首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Urbanization represents the extreme case of human influence on an ecosystem. Biogeochemical cycling of nitrogen (N) in cities is very different from that of non-urban landscapes due to the large input of reactive forms of N and the heterogeneous distribution of various land uses that alters landscape connections. To quantify the likely effects of human activities on soil N and other soil properties in urban ecosystems, we conducted a probability-based study to sample 203 plots randomly distributed over the 6,400 km2 Central Arizona-Phoenix Long-Term Ecological Research (CAP LTER) area, which encompasses metropolitan Phoenix with its 3.5 million inhabitants. Soil inorganic N concentrations were significantly higher in urban residential, non-residential, agricultural, transportation, and mixed sites than in the desert sites. Soil water content and organic matter were both significantly higher under urban and agricultural land uses, whereas bulk density was lower compared to undeveloped desert. We calculated that farming and urbanization on average had caused an accumulation of 7.23 g m−2 in soil inorganic N across the CAP study area. Average soil inorganic N of the sampled desert sites (3.23 g m−2) was much higher than the natural background level reported in the literature. Laboratory incubation studies showed that many urban soils exhibited net immobilization of inorganic N, whereas desert and agricultural soils showed small, but positive, net N mineralization. The large accumulation of inorganic N in soils (mostly as nitrate) was highly unusual in terrestrial ecosystems, suggesting that in this arid urban ecosystem, N is likely no longer the primary limiting resource affecting plants, but instead poses a threat to surface and groundwater contamination, and influences other N cycling processes such as denitrification.  相似文献   

2.
The economy of carbon, nitrogen and water during growth of nodulated, nitrogen-fixing plants of white lupin (Lupinus albus L.) was studied by measuring C, N and H2O content of plant parts, concentrations of C and N in bleeding sap of xylem and phloem, transpirational losses of whole shoots and shoot parts, and daily exchanges of CO2 between shoot and root parts and the surrounding atmosphere. Relationships were studied between water use and dry matter accumulation of shoot and fruits, and between net photosynthesis rate and leaf area, transpiration rate and nitrogen fixation. Conversion efficiencies were computed for utilization of net photosynthate for nitrogen fixation and for production of dry matter and protein in seeds. Partitioning of the plant's intake of C, N and H2O was described in terms of growth, transpiration, and respiration of plant parts. An empirically-based model was developed to describe transport exchanges in xylem and phloem for a 10-day interval of growth. The model depicted quantitatively the mixtures of xylem and phloem streams which matched precisely the recorded amounts of C, N and H2O assimilated, absorbed or consumed by the various parts of the plant. The model provided information on phloem translocation of carbon and nitrogen to roots from shoots, the cycling of carbon and nitrogen through leaves, the relationship between transpiration and nitrogen partitioning to shoot organs through the xylem, the relative amount of the plant's water budget committed to phloem translocation, and the significance of xylem to phloem transfer of nitrogen in stems as a means of supplying nitrogen to apical regions of the shoot.  相似文献   

3.
杉木细柄阿丁枫混交林涵养水源功能和土壤肥力的研究   总被引:13,自引:1,他引:13  
陈绍栓 《生态学报》2002,22(6):957-961
对 2 5年生杉木细柄阿丁枫混交林进行研究表明 :混交林对土壤的物理性质、养分含量、酶活性和涵养水源功能均有良好的作用。混交林林分持水量为 2 2 1 2 .84 t/ hm2 ,杉木纯林为 1 84 1 .6 2 t/ hm2。混交林土壤水稳性团聚体组成、孔隙组成和水分状况均比纯林好 ;混交林土壤养分含量比纯林高 ,0~ 2 0 cm层有机质含量比纯林增加 80 .5 % ,全氮 ,全磷、水解性氮、速效磷和速效钾含量分别比纯林提高 2 8.8%、39.8%、32 .0 %、5 6 .6 %和 76 .8% ;混交林土壤酶活性比杉木纯林高 ,0~2 0 cm层转化酶、脲酶、酸性磷酸酶和过氧化氢酶活性分别比纯林增加 1 5 6 .1 %、72 .6 % .30 .0 %和 1 0 .3%。  相似文献   

4.
Determining effects of elevated CO2 on the tolerance of photosynthesis to acute heat-stress (heat wave) is necessary for predicting plant responses to global warming, as photosynthesis is thermolabile and acute heat-stress and atmospheric CO2 will increase in the future. Few studies have examined this, and past results are variable, which may be due to methodological variation. To address this, we grew two C3 and two C4 species at current or elevated CO2 and three different growth temperatures (GT). We assessed photosynthetic thermotolerance in both unacclimated (basal tolerance) and preheat-stressed (preHS = acclimated) plants. In C3 species, basal thermotolerance of net photosynthesis (Pn) was increased In high CO2, but in C4 species, Pn thermotlerance was decreased by high CO2 (except Zea maya at low GT); CO2 effects in preHS plants were mostly small or absent, though high CO2 was detrimental in one C3 and one C4 species at warmer GT. Though high CO2 generally decreased stomatal conductance, decreases in Pn during heat stress were mostly due to non-stomatal effects. Photosystem II (PSII) efficiency was often decreased by high CO2 during heat stress, especially at high GT; CO2 effects on post-PSll electron transport were variable. Thus, high CO2 often affected photosynthetic theromotolerance, and the effects varied with photosynthetic pathway, growth temperature, and acclimation state. Most importantly, in heat-stressed plants at normal or warmer growth temperatures, high CO2 may often decrease, or not benefit as expected, tolerance of photosynthesis to acute heat stress. Therefore, interactive effects of elevated CO2 and warmer growth temperatures on acute heat tolerance may contribute to future changes in plant productivity, distribution, and diversity.  相似文献   

5.
白洋淀水陆交错带土壤对磷氮截留容量的初步研究   总被引:19,自引:0,他引:19  
1 白洋淀水陆交错带的景观特征和土壤白洋淀地处冀中凹陷,是处于发育后期的草型富营养化湖泊。在整个湖区366km2的范围内,以芦苇植被为景观特征的水陆交错带约占36%,分布在围堤内湖边的洼地上和大小淀泊之间。其精细景观类型可划分成苇园和苇地二种类型;其中苇园约占1/3[1],主要分布在淀泊之间和近围,特征是沟壕纵横,管理精细,景观斑块类型较小,匀一化程度高;苇地约占2/3,分布在苇园外围地势较高处,连大片分布,斑块嵌接,微景观结构较复杂,多样性程度较高[1]。水陆交错带处于该湖泊和陆地系统间,是重…  相似文献   

6.
Dissolved organic matter (DOM) plays several important roles in forest ecosystem development, undergoing chemical, physical and/or biological reactions that affect ecosystem nutrient retention. Very few studies have focused on gross rates of DOM production, and we know of no study that has directly measured DOM production from root litter. Our objectives were to quantify major sources of total potentially water-soluble organic matter (DOMtps) production, with an emphasis on production from root litter, to quantify and compare total potentially soluble organic C, N, and P (DOCtps, DONtps, and DOPtps) production, and to quantify changes in their production during forest primary succession and ecosystem development at the Mt. Shasta Mudflows ecosystem chronosequence. To do so, we exhaustively extracted freshly senesced root and leaf and other aboveground litter for DOCtps, DONtps, and DOPtps by vegetation category, and we calculated DOMtps production (g m−2 y−1) at the ecosystem level using data for annual production of fine root and aboveground litter. DOM production from throughfall was calculated by measuring throughfall volume and concentration over 2 years. Results showed that DOMtps production from root litter was a very important source of DOMtps in the Mount Shasta mudflow ecosystems, in some cases comparable to production from leaf litter for DONtps and larger than production from leaf litter for DOPtps. Total DOCtps and DONtps production from all sources increased early in succession from the 77- to the 255-year-old ecosystem. However, total DOPtps production across the ecosystem chronosequence showed a unique pattern. Generally, the relative importance of root litter for total fine detrital DOCtps and DONtps production increased significantly during ecosystem development. Furthermore, DOCtps and DONtps production were predominantly driven by changes in biomass production during ecosystem development, whereas changes in litter solubility due to changes in species composition had a smaller effect. We suggest that DOMtps production from root litter may be an important source of organic matter for the accumulation of SOM during forest ecosystem development. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Shauna M. Uselman, Robert G. Qualls, and Juliane Lilienfein conceived of or designed the study and performed research. SMU analyzed data and wrote the article. SMU and RGQ contributed new methods or models.  相似文献   

7.
应用盆栽试验,在人工控制土壤水分条件下对黄土高原3个常见树种丁香(Syringa oblata)、杠柳(Perip-loca sepium)和连翘(Forsythia suspensa)幼苗的生长及水分生理代谢进行了研究.结果表明,随干旱胁迫程度加剧,各树种耗水量明显减少;不同树种单株耗水量差异明显,表现为:连翘>杠柳>丁香.3树种新生枝条生长和叶面积扩展速率明显受土壤含水量影响,均表现为适宜水分>中度干旱>严重干旱,且在同一胁迫水平下,连翘>杠柳>丁香.随干旱胁迫程度的加剧和干旱时间的延长,丁香、杠柳和连翘叶片的含水量、游离脯氨酸以及叶绿素含量均有不同程度的变化,连翘和杠柳的叶片含水量在3种水分条件下均明显高于丁香,杠柳叶片游离脯氨酸含量明显高于丁香和连翘,连翘体内脯氨酸含量最低,丁香和连翘的叶绿素a/b值随土壤含水量的减少逐渐降低,杠柳则表现出相反趋势.不同树种对土壤干旱和高温的响应机制不同,但它们都具有较强的抗旱能力,适应黄土高原干旱的自然条件.  相似文献   

8.
Restoration of tallgrass prairie on former agricultural land is often impeded by failure to establish a diverse native species assemblage and by difficulties with nonprairie, exotic species. High levels of available soil nitrogen (N) on such sites may favor fast‐growing exotics at the expense of more slowly growing prairie species characteristic of low‐N soils. We tested whether reducing N availability through soil carbon (C) amendments could be a useful tool in facilitating successful tallgrass prairie restoration. We added 6 kg/m2 hardwood sawdust to experimental plots on an abandoned agricultural field in the Sandusky Plains of central Ohio, United States, increasing soil C by 67% in the upper 15 cm. This C amendment caused a 94% reduction in annual net N mineralization and a 27% increase in soil moisture but had no effect on total N or pH. Overall, plant mass after one growing season was reduced by 64% on amended compared with unamended soil, but this effect was less for prairie forbs (?34%) than for prairie grasses (?67%) or exotics (?62%). After the second growing season, only exotics responded significantly to the soil C amendment, with a 40% reduction in mass. The N concentration of green‐leaf tissue and of senescent leaf litter was also reduced by the soil C treatment in most cases. We conclude that soil C amendment imparts several immediate benefits for tallgrass prairie restoration––notably reduced N availability, slower plant growth, and lower competition from exotic species.  相似文献   

9.
Bromus tectorum L. is a non-native, annual grass that has invaded western North America. In SE Utah, B. tectorum generally occurs in grasslands dominated by the native perennial grass, Hilaria jamesii (Torr.) Benth. and rarely where the natives Stipa hymenoides Roem. and Schult. and S. comata Trin. & Rupr. are dominant. This patchy invasion is likely due to differences in soil chemistry. Previous laboratory experiments investigated using soil amendments that would allow B. tectorum to germinate but would reduce B. tectorum emergence without affecting H. jamesii. For this study we selected the most successful treatments (CaCl2, MgCl2, NaCl and zeolite) from a previous laboratory study and applied them in the field in two different years at B. tectorum-dominated field sites. All amendments except the lowest level of CaCl2 and zeolite negatively affected B. tectorum emergence and/or biomass. No amendments negatively affected the biomass of H. jamesii but NaCl reduced emergence. Amendment effectiveness depended on year of application and the length of time since application. The medium concentration of zeolite had the strongest negative effect on B. tectorum with little effect on H. jamesii. We conducted a laboratory experiment to determine why zeolite was effective and found it released large amounts of Na+, adsorbed Ca2+, and increased Zn2+, Fe2+, Mn2+, Cu2+, exchangeable Mg2+, exchangeable K, and NH4+ in the soil. Our results suggest several possible amendments to control B. tectorum. However, variability in effectiveness due to abiotic factors such as precipitation and soil type must be accounted for when establishing management plans.  相似文献   

10.
The conversion of two‐thirds of New Zealand's native forests and grasslands to agriculture has followed trends in other developed nations, except that pastoral grazing rather than cropping dominates agriculture. The initial conversion of land to pasture decreased soil acidity and elevated N and P stocks, but caused little change in soil organic C stocks. However, less is known about C and nutrient stock changes during the last two decades under long‐term pastoral management. We resampled 31 whole soil profiles in pastures spanning seven soil orders with a latitudinal range of 36–46°S, which had originally been sampled 17–30 years ago. We measured total C, total N, and bulk density for each horizon (generally to 1 m) and also reanalyzed archived soil samples of the same horizons for C and N. On average, profiles had lost significant amounts of C (− 2.1 kg C m−2) and N (− 0.18 kg N m−2) since initial sampling. Assuming a continuous linear decline in organic matter between sampling dates, significant losses averaged 106 g C m−2 yr−1 (P=0.01) and 9.1 g N m−2 yr−1 (P=0.002). Removal of C through leaching and erosion appears too small to explain these losses, suggesting losses from respiration exceed the inputs of photosynthate in the soil profile. These results emphasize that resampling soil profiles provide a robust method for detecting soil C changes, and add credence to the suggestion that soil C losses may be occurring in some temperate soil profiles. Further work is required to determine whether these losses are continuing and how losses might be extrapolated across landscapes to determine the implications for New Zealand's national CO2 emissions and the sustainability of the implied rates of soil N loss.  相似文献   

11.
利用黄土高原半湿润区1981~2010冬小麦生长发育定位观测资料和对应平行气象观测资料,分析气候变化对冬小麦生长发育的影响,以及冬小麦水分利用效率与气象条件的关系。结果表明:(1)研究区域降水量年际变化呈波动变化,20世纪90年代降水量最少,并存在3年、8年的年际周期变化;气温年际变化呈上升趋势,气温变化曲线线性拟合倾向率为0.325℃/10年;作物生长季干燥指数呈显著上升趋势,干燥指数变化曲线线性拟合倾向率为0.069/10年,20世纪90年代至2010年明显趋于暖干化;研究区域冬小麦播种至成熟期间≥0℃积温为2 000℃~2 200℃,降水量为300~350mm,日照时数为1 900~2 100h。(2)受气候变暖的影响,研究区域冬小麦播种期每10年推后2~3d,返青期每10年提前4~5d,开花期和成熟期每10年提前5~6d;冬小麦越冬期每10年缩短5~6d、全生育期每10年缩短7~8d。(3)由于研究区冬春季气温显著升高,越冬死亡率下降,冬小麦水分利用率呈上升趋势;冬小麦播种~出苗期和起身~拔节期气温对冬小麦水分利用效率的影响为负效应,其余时段气温对水分利用效率的影响为正效应,其中的乳熟期~成熟期水分利用效率对气温变化十分敏感;播种~出苗期、分蘖~冬前停止生长期和乳熟~成熟期降水量对冬小麦水分利用效率影响为负效应,且乳熟期~成熟期水分利用效率对降水量变化十分敏感;越冬期和返青~拔节期降水量对冬小麦水分利用效率影响为正效应,并在冬小麦越冬后期和返青期前后水分利用效率对降水量变化十分敏感。  相似文献   

12.
叶片属性是反映植物对环境变化敏感程度的重要特征,可在一定程度上预测植物对放牧干扰后的恢复能力。短花针茅(Stipa breviflora)是内蒙古荒漠草原的主要建群种。在不同放牧强度背景下的短花针茅草原开展了围封模拟放牧持续利用的实验,同时进行添加氮素和水分的恢复措施,测定了7月和9月中旬建群种短花针茅叶片的比叶面积、叶干物质含量,以及叶片全氮、叶片全磷和叶片全碳含量,分析水分和氮素添加对建群种短花针茅叶片的影响,探讨不同放牧强度下短花针茅可持续利用的氮水调控机制。结果显示,氮素和水分添加显著地增加了短花针茅叶片氮含量,降低了叶片碳氮比;放牧强度也显著地增加了叶片氮含量,且轻度放牧下的叶片氮含量(20.36 g/kg)显著高于对照(18.80 g/kg);生长末期短花针茅的比叶面积、叶片碳含量、叶片碳氮比和叶片碳磷比显著高于生长盛期,叶片氮含量和磷含量显著低于生长盛期;在生长盛期和生长末期,不同放牧强度背景下对短花针茅所采取的氮素和水分的供给措施也不同。研究结果表明在放牧背景下短期氮、水添加提高了短花针茅的叶片氮含量,特别是在生长季后期水分添加增加了叶片氮和磷含量,可进一步促进短花针茅的生长。我们的结果也表明了资源供给水平的改善有助于短花针茅的迅速恢复。  相似文献   

13.
14.
The response of plants to elevated CO2 is dependent on the availability of nutrients, especially nitrogen. It is generally accepted that an increase in the atmospheric CO2 concentration increases the C:N ratio of plant residues and exudates. This promotes temporary N-immobilization which might, in turn, reduce the availability of soil nitrogen. In addition, both a CO2 stimulated increase in plant growth (thus requiring more nitrogen) and an increased N demand for the decomposition of soil residues with a large C:N will result under elevated CO2 in a larger N-sink of the whole grassland ecosystem. One way to maintain the balance between the C and N cycles in elevated CO2 would be to increase N-import to the grassland ecosystem through symbiotic N2 fixation. Whether this might happen in the context of temperate ecosystems is discussed, by assessing the following hypothesis: i) symbiotic N2 fixation in legumes will be enhanced under elevated CO2, ii) this enhancement of N2 fixation will result in a larger N-input to the grassland ecosystem, and iii) a larger N-input will allow the sequestration of additional carbon, either above or below-ground, into the ecosystem. Data from long-term experiments with model grassland ecosystems, consisting of monocultures or mixtures of perennial ryegrass and white clover, grown under elevated CO2 under free-air or field-like conditions, supports the first two hypothesis, since: i) both the percentage and the amount of fixed N increases in white clover grown under elevated CO2, ii) the contribution of fixed N to the nitrogen nutrition of the mixed grass also increases in elevated CO2. Concerning the third hypothesis, an increased nitrogen input to the grassland ecosystem from N2 fixation usually promotes shoot growth (above-ground C storage) in elevated CO2. However, the consequences of this larger N input under elevated CO2 on the below-ground carbon fluxes are not fully understood. On one hand, the positive effect of elevated CO2 on the quantity of plant residues might be overwhelming and lead to an increased long-term below-ground C storage; on the other hand, the enhancement of the decomposition process by the N-rich legume material might favour carbon turn-over and, hence, limit the storage of below-ground carbon.  相似文献   

15.
生物设施对柑园水土保持及树体生长发育的影响   总被引:3,自引:1,他引:2  
生物设施对柑园水土保持及树体生长发育的影响张名福郑国龙(福建省顺昌县农业局,353200)(福建省顺昌县园艺场,353200)InfluenceofBiologicalTreatmentsonSoilandWaterConservatbnandTre...  相似文献   

16.
Climate models suggest that extreme rainfall events will become more common with increased atmospheric warming. Consequently, changes in the size and frequency of rainfall will influence biophysical drivers that regulate the strength and timing of soil CO2 efflux – a major source of terrestrial carbon flux. We used a rainfall manipulation experiment during the summer monsoon season (July–September) to vary both the size and frequency of precipitation in an arid grassland 2 years before and 2 years after a lightning‐caused wildfire. Soil CO2 efflux rates were always higher under increased rainfall event size than under increased rainfall event frequency, or ambient precipitation. Although fire reduced soil CO2 efflux rates by nearly 70%, the overall responses to rainfall variability were consistent before and after the fire. The overall sensitivity of soil CO2 efflux to temperature (Q10) converged to 1.4, but this value differed somewhat among treatments especially before the fire. Changes in rainfall patterns resulted in differences in the periodicity of soil CO2 efflux with strong signals at 1, 8, and 30 days. Increased rainfall event size enhanced the synchrony between photosynthetically active radiation and soil CO2 efflux over the growing season before and after fire, suggesting a change in the temporal availability of substrate pools that regulate the temporal dynamics and magnitude of soil CO2 efflux. We conclude that arid grasslands are capable of rapidly increasing and maintaining high soil CO2 efflux rates in response to increased rainfall event size more than increased rainfall event frequency both before and after a fire. Therefore, the amount and pattern of multiple rain pulses over the growing season are crucial for understanding CO2 dynamics in burned and unburned water‐limited ecosystems.  相似文献   

17.
Anthropogenic nitrogen (N) deposition causes shifts in vegetation types as well as species composition of arbuscular mycorrhizal (AM) fungi and other soil microorganisms. A greenhouse experiment was done to determine whether there are feedbacks between N-altered soil inoculum and growth of a dominant native shrub and an invasive grass species in southern California. The region is experiencing large-scale loss of Artemisia californica shrublands and replacement by invasive annual grasses under N deposition. Artemisia californica and Bromus madritensis ssp. rubens were grown with soil inoculum from experimental plots in a low N deposition site that had (1) N-fertilized and (2) unfertilized soil used for inoculum, as well as (3) high-N soil inoculum from a site exposed to atmospheric N deposition for four decades. All treatments plus a nonmycorrhizal control were given two levels of N fertilizer solution. A. californica biomass was reduced by each of the three inocula compared to uninoculated controls under at least one of the two N fertilizer solutions. The␣inoculum from the N-deposition site caused the greatest growth depressions. By contrast, B.␣madritensis biomass increased with each of the three inocula under at least one, or both, of the N solutions. The different growth responses of the two plant species may be related to the types of AM fungal colonization. B. madritensis was mainly colonized by a fine mycorrhizal endophyte, while A. californica had primarily coarse endophytes. Furthermore, A. californica had a high level of septate, nonmycorrhizal root endophytes, while B. madritensis overall had low levels of these endophytes. The negative biomass response of A. californica seedlings to high N-deposition inoculum may in part explain its decline; a microbially-mediated negative feedback may occur in this system that causes poor␣seedling growth and establishment of A.␣californica in sites subject to N deposition and B. madritensis invasion.  相似文献   

18.
Understanding tree growth in response to rainfall distribution is critical to predicting forest and species population responses to climate change. We investigated inter‐annual and seasonal variation in stem diameter by three emergent tree species in a seasonally dry tropical forest in southeast Pará, Brazil. Annual diameter growth rates by Swietenia macrophylla demonstrated strong positive correlation with annual rainfall totals during 1997–2009; Hymenaea courbaril growth rates demonstrated weak positive correlation, whereas Parkia pendula exhibited weak negative correlation. For both Swietenia and Hymenaea, annual diameter growth rates correlated positively and significantly with rainfall totals during the first 6 mo of the growing year (July to December). Vernier dendrometer bands monitored at 4‐wk intervals during 3–5 yr confirmed strong seasonal effects on stem diameter expansion. Individuals of all three species expanded in unison during wet season months and were static or even contracted during dry season months. Stems of the deciduous Swietenia contracted as crowns were shed during the early dry season, expanded slightly as new crowns were flushed, and then contracted further during 3–5 wk flowering periods in the late dry season by newly mature crowns. The three species’ physiographic distribution patterns at the study site may partially underlie observed differences in annual and seasonal growth. With most global circulation models predicting conditions becoming gradually drier in southeast Amazonia over the coming decades, species such as Swietenia that perform best on the ‘wet end’ of current conditions may experience reduced growth rates. However, population viability will not necessarily be threatened if life history and ecophysiological responses to changing conditions are compensatory.  相似文献   

19.
王意锟  方升佐  田野  唐罗忠 《生态学报》2012,32(22):7239-7246
采用室内培养研究了黏壤土和粉砂质壤土条件下杨树叶和小麦秸秆混合以及改变杨树叶添加频次对土壤有机碳矿化及土壤微生物量的影响.结果表明:(1)添加各残落物后,25℃时土壤呼吸速率高于15℃,粉砂质壤土高于黏壤土(P<0.05).分4次添加杨树叶处理(P2、P2-W)的呼吸速率在1-7d较小,第8天后高于其他处理(P<0.05),且在9、17、25d会出现峰值.(2)培养初期,混合物对有机碳矿化的促进作用不明显,培养结束时表现出促进作用(P<0.05).分4次添加杨树叶最终的有机碳净矿化累积量高于一次添加处理(P<0.05).(3)和单一处理相比,杨树叶-小、麦秸秆混合后的土壤微生物量碳、氮显著提高(P<0.05),而分4次添加杨树叶的土壤微生物量碳、氮高于一次性添加处理(P<0.05).添加残落物处理均降低了土壤矿质态氮含量,且这种现象在混合处理(P1-W,P2-W)中更为明显(P<0.05).说明残落物混合及添加频次增加能有效调节碳动态及氮供应,这对深入了解农林复合系统碳氮循环具有一定的现实意义.  相似文献   

20.
以福州市滨海后沿沙地人工营造的湿地松、木麻黄、尾巨桉、肯氏相思和纹荚相思防护林为研究对象,测定不同年龄(新叶、老叶)叶片、表层土壤(0~10cm)天然稳定碳、氮同位素丰度值(δ~(13) C、δ~(15)N),研究稳定碳、氮同位素丰度值与水分利用效率和土壤氮饱和程度的相互关系,以揭示不同树种水分利用效率、氮饱和程度和碳氮循环速率差异的机理。结果表明:(1)滨海沙地不同树种叶片δ~(13) C变化范围为-31.682‰~-29.323‰,其δ~(13) C大小为:湿地松肯氏相思木麻黄纹荚相思尾巨桉,除尾巨桉外各树种δ~(13) C均表现为新叶老叶;各树种叶片δ~(15)N变化范围为-5.548‰~-2.167‰,其δ~(15)N大小为:肯氏相思纹荚相思木麻黄湿地松尾巨桉,且各树种均表现为新叶老叶。(2)不同树种表层土壤δ~(15)N变化范围为-4.675‰~-2.975‰,表层土壤δ~(15)N大小为:纹荚相思肯氏相思木麻黄尾巨桉湿地松,但不同树种表层土壤C含量无显著差异。(3)滨海沙地湿地松、木麻黄、肯氏相思和纹荚相思的水分利用效率随叶龄增加均呈显著递减趋势;不同树种新叶的水分利用效率变化范围为39.09~76.57μmol·mol~(-1),其大小依次为:湿地松肯氏相思木麻黄纹荚相思尾巨桉;老叶的水分利用效率变化范围为38.56~62.59μmol·mol~(-1),其大小依次为:湿地松木麻黄肯氏相思尾巨桉纹荚相思。(4)不同树种人工林水分利用效率与其新叶水分利用效率呈显著正相关关系,说明林分水分利用效率主要体现在新叶的水分利用效率上,同时林分水分利用效率受林分类型的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号