by the root-cap-synthesized CK, which gives priority to the primary root in competition with its own lateral roots. CONCLUSIONS: CK and IAA are key hormones that regulate root development, its vascular differentiation and root gravitropism; these two hormones, together with ethylene, regulate lateral root initiation.  相似文献   

7.
A root gravitropism mutant was isolated from the DuPont Arabidopsis thaliana T-DNA insertional mutagenesis collection. This mutant has reduced root gravitropism, hence the name rgrl. Roots of rgrl are shorter than those of wild-type, and they have reduced lateral root formation. In addition, roots of rgrl coil clockwise on inclined agar plates, unlike wild-type roots which grow in a wavy pattern. The rgrl mutant has increased resistance, as measured by root elongation, to exogenously applied auxins (6-fold to indole-3-acetic acid, 3-fold to 2,4-dichlorophenoxyacetic acid, and 2-fold to napthyleneacetic acid). It is also resistant to polar auxin transport inhibitors (2-fold to triiodobenzoic acid and 3- to 5-fold lo napthyleneacetic acid). The rgrl mutant does not appear to be resistant to other plant hormone classes. When grown in the presence of 10?2 M 2.4-dichlorophenoxyacetic acid, rgrl roots have fewer root hairs than wild type. All these rgrl phenotypes are Mendelian recessives. Complementation tests indicate that rgrl is not allelic to previously characterized agravitropic or auxin-resistant mutants. The rgrl locus was mapped using visible markers to 1.4 ± 0.6 map units from the CHI locus at 1–65.4. The rgrl mutation and the T-DNA cosegregate, suggesting that rgrl was caused by insertional gene inactivation.  相似文献   

8.
Li YA  Qi LL  Sun JQ  Liu HY  Li CY 《遗传》2011,33(9):1003-1010
外源茉莉酸处理野生型拟南芥能够促进侧根的形成,而在asa1-1突变体中茉莉酸抑制侧根的形成,这与在该突变体背景下茉莉酸显著降低PIN2蛋白水平密切相关。为了进一步研究茉莉酸诱导PIN2蛋白水平下调的分子机制,文章采用正向遗传学的方法筛选asa1-1抑制子soa,期望获得茉莉酸处理后侧根发育恢复的突变体。通过筛选鉴定获得2个突变体:soa563和soa856。这2个突变体在10μmol/L茉莉酸甲酯处理条件下都能够恢复侧根发育,而且茉莉酸处理后PIN2蛋白水平降低的现象在soa563中被完全抑制,在soa856中被部分抑制。这些结果表明这两个突变基因可能影响了茉莉酸调控的PIN2蛋白水平下调途径,并且参于了茉莉酸对侧根发生的调控。对这两个基因的分离和功能研究将为阐明茉莉酸与生长素互作调控侧根发生的分子机制提供新的知识积累。  相似文献   

9.
在植物体内,细胞周期对于植物的萌发、生长、开花、结实等各个生长发育阶段具有重要作用。细胞周期正常运转需要依赖一些细胞周期蛋白,但是目前关于细胞周期蛋白调控根发育的分子机制还不清楚。通过筛选模式植物拟南芥的根发育异常突变体,分离鉴定了1个突变体dig9(drought inhibition of lateral root growth),该突变体表现为主根短、侧根少、发育迟缓、顶端分生组织变小、叶片扭曲、无主茎等表型。通过图位克隆,成功定位并克隆了DIG9基因,该基因编码一个细胞周期蛋白,是有丝分裂后期促进复合体的一个亚基APC8 (anaphase-promoting complex)。通过亚细胞定位发现DIG9定位于细胞核;qRT-PCR检测发现DIG9基因在根中有较高的表达量,进一步通过启动子-GUS报告系统发现DIG9在根尖、侧根和顶端分生组织等细胞分裂旺盛区域表达。外施IAA能恢复dig9突变体的侧根表型但不能恢复根短表型。dig9突变体对干旱及盐胁迫反应不敏感。研究结果表明DIG9基因可能通过影响IAA的产生来调控植物的侧根发育。  相似文献   

10.
  总被引:3,自引:0,他引:3  
As roots explore the soil, they encounter a complex and fluctuating environment in which the different edaphic resources (water and nutrients) are heterogeneously distributed in space and time. Many plant species are able to respond to this heterogeneity by modifying their root system development, such that they colonize the most resource-rich patches of soil. The complexities of these responses, and their dependence on the implied ability to perceive and integrate multiple external signals, would seem to amply justify the term 'behaviour'. This review will consider the types of behaviour that are elicited in roots of Arabidopsis thaliana by exposure to variations in the external concentrations and distribution of two different N compounds, nitrate and glutamate. Molecular genetic studies have revealed an intricate N regulatory network at the root tip that is responsible for orchestrating changes in root growth rate and root architecture to accommodate variations in the extrinsic and intrinsic supply of N. The review will discuss what is known of the genetic basis for these responses and speculate on their physiological and ecological significance.  相似文献   

11.
Lateral root formation in root cultures of Arabidopsis thaliana can be initiated by exogenous addition of auxin. In order to find cDNA clones of which the corresponding mRNAs accumulate during this process, a cDNA library was constructed from root cultures treated with the active auxin 1-naphthaleneacetic acid (1- NAA). Differential screening of this library with cDNA probes derived from mRNA populations isolated from root cultures treated with 1-NAA and the inactive analogue 2-naphthaleneacetic acid (2-NAA) led to the isolation of four cDNA clones, designated AIR1, AIR3, AIR9 and AIR12. Accumulation of the mRNAs starts between 4 and 8 h and continues till at least 24 h after addition of an active auxin. Sequence analysis revealed that AIR1 encodes a protein that is related to a large family of proteins that consist of a proline-rich or glycine- rich N-terminus and a hydrophobic, possibly membrane spanning C- terminus. The putative function of these proteins is coupling of the cell wall to the plasma membrane. Surprisingly, AIR1 lacks the proline-rich or glycine-rich N-terminus which is thought to be important for interaction with the cell wall. AIR3 encodes a subtilisin-like serine protease which is believed to be active outside the plant cell. Although AIR9 and AIR12 do not show any significant homology to sequences in the database, they are also predicted to function outside the cell. Our screening thus indicates that a variety of genes encoding extracellular proteins are activated during auxin-induced lateral root formation.  相似文献   

12.
13.
转录因子MYB77与信号分子一氧化碳(NO)是侧根发育的重要调节因子,但MYB77和NO在干旱胁迫下侧根发生中的作用及机制尚不明确。该文以拟南芥(Arabidopsis thaliana)野生型、AtMYB77缺失突变体Atmyb77-1及过表达株系AtOE77-1和AtOE77-3为材料,研究了MYB77和NO在干旱...  相似文献   

14.
15.
The effects of sugars on root growth and on development of adventitious roots were analyzed in Arabidopsis thaliana. Seeds were sown on agar plates containing 0.0–5.0% sugars and placed vertically in darkness (DD) or under long day (LD, 16 h:8 h) conditions, so that the seedlings were constantly attached to the agar medium. In the sucrose-supplemented medium, seedlings showed sustained growth in both DD and LD. However, only dark-grown seedlings developed adventitious roots from the elongated hypocotyl. The adventitious roots began to develop 5 days after imbibition and increased in number until day 11. They could, however, be initiated at any position along the hypocotyl, near the cotyledon or the primary root. They were initiated in the pericycle in the same manner as ordinary lateral roots. Sucrose, glucose and fructose greatly stimulated the induction of adventitious roots, but mannose or sorbitol did not. Sucrose at concentrations of 0.5–2.0% was most effective in inducing adventitious roots, although 5.0% sucrose suppressed induction. Direct contact of the hypocotyl with the sugar-supplemented agar medium was indispensable for the induction of adventitious roots. Electronic Publication  相似文献   

16.
    
Gough  Clare  Vasse  Jacques  Galera  Christine  Webster  Gordon  Cocking  Edward  Dénarié  Jean 《Plant and Soil》1997,194(1-2):123-130
When interactions between diazotrophic bacteria and non-legume plants are studied within the context of trying to extend biological nitrogen fixation to non-legume crops, an important first step is to establish reproducible internal colonization at high frequency of these plants. Using Azorhizobium caulinodans ORS571 (which induces stem and root nodules on the tropical legume Sesbania rostrata), tagged with a constitutively expressed lacZ reporter gene, we have studied the possibilities of internal colonization of the root system of the model dicot Arabidopsis thaliana. ORS571 was found to be able to enter A. thaliana roots after first colonizing lateral root cracks (LRCs), at the points of emergence of lateral roots. Cytological studies showed that after LRC colonization, bacteria moved into the intercellular space between the cortical and endodermal cell layers of roots. In our experimental conditions, this LRC and intercellular colonization are reproducible and occur at high frequency, although the level of colonization at each site is low. The flavonoids naringenin and daidzein, at low concentrations, were found to significantly stimulate (at the p=0.01 level) the frequency of LRC and intercellular colonization of A. thaliana roots by A. caulinodans. The role in colonization of the structural nodABC genes, as well as the regulatory gene nodD, was studied and it was found that both colonization and flavonoid stimulation of colonization are nod gene-independent. These systems should now enable the various genetic and physiological factors which are limiting both for rhizobial colonization and for endophytic nitrogen fixation in non-legumes, to be investigated. In particular, the use of A. thaliana, which has many advantages over other plants for molecular genetic studies, to study interactions between diazotrophic bacteria and non-legume dicots, should provide the means of identifying and understanding the mechanisms by which plant genes are involved in these interactions.  相似文献   

17.
    
In comparison to wild type Arabidopsis thaliana, the auxin resistant mutants axr1 and axr2 exhibit reduced inhibition of root elongation in response to auxins. Several auxin-regulated physiological processes are also altered in the mutant plants. When wild-type, axr1 and axr2 seedlings were grown in darkness on media containing indoleacetic acid (IAA), promotion of root growth was observed at low concentrations of IAA (10?11 to 10?7M) in 5-day-old axr2 seedlings, but not in axr1 or wild-type seedlings. In axr1 there was little or no measurable root growth response over the same concentration range. In wild type, root growth was inhibited at concentrations greater than 10?10M and no detectable root growth response was observed at lower concentrations. In addition, production of lateral roots in response to IAA increased in axr2 seedlings and decreased in axr1 seedlings relative to wild type. Promotion of root elongation and initiation of lateral roots in axr2 seedlings in response to auxin indicate that axr2 seedlings are able to perceive and respond to IAA.  相似文献   

18.
We characterized the response of root hair density to phosphorus (P) availability in Arabidopsis thaliana. Arabidopsis plants were grown aseptically in growth media with varied phosphorus concentrations, ranging from 1 mmol m3 to 2000 mmol m3 phosphorus. Root hair density (number of root hairs per mm of root length) was analysed starting at 7 d of growth. Root hair density was highly regulated by phosphorus availability, increasing significantly in roots exposed to low-phosphorus availability. The initial root hairs produced by the radicle were not sensitive to phosphorus availability, but began to respond after 9 d of growth. Root hair density was about five times greater in low phosphorus (1 mmol m3) than in high phosphorus (1000 mmol m3) media. Root hair density decreased logarithmically in response to increasing phosphorus concentrations within that range. Root hair density also increased in response to deficiencies of several other nutrients, but not as strongly as to low phosphorus. Indoleacetic acid (IAA), the auxin transport inhibitor 2-(p-chlorophenoxy)-2-methylpropionic acid (CMPA), the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), and the ethylene synthesis inhibitor amino-oxyacetic acid (AOA) all increased root hair density under high phosphorus but had very little effect under low phosphorus. Low phosphorus significantly changed root anatomy, causing a 9% increase in root diameter, a 31% decrease in the cross-sectional area of individual trichoblasts, a 40% decrease in the cross-sectional area of individual atrichoblasts, and 45% more cortical cells in cross-section. The larger number of cortical cells and smaller epidermal cell size in low phosphorus roots increased the number of trichoblast files from eight to 12. Two-thirds of increased root hair density in low phosphorus roots was caused by increased likelihood of trichoblasts to form hairs, and 33% of the increase was accounted for by changes in low phosphorus root anatomy resulting in an increased number of trichoblast files. These results show that phosphorus availability can fundamentally alter root anatomy, leading to changes in root hair density, which are presumably important for phosphorus acquisition.  相似文献   

19.
水氮处理下不同品种水稻根系生长分布特征   总被引:11,自引:0,他引:11       下载免费PDF全文
为明确不同栽培条件下水稻(Oryza sativa)根系生长分布特征, 通过不同水氮处理和不同品种的水稻桶栽试验, 采用内置根架法, 于拔节期和抽穗期取样, 获取根系总干重(TRW)、不定根数(ARN)以及各类根(不定根、细分枝根和粗分枝根)的形态指标(长度、表面积和体积), 并分析植株根系生长状况和根系分布特征。结果显示: (1)各试验条件下抽穗期各项根系指标较拔节期均呈增长趋势。同一时期, 各项根系指标在3个施氮水平间均差异显著, 且随施氮量的增加而增加。不同水分处理下, 两个时期的ARN在湿润灌溉(W2)与保持水层(W1)之间差异均不显著, 而其他指标上W2处理均显著最高; 干旱处理 (W3)下, 仅拔节期的TRW和粗分枝形态指标与W1处理接近, 而在其他指标上均显著最低。不同品种间, ‘扬稻6号’ (V3)的各项根系指标均最高, 而‘日本晴’ (V1)和‘武香粳14’ (V2)间差异不显著。(2)各试验条件下, 抽穗期较拔节期根系下扎生长比例增加, 多分布于表层(0-5 cm)土中; 减少氮素和水分供应可提高根系在5 cm以下土层中的分布比例, 且分枝根反应最为明显; 品种V1和V2的深扎根性较V3明显。结果表明, 合理施氮与控水可优化水稻不同类型根的生长与分布特征, 但需考虑不同品种之间的差异。  相似文献   

20.
    
Plants respond to their environment through adaptations such as root proliferation in nutrient-rich patches. Through their burrows and casts production in soil, earthworms create heterogeneity which could lead to local root adaptations or systemic effects. To investigate the effect of earthworms on root system morphology and determine whether earthworm effect is local or systemic, we set up two independent split root experiments with rice or barley, (i) without earthworm (CC), (ii) with earthworms in both compartments (EE), and (iii) with earthworms in one single compartment (CE). Earthworms had an effect on belowground plant biomass. The relative length of thick roots decreased with an increasing abundance of earthworms. Some root diameter classes responded to earthworm number in a linear or curvilinear way, making simple conclusions difficult. We found no difference in root biomass or morphology between the two compartments of the split root system in the CE treatment, but a positive effect of earthworm biomass on root biomass, volume, surface area, and length at the whole plant level. Results supported a systemic effect dependent on earthworm abundance. Modification of nutrient mineralization, soil physical structure, and/or the concentration of signal molecules could all be responsible for this systemic effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号