首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Phenotypic plasticity is commonly considered to contribute to the invasion success of invasive species. However, the importance of phenotypic plasticity, nitrogen (N) levels and warming to the invasion of invasive species is unclear. The effects of warming and N addition on the morphology, biomass allocation and biochemistry traits of Solidago canadensis and their plasticity were investigated by conducting a pot experiment. The results showed that the effect of N addition on biomass was improved for S. canadensis; whereas warming displayed no significant effect, their positive synergistic interact effect resulted in the overall significant increase in plant performance. The mean phenotypic plasticity indices (MPPI) of biochemistry and total parameters demonstrated a difference between operations, and the higher value was observed in N interaction with temperature treatments than N addition or warming alone. The observed MPPI indicated the biochemistry parameters > morphological parameters > allocation parameters. The MPPI of biochemistry parameters, morphological parameters and total parameters exhibited significant and positive correlations with N level and MPPI of morphological parameters was also significantly positively correlated with the fitness of S. canadensis. These results indicated that the global warming and N addition would make the invaded habitat more suitable for the growth of invasive S. canadensis, and even may effectively increase the invasion risk of S. canadensis through the enhanced phenotypic plasticity, which is a crucial factor to help species deal with the changing environment.  相似文献   

2.
The conversion of two‐thirds of New Zealand's native forests and grasslands to agriculture has followed trends in other developed nations, except that pastoral grazing rather than cropping dominates agriculture. The initial conversion of land to pasture decreased soil acidity and elevated N and P stocks, but caused little change in soil organic C stocks. However, less is known about C and nutrient stock changes during the last two decades under long‐term pastoral management. We resampled 31 whole soil profiles in pastures spanning seven soil orders with a latitudinal range of 36–46°S, which had originally been sampled 17–30 years ago. We measured total C, total N, and bulk density for each horizon (generally to 1 m) and also reanalyzed archived soil samples of the same horizons for C and N. On average, profiles had lost significant amounts of C (− 2.1 kg C m−2) and N (− 0.18 kg N m−2) since initial sampling. Assuming a continuous linear decline in organic matter between sampling dates, significant losses averaged 106 g C m−2 yr−1 (P=0.01) and 9.1 g N m−2 yr−1 (P=0.002). Removal of C through leaching and erosion appears too small to explain these losses, suggesting losses from respiration exceed the inputs of photosynthate in the soil profile. These results emphasize that resampling soil profiles provide a robust method for detecting soil C changes, and add credence to the suggestion that soil C losses may be occurring in some temperate soil profiles. Further work is required to determine whether these losses are continuing and how losses might be extrapolated across landscapes to determine the implications for New Zealand's national CO2 emissions and the sustainability of the implied rates of soil N loss.  相似文献   

3.
    
Despite the increasing impact of atmospheric nitrogen (N) deposition on terrestrial greenhouse gas (GHG) budget, through driving both the net atmospheric CO2 exchange and the emission or uptake of non-CO2 GHGs (CH4 and N2O), few studies have assessed the climatic impact of forests and grasslands under N deposition globally based on different bottom-up approaches. Here, we quantify the effects of N deposition on biomass C increment, soil organic C (SOC), CH4 and N2O fluxes and, ultimately, the net ecosystem GHG balance of forests and grasslands using a global comprehensive dataset. We showed that N addition significantly increased plant C uptake (net primary production) in forests and grasslands, to a larger extent for the aboveground C (aboveground net primary production), whereas it only caused a small or insignificant enhancement of SOC pool in both upland systems. Nitrogen addition had no significant effect on soil heterotrophic respiration (RH) in both forests and grasslands, while a significant N-induced increase in soil CO2 fluxes (RS, soil respiration) was observed in grasslands. Nitrogen addition significantly stimulated soil N2O fluxes in forests (76%), to a larger extent in grasslands (87%), but showed a consistent trend to decrease soil uptake of CH4, suggesting a declined sink capacity of forests and grasslands for atmospheric CH4 under N enrichment. Overall, the net GHG balance estimated by the net ecosystem production-based method (forest, 1.28 Pg CO2-eq year−1 vs. grassland, 0.58 Pg CO2-eq year−1) was greater than those estimated using the SOC-based method (forest, 0.32 Pg CO2-eq year−1 vs. grassland, 0.18 Pg CO2-eq year−1) caused by N addition. Our findings revealed that the enhanced soil C sequestration by N addition in global forests and grasslands could be only marginally offset (1.5%–4.8%) by the combined effects of its stimulation of N2O emissions together with the reduced soil uptake of CH4.  相似文献   

4.
施氮和降水格局改变对土壤CH4和CO2通量的影响   总被引:1,自引:0,他引:1  
李伟  白娥  李善龙  孙建飞  彭勃  姜萍 《生态学杂志》2013,32(8):1947-1958
氮沉降增加和降水格局改变是全球变化的两项重要内容,但是同时考虑上述两因素对温室气体CH4和CO2通量影响的原位双因子模拟研究还相当有限.本研究以长白山温带阔叶红松林土壤为研究对象,采用静态箱法研究了外施氮源(50 kg N·hm-2·a-1)和增减30%降水对土壤CH4和CO2通量的影响.结果表明:施氮能抑制土壤CH4吸收,有时甚至能将土壤对CH4的吸收转为释放,但这种抑制效应只能维持5d左右,且能在一定程度上改变CH4通量和环境因子(温度、土壤pH、粘粒含量)的相关关系.降水改变未能显著影响土壤CH4通量.对CO2通量而言,施氮能降低土壤CO2排放,长白山阔叶红松林连续施氮第4年的平均抑制效应为27.4%.长期连续施氮的平均抑制效应随施氮时间延长而逐渐增大,一定年限后达到最大值.单次施氮的抑制效应随时间延长逐渐减弱,并在1个月的施氮周期末期基本消失.施氮的抑制效应和土壤充水孔隙度(WFPS)呈显著负相关关系,且升温能增强施氮对CO2释放的抑制效应并延长抑制时间.施氮、降水有可能改变土壤呼吸的温度敏感性.本研究表明,长白山森林土壤氮素尚未达到一定阈值,未来氮沉降增加将抑制CO2的释放和CH4的吸收,因此总体来看施氮抑制土壤碳排放.  相似文献   

5.
植物的光合作用是评估全球变化背景下碳循环的重要环节。目前,氮沉降增加日益明显,作为植物生长关键因子的可利用氮将对植物的光合生理生态过程产生影响。以长白山阔叶红松林主要树种红松和紫椴的幼苗为例,通过模拟氮沉降增加(氮添加量分别为0、23、46和69 kg N hm~(-2)a~(-1))的方法,利用Li-6400光合测定系统分别测算了两个树种的最大净光合速率(A_(max))、气孔导度(G_(smax))和水分利用效率(WUE)的值,并测算了叶氮含量、叶绿素含量、比叶面积、光合氮利用效率(PNUE)的值。通过分析A_(max)随不同施氮量的变化规律,同时结合其他叶片特征参数的变化,进一步探讨植物光合随氮添加的变化原因。研究结果显示:两个树种的A_(max)值在0—46 kg N hm~(-2)a~(-1)的氮添加范围内随施氮量的增加而增大,继续增加施氮量至69 kg Nhm~(-2)a~(-1)则出现下降。叶绿素含量、G_(smax)、PNUE和比叶面积在不同的氮添加水平下的变化规律与A_(max)的一致,且均与A_(max)呈显著正相关关系。叶氮含量与A_(max)的值仅在0—46 kg N hm~(-2)a~(-1)氮添加范围内呈显著正相关。A_(max)与WUE的相关关系不显著。相同氮添加水平下,氮添加对阔叶树种紫椴各生理生态参数(A_(max)、G_(smax)、叶氮含量、比叶面积、PNUE和WUE)的促进程度高于对针叶树种红松各生理生态参数的促进程度。研究结果可为评估氮沉降增加背景下我国东北地区的碳循环提供依据。  相似文献   

6.
    
Emerging evidence points out that the responses of soil organic carbon (SOC) to nitrogen (N) addition differ along the soil profile, highlighting the importance of synthesizing results from different soil layers. Here, using a global meta-analysis, we found that N addition significantly enhanced topsoil (0–30 cm) SOC by 3.7% (±1.4%) in forests and grasslands. In contrast, SOC in the subsoil (30–100 cm) initially increased with N addition but decreased over time. The model selection analysis revealed that experimental duration and vegetation type are among the most important predictors across a wide range of climatic, environmental, and edaphic variables. The contrasting responses of SOC to N addition indicate the importance of considering deep soil layers, particularly for long-term continuous N deposition. Finally, the lack of depth-dependent SOC responses to N addition in experimental and modeling frameworks has likely resulted in the overestimation of changes in SOC storage under enhanced N deposition.  相似文献   

7.
通过野外氮、磷添加,分析N0(0 kg N·hm-2·a-1)、N1(50 kg N·hm-2·a-1)、N2(100 kg N·hm-2·a-1)、P(50 kg P·hm-2·a-1)、N1P和N2P等6种处理3年后对亚热带杉木人工林土壤有机碳(SOC)、颗粒有机碳(POC)和水溶性有机碳(WSOC)的影响.结果表明:氮、磷添加对0~20 cm土层SOC含量无显著影响.磷添加显著降低0~5 cm土层POC含量,与无磷处理相比,加磷处理POC含量降低26.1%.WSOC含量对氮、磷添加的响应主要表现在0~5 cm土层,低水平氮添加和磷添加显著提高WSOC含量.在0~5 cm土层,氮添加对POC/SOC值无显著影响,而与无磷添加相比,POC/SOC值在磷添加处理下显著降低15.9%.在5~10和10~20 cm土层,氮、磷添加处理对POC/SOC值无显著影响.在亚热带地区,森林土壤碳稳定性主要受磷含量的调控,短期磷添加易导致表层土壤活性有机碳分解,增加土壤碳稳定性.  相似文献   

8.
    
One of the key aims of global change studies is to predict more accurately how plant community composition responds to future environmental changes. Although interspecific relationship is one of the most important forces structuring plant communities, it remains a challenge to integrate long‐term consequences at the plant community level. As an increasing number of studies have shown that maternal environment affects offspring phenotypic plasticity as a response to global environment change through transgenerational effects, we speculated that the transgenerational effect would influence offspring competitive relationships. We conducted a 10‐year field experiment and a greenhouse experiment in a temperate grassland in an Inner Mongolian grassland to examine the effects of maternal and immediate nitrogen addition (N) and increased precipitation (Pr) on offspring growth and the interspecific relationship between the two dominant species, Stipa krylovii and Artemisia frigida. According to our results, Stipa kryloii suppressed A. frigida growth and population development when they grew in mixture, although immediate N and Pr stimulated S. kryloii and A. frigida growth simultaneously. Maternal N and Pr declined S. krylovii dominance and decreased A. frigida competitive suppression to some extent. The transgenerational effect should further facilitate the coexistence of the two species under scenarios of increased nitrogen input and precipitation. If we predicted these species'' interspecific relationships based only on immediate environmental effects, we would overestimate S. krylovii''s competitive advantage and population development, and underestimate competitive outcome and population development of A. frigida. In conclusion, our results demonstrated that the transgenerational effect of maternal environment on offspring interspecific competition must be considered when evaluating population dynamics and community composition under the global change scenario.  相似文献   

9.
    
  1. Shallow lakes may play an important role for the nitrogen (N) balance in drainage basins by processing, transferring and retaining N inputs. An increase in the frequency of storm‐induced short‐term N pulses and increased water temperatures are both likely outcomes of climate change, potentially affecting the N processing in lakes.
  2. An experiment with a K15NO3? pulse addition (increase in NO3? concentration from c. 0.1 to 2 mg/L) was carried out in 12 mesocosms with relatively low (applies to Danish lakes) total N (TN) and total phosphorus (TP) concentrations (c. 0.3 mg N L?1 and 0.04 mg P L?1) to assess the effects of an N pulse on N processing and storage in shallow lake ecosystems. The mesocosms have a hydraulic retention time of approximately two and a half months, and at the time of the experiment, they had been adapted to contrasting temperatures for a period of 10 years: ambient, T3 (heating according to the Intergovernmental Panel on Climate Change 2007 A2 scenario, +3.7–4.5°C, depending on season) and T5 (heating with A2 + 50%, +4.9–6.6°C).
  3. Macrophytes and filamentous algae retained up to 40% and 30% of the added 15N, respectively, reflecting their high biomass in the mesocosms. Macrophytes and filamentous algae constituted between 70% and 80% of the biomass of all primary producers during the experiment in the T3 and ambient treatments and between 20% and 40% in T5. By comparison, less than 1% of the added 15N diffused to the sediment and less than 5% was lost to the atmosphere as N2 gas. Snails represented the long‐term storage of 15N, retaining up to 6% of the tracer and with detectable enrichment 100 days after tracer addition.
  4. We found no significant differences among the temperature treatments in the 15N turnover after pulse dosing. However, a larger percentage of 15N was stored in macrophytes in the ambient and T3 mesocosms, reflecting higher biomasses than in T5 where filamentous algae were more abundant. Macrophytes and filamentous algae rather than temperature were therefore key controllers of N processing during the summer N pulse in these shallow, relatively low TP lakes.
  相似文献   

10.
As in many ecosystems, carbon (C) cycling in arctic and boreal regions is tightly linked to the cycling of nutrients: nutrients (particularly nitrogen) are mineralized through the process of organic matter decomposition (C mineralization), and nutrient availability strongly constrains ecosystem C gain through primary production. This link between C and nutrient cycles has implications for how northern systems will respond to future climate warming and whether feedbacks to rising concentrations of atmospheric CO2 from these regions will be positive or negative. Warming is expected to cause a substantial release of C to the atmosphere because of increased decomposition of the large amounts of organic C present in high-latitude soils (a positive feedback to climate warming). However, increased nutrient mineralization associated with this decomposition is expected to stimulate primary production and ecosystem C gain, offsetting or even exceeding C lost through decomposition (a negative feedback to climate warming). Increased primary production with warming is consistent with results of numerous experiments showing increased plant growth with nutrient enrichment. Here we examine key assumptions behind this scenario: (1) temperature is a primary control of decomposition in northern regions, (2) increased decomposition and associated nutrient release are tightly coupled to plant nutrient uptake, and (3) short-term manipulations of temperature and nutrient availability accurately predict long-term responses to climate change.  相似文献   

11.
The response of plants to elevated CO2 is dependent on the availability of nutrients, especially nitrogen. It is generally accepted that an increase in the atmospheric CO2 concentration increases the C:N ratio of plant residues and exudates. This promotes temporary N-immobilization which might, in turn, reduce the availability of soil nitrogen. In addition, both a CO2 stimulated increase in plant growth (thus requiring more nitrogen) and an increased N demand for the decomposition of soil residues with a large C:N will result under elevated CO2 in a larger N-sink of the whole grassland ecosystem. One way to maintain the balance between the C and N cycles in elevated CO2 would be to increase N-import to the grassland ecosystem through symbiotic N2 fixation. Whether this might happen in the context of temperate ecosystems is discussed, by assessing the following hypothesis: i) symbiotic N2 fixation in legumes will be enhanced under elevated CO2, ii) this enhancement of N2 fixation will result in a larger N-input to the grassland ecosystem, and iii) a larger N-input will allow the sequestration of additional carbon, either above or below-ground, into the ecosystem. Data from long-term experiments with model grassland ecosystems, consisting of monocultures or mixtures of perennial ryegrass and white clover, grown under elevated CO2 under free-air or field-like conditions, supports the first two hypothesis, since: i) both the percentage and the amount of fixed N increases in white clover grown under elevated CO2, ii) the contribution of fixed N to the nitrogen nutrition of the mixed grass also increases in elevated CO2. Concerning the third hypothesis, an increased nitrogen input to the grassland ecosystem from N2 fixation usually promotes shoot growth (above-ground C storage) in elevated CO2. However, the consequences of this larger N input under elevated CO2 on the below-ground carbon fluxes are not fully understood. On one hand, the positive effect of elevated CO2 on the quantity of plant residues might be overwhelming and lead to an increased long-term below-ground C storage; on the other hand, the enhancement of the decomposition process by the N-rich legume material might favour carbon turn-over and, hence, limit the storage of below-ground carbon.  相似文献   

12.
森林在区域和全球碳循环中起着关键作用,不同森林类型生物量和碳密度的精确估算是区域森林碳储量研究的重要基础。以2005和2010年吕梁山南段2期森林资源清查资料为基础,采用加权生物量回归模型法和转换因子连续函数法对森林乔木层的生物量进行估算,发现前者估算结果显著高于后者(P0.01),加权生物量回归模型法更适宜于中小尺度生物量估算。依据回归模型法获得的28×112(物种×样方)碳密度矩阵,对森林群落进行TWINSPAN分类和DCA、CCA排序;采用单因素方差分析和相关分析对不同生境条件下乔木层的碳密度进行研究。结果表明:吕梁山南段森林群落可分为8个群系,不同群系间碳密度差异显著(P0.01),其中辽东栎+色木槭群系和辽东栎+油松群系显著高于其他群系,白皮松+侧柏群系最低。2010年乔木层碳密度显著高于2005年,平均每年以1.54 t·hm-2的速度增加。乔木层碳密度与海拔或坡度呈显著相关,随海拔或坡度的增加碳密度呈先增后降的趋势。阴坡和半阴坡(北坡和东坡)碳密度大于阳坡和半阳坡(南坡与东南坡),山脊碳密度最小。因地制宜进行物种选择和抚育管理,可显著提高森林碳密度。  相似文献   

13.
    
  1. Changes in precipitation patterns are one of the most pervasive components of climate change. It has been suggested that the increased frequency of extreme drought and flooding events could affect the outcome of competition between native and invasive plants. However, empirical evidence for this prediction remains scarce.
  2. We combined controlled experiments and field observations in a freshwater floodplain to assess how drought and flooding events affect growth and biomass production of a native and an invasive plant species, grown in monoculture and mixed culture. We used the native Panicum dichotomiflorum and the invasive Urochloa mutica, which are two common grasses that frequently grow in natural floodplains of the Neotropics.
  3. The experimental and observational data showed that biomass production, growth and relative dominance of the native species were higher under more stable water levels. By contrast, the invasive species had higher biomass production, growth and relative dominance under extreme drought and flooding conditions. Thus, extremes in precipitation can alter the relative dominance of the two species in favour of the invader.
  4. Our study provides comprehensive evidence that water-level oscillations may negatively impact the performance of the native species, whereas they did not alter the biomass production and growth of the invasive species. Under stable conditions, faster growth of the native species may hinder successful establishment of the invasive species. However, under extreme drought and flooding events, the invader could be favoured. Although our findings are based on the outcome of the interaction between only one native and one invasive plant species, our results suggest that biotic resistance might be higher under stable water conditions.
  相似文献   

14.
土壤有机碳和氮分解对温度变化的响应趋势与研究方法   总被引:2,自引:0,他引:2  
吴建国 《应用生态学报》2007,18(12):2896-2904
总结了土壤中碳和氮贮量与温度的关系、土壤碳和氮分解对温度时空差异和直接加热升温的响应,以及土壤碳和氮分解对低温冻结及冻融循环的响应趋势,讨论了其研究方法的误差和不确定性,并对今后的研究提出了一些建议.气候变暖在短期内将使土壤碳和氮分解加速并引起CO2释放量增加,而长期过程中却并不一定会引起土壤碳和氮分解加速.合理解释不同研究结果的差异,除了需要系统分析土壤碳和氮分解对温度变化响应的机制外,还需要充分认识土壤碳和氮分解对温度变化响应的长期过程和短期过程的差异,以及研究方法、植被、土壤和气候等因素的影响.  相似文献   

15.
16.
    
The Hurley Pasture Model was used to examine the short and long-term responses of grazed grasslands in the British uplands to a step increase from 350 to 700 μmol mol–1 CO2 concentration ([CO2]) with inputs of 5 or 100 kg N ha–1 y–1. In N-rich grassland, [CO2] doubling quickly increased net primary productivity (NPP), total carbon (Csys) and plant biomass by about 30%. By contrast, the N-poor grassland underwent a prolonged ‘transient’, when there was little response, but eventually NPP, Csys and plant biomass more than doubled. The ‘transient’ was due to N immobilization and severe depletion of the soil mineral N pool. The large long-term response was due to slow N accumulation, as a result of decreased leaching, decreased gaseous N losses and increased N2-fixation, which amplified the CO2 response much more in the N-poor than in the N-rich grassland. It was concluded that (i) ecosystems use extra carbon fixed at high [CO2] to acquire and retain nutrients, supporting the contention of Gifford et al. (1996 ), (ii) in the long term, and perhaps on the real timescale of increasing [CO2], the response (in NPP, Csys and plant biomass) of nutrient-poor ecosystems may be proportionately greater than that of nutrient-rich ones, (iii) short-term experiments on nutrient-poor ecosystems may observe only the transient responses, (iv) the speed of ecosystem responses may be limited by the rate of nutrient accumulation rather than by internal rate constants, and (v) ecosystem models must represent processes affecting nutrient acquisition and retention to be able to simulate likely real-world CO2 responses.  相似文献   

17.
    
Coccolithophores are unicellular phytoplankton that produce calcium carbonate coccoliths as an exoskeleton. Emiliania huxleyi, the most abundant coccolithophore in the world's ocean, plays a major role in the global carbon cycle by regulating the exchange of CO2 across the ocean‐atmosphere interface through photosynthesis and calcium carbonate precipitation. As CO2 concentration is rising in the atmosphere, the ocean is acidifying and ammonium (NH4+) concentration of future ocean water is expected to rise. The latter is attributed to increasing anthropogenic nitrogen (N) deposition, increasing rates of cyanobacterial N2 fixation due to warmer and more stratified oceans, and decreased rates of nitrification due to ocean acidification. Thus, future global climate change will cause oceanic phytoplankton to experience changes in multiple environmental parameters including CO2, pH, temperature and nitrogen source. This study reports on the combined effect of elevated pCO2 and increased NH4+ to nitrate (NO3?) ratio (NH4+/NO3?) on E. huxleyi, maintained in continuous cultures for more than 200 generations under two pCO2 levels and two different N sources. Herein, we show that NH4+ assimilation under N‐replete conditions depresses calcification at both low and high pCO2, alters coccolith morphology, and increases primary production. We observed that N source and pCO2 synergistically drive growth rates, cell size, and the ratio of inorganic to organic carbon. These responses to N source suggest that, compared to increasing CO2 alone, a greater disruption of the organic carbon pump could be expected in response to the combined effect of increased NH4+/NO3? ratio and CO2 level in the future acidified ocean. Additional experiments conducted under lower nutrient conditions are needed prior to extrapolating our findings to the global oceans. Nonetheless, our results emphasize the need to assess combined effects of multiple environmental parameters on phytoplankton biology to develop accurate predictions of phytoplankton responses to ocean acidification.  相似文献   

18.
Although it is widely accepted that elevated atmospheric carbon dioxide (CO2), nitrogen (N) deposition, and climate change will alter ecosystem productivity and function in the coming decades, the combined effects of these environmental changes may be nonadditive, and their interactions may be altered by disturbances, such as fire. We examined the influence of a summer wildfire on the interactive effects of elevated CO2, N deposition, and increased precipitation in a full-factorial experiment conducted in a California annual grassland. In unburned plots, primary production was suppressed under elevated CO2. Burning alone did not significantly affect production, but it increased total production in combination with nitrate additions and removed the suppressive effect of elevated CO2. Increased production in response to nitrate in burned plots occurred as a result of the enhanced aboveground production of annual grasses and forbs, whereas the removal of the suppressive effect of elevated CO2 occurred as a result of increased aboveground forb production in burned, CO2-treated plots and decreased root production in burned plots under ambient CO2.The tissue nitrogen–phosphorus ratio, which was assessed for annual grass shoots, decreased with burning and increased with nitrate addition. Burning removed surface litter from plots, resulting in an increase in maximum daily soil temperatures and a decrease in soil moisture both early and late in the growing season. Measures of vegetation greenness, based on canopy spectral reflectance, showed that plants in burned plots grew rapidly early in the season but senesced early. Overall, these results indicate that fire can alter the effects of elevated CO2 and N addition on productivity in the short term, possibly by promoting increased phosphorus availability.  相似文献   

19.
  总被引:1,自引:0,他引:1  
Soil carbon sequestration (enhanced sinks) is the mechanism responsible for most of the greenhouse gas (GHG) mitigation potential in the agriculture sector. Carbon sequestration in grasslands can be determined directly by measuring changes in soil organic carbon (SOC) stocks and indirectly by measuring the net balance of C fluxes. A literature search shows that grassland C sequestration reaches on average 5 ± 30 g C/m2 per year according to inventories of SOC stocks and -231 and 77 g C/m2 per year for drained organic and mineral soils, respectively, according to C flux balance. Off-site C sequestration occurs whenever more manure C is produced by than returned to a grassland plot. The sum of on- and off-site C sequestration reaches 129, 98 and 71 g C/m2 per year for grazed, cut and mixed European grasslands on mineral soils, respectively, however with high uncertainty. A range of management practices reduce C losses and increase C sequestration: (i) avoiding soil tillage and the conversion of grasslands to arable use, (ii) moderately intensifying nutrient-poor permanent grasslands, (iii) using light grazing instead of heavy grazing, (iv) increasing the duration of grass leys; (v) converting grass leys to grass-legume mixtures or to permanent grasslands. With nine European sites, direct emissions of N2O from soil and of CH4 from enteric fermentation at grazing, expressed in CO2 equivalents, compensated 10% and 34% of the on-site grassland C sequestration, respectively. Digestion inside the barn of the harvested herbage leads to further emissions of CH4 and N2O by the production systems, which were estimated at 130 g CO2 equivalents/m2 per year. The net balance of on- and off-site C sequestration, CH4 and N2O emissions reached 38 g CO2 equivalents/m2 per year, indicating a non-significant net sink activity. This net balance was, however, negative for intensively managed cut sites indicating a source to the atmosphere. In conclusion, this review confirms that grassland C sequestration has a strong potential to partly mitigate the GHG balance of ruminant production systems. However, as soil C sequestration is both reversible and vulnerable to disturbance, biodiversity loss and climate change, CH4 and N2O emissions from the livestock sector need to be reduced and current SOC stocks preserved.  相似文献   

20.
由于研究环境变化和微生物群落的需要,近年来高通量组学技术得到了迅猛开发和应用.其中,基于测序和芯片技术的宏基因组学是一个关键的、最成熟的组学技术,为大多数的其它组学技术提供了支撑.相比较而言,宏转录组学、宏蛋白质组学和宏代谢组学也取得了少数的有限成功,但已经显示出可喜的潜力.所有的组学技术都有赖于生物信息学,使得后者成为组学技术应用的一个主要的技术瓶颈.这些新的组学技术对环境微生物学领域产生了革命性的影响,极大地丰富了我们对于环境微生物基因资源和功能活性的了解.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号