首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The availability of standard protocols to obtain DNA sequences has allowed the inference of phylogenetic Hypotheses for many taxa, including moths. We here have inferred a phylogeny using maximum‐Likelihood and Bayesian approaches for a species‐rich group of moths (Erebidae, Arctiinae), with strong emphasis on Neotropical genera collected in different field campaigns in the Atlantic Forest of Brazil, eastern Amazon and southern Ecuador. A total of 277 species belonging to 246 genera were included in the analysis. Our main objectives were to shed light on the relationships between suprageneric groups, especially subtribes, and hypothesize colonization events in and out of the Neotropics. The monophyly of Arctiinae and its four tribes (Lithosiini, Amerilini, Syntomini and Arctiini) was recovered in the ML and Bayesian trees. Three Lithosiini subtribes previously found and two additional species groups were recovered monophyletic in both phylogenetic estimation methods. In Arctiini, the monophyly of Spilosomina and Arctiina was highly supported in the ML and Bayesian trees, but the monophyly of Ctenuchina and Echromiina was weakly supported in the ML tree and absent in the Bayesian tree; the remaining subtribes were paraphyletic and, in the case of Phageopterina, formed several species groups. The mapping of species occurrence in our ML tree suggests that Arctiinae have an Old World origin and that the Neotropical region was colonized at least six times independently. Our analysis also suggests that a number of species that occur in Neotropical and other zoogeographic regions may have originated in the Neotropics, although further taxon sampling is required to support this hypothesis. To our knowledge, this is the first time that a highly speciose group of tropical moths is well covered in a phylogeny, and it seems plausible that the results reported here may be extendable to other species‐rich tropical undersampled moth taxa.  相似文献   

2.
Loranthaceae (73 genera and ca. 900 species) comprise mostly aerial hemiparasitic plants. Three monotypic genera considered relicts are root parasites. The family is diverse in tropical areas, but representatives are also found in temperate habitats. Previous classifications were based on floral and inflorescence morphology, karyological information, and biogeography. The family has been divided into three tribes: Nuytsiae, Elytrantheae (subtribes Elytranthinae and Gaiadendrinae), and Lorantheae (subtribes Loranthinae and Psittacanthinae). Nuytsiae and Elytrantheae are characterized by a base chromosome number of x = 12, whereas subtribes Loranthinae (x = 9) and Psittacanthinae (x = 8) numbers are derived via aneuploid reduction. To elucidate the phylogeny of the family, we analyzed sequences from five genes (nuclear small and large subunit rDNA and the chloroplast genes rbcL, matK, and trnL-F) representing most genera using parsimony, likelihood, and Bayesian inference. The three root parasites, Nuytsia, Atkinsonia, and Gaiadendron, are supported as successive sister taxa to the remaining genera, resulting in a monophyletic group of aerial parasites. Three major clades are resolved each corresponding to a subtribe. However, two South American genera (Tristerix and Notanthera) and the New Zealand genus Tupeia, which were previously classified in subtribe Elytranthinae, are weakly supported as part of a clade representing the South American subtribe Psittacanthinae.  相似文献   

3.
Ting Ma  Jia Huang 《Journal of Asia》2018,21(4):1416-1423
Hydrotaea spinigera Stein is a muscid species with high forensic importance. To further supplement the genome-level features of related species, the complete mitochondrial genome of H. spinigera is amplified, sequenced, annotated, analyzed, and compared with 13 other species of the family Muscidae. This mitogenome is 15,517?bp in length, with a standard set of 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes, and a typical non-coding control region. The gene organization, base composition, and secondary structures of tRNA genes of this mitogenome are similar to other dipteran species. Phylogenetic analyses based on all the mitochondrial PCGs and rRNA genes for 14 muscid and one outgroup taxa are performed using Bayesian inference (BI) and maximum likelihood (ML) analysis. The inferred trees indicate that the Muscidae, the subfamily Muscinae, and the tribes Azeliini and Reinwardtiini are monophyletic, whereas the monophyly of the subfamily Azeliinae and the tribe Muscini is not supported.  相似文献   

4.
Monkey beetles (Hopliini) are a large clade of flower and leaf feeding species within the Scarabaeidae (chafers) with greatest diversity in southern Africa. Their internal relationships and sister group affinities have not been studied with DNA methods. We used partial gene sequences for 28S rRNA, cytochrome oxidase I (cox1) and 16S rRNA (rrnL) for 158 species, representing most recognized subfamilies of Scarabaeidae, including 46 species of Hopliini. Combined analyses using maximum likelihood and Bayesian inference under the two preferred alignment parameters recovered the Hopliini as monophyletic. Hopliines were inserted at the base of a clade of Cetoniinae+Rutelinae+Dynastinae, being either recovered as their immediate sister group, or as part of an expanded set of basal branches that also includes the tribe Macrodactylini which has been classified as part of the Melolonthinae (may chafers). At the level of subtribes, we found Hopliina paraphyletic with respect to Pachycnemina which also includes the monophyletic clade of Heterochelina and Gymnolomina. Trait mapping under parsimony on the preferred tree resulted in inferences of three independent origins of sexual dimorphism, which coincided with shifts to 'flower-embedding' pollination. In contrast, night active taxa, which are general phyllophages as other pleurostict chafers, never show clear sexual dimorphism. South African lineages include several deep-branching lineages. The exceptional morphological and phylogenetic diversity of the South African fauna may therefore be due to their antiquity, in addition to sexual selection in the day-active lineages. Phylogenetic studies of the endemic South African plant radiations have demonstrated the repeated evolutionary shift to beetle pollination, but it remains to be investigated if this is driven by the hopliine pollinators present in the bioregion or by a propensity of the local plant lineages favoring this pollination syndrome.  相似文献   

5.
The cyprinid tribe Labeonini (sensuRainboth, 1991) is a large group of freshwater fishes containing around 40 genera and 400 species. They are characterized by an amazing diversity of modifications to their lips and associated structures. In this study, a total of 34 genera and 142 species of putative members of this tribe, which represent most of the generic diversity and more than one third of the species diversity of the group, were sampled and sequenced for four nuclear genes and five mitochondrial genes (totaling 9465bp). Phylogenetic relationships and subdivision of this tribe were investigated and the placement and status of most genera are discussed. Partitioned maximum likelihood analyses were performed based on the nuclear dataset, mitochondrial dataset, combined dataset, and the dataset for each nuclear gene. Inclusion of the genera Paracrossochilus, Barbichthys, Thynnichthys, and Linichthys in the Labeonini was either confirmed or proposed for the first time. None of the genera Labeo, Garra, Bangana, Cirrhinus, and Crossocheilus are monophyletic. Taxonomic revisions of some genera were made: the generic names Gymnostomus Heckel, 1843, Ageneiogarra Garman, 1912 and Gonorhynchus McClelland, 1839 were revalidated; Akrokolioplax Zhang and Kottelat, 2006 becomes a junior synonym of Gonorhynchus; the species Osteochilus nashii was found to be a member of the barbin genus Osteochilichthys. Five historical hypotheses on the classification of the Labeonini were tested and rejected. We proposed to subdivide the tribe, which is strongly supported as monophyletic, into four subtribes: Labeoina, Garraina, Osteochilina, and Semilabeoina. The taxa included in each subtribe were listed and those taxa that need taxonomic revision were discussed.  相似文献   

6.
Cladistic parsimony analyses of rbcL nucleotide sequence data from 171 taxa representing nearly all tribes and subtribes of Orchidaceae are presented here. These analyses divide the family into five primary monophyletic clades: apostasioid, cypripedioid, vanilloid, orchidoid, and epidendroid orchids, arranged in that order. These clades, with the exception of the vanilloids, essentially correspond to currently recognized subfamilies. A distinct subfamily, based upon tribe Vanilleae, is supported for Vanilla and its allies. The general tree topology is, for the most part, congruent with previously published hypotheses of intrafamilial relationships; however, there is no evidence supporting the previously recognized subfamilies Spiranthoideae, Neottioideae, or Vandoideae. Subfamily Spiranthoideae is embedded within a single clade containing members of Orchidoideae and sister to tribe Diurideae. Genera representing tribe Tropideae are placed within the epidendroid clade. Most traditional subtribal units are supported within each clade, but few tribes, as currently circumscribed, are monophyletic. Although powerful in assessing monophyly of clades within the family, in this case rbcL fails to provide strong support for the interrelationships of the subfamilies (i.e., along the spine of the tree). The cladograms presented here should serve as a standard to which future morphological and molecular studies can be compared.  相似文献   

7.
The Labeonini (sensu Rainboth, 1991) is a tribe of the subfamily Cyprininae, the largest subfamily of Cypriniformes. With around 400 species in 34 genera, this tribe is widely distributed in the freshwaters of tropical Africa and Asia. Most species are adapted to fast-flowing streams and rivers, and exhibit unique morphological modifications associated with their lips and other structures around the mouth. The monophyly of this tribe has been tested and generally accepted in previous morphological and molecular studies. The major objectives of this study were to reconstruct the phylogenetic relationships within the tribe Labeonini, test its monophyly and explore the taxonomic subdivisions, intrarelationships and biogeography of the group. The value of the morphological characters associated with the lips and other associated structures in the taxonomic classification of labeonins was also discussed. Nucleotide sequences (3867 bp) of four unlinked nuclear loci were obtained from 51 species in 18 Labeonini genera from throughout the range of the tribe. Maximum parsimony, partitioned maximum likelihood and partitioned Bayesian analyses were used for phylogenetic inference from combined and separate gene data sets. Based on our results, the monophyly of Labeonini was well supported. Two major clades could be recovered within the tribe. Three subclades could further be recognized from the first clade. These clades/subclades are not consistent with groupings of any of previous workers using either morphological or molecular characters for phylogenetic inference. Only five currently recognized genera in this analysis are monophyletic. The similarity between some lips and associated structures (e.g. suctorial discs) of labeonins may due to convergence or parallelism instead of common ancestry. Labeonins of Southeast Asia, India and China are closely related to each other; the multiple clades of African taxa do not form a single monophyletic group, indicating multiple, independent dispersal events of labeonins into Africa from Asia.  相似文献   

8.
? Premise of the Study: Little research has been done at the molecular level on the tribe Fumarieae (Papaveraceae). Papaveraceae is a model plant group for studying evolutionary patterns despite the lack of a reference phylogeny for this tribe. We investigated the phylogenetic relationships within the tribe to complete the molecular data for this family in order to help understand its character evolution and biogeographic pattern. ? Methods: We used maximum-parsimony and Bayesian approaches to analyze five DNA regions for 25 species representing 10 of the 11 Fumarieae genera and five outgroups. Evolutionary pathways of four characters (habit, life span, type of fruit, and number of seeds per fruit) were inferred on the phylogeny using parsimony. The ancestral distribution areas were reconstructed using dispersal-vicariance analysis. ? Key Results: Fumarieae is monophyletic and includes three groups that agree with the morphology-based subtribes: Discocapninae, Fumariinae, and Sarcocapninae. Within subtribes, the relationships among genera were different from those obtained with morphological data. Annual life span, nonchasmophytic habit, and a several-seeded capsule were the basal character states for the tribe. The ancestor occupied a continuous area between West Eurasia and Africa. Vicariances explain the divergence between lineages Discocapninae (South Africa) and Fumariinae-Sarcocapninae (Mediterranean), and the disjunction of Fumariinae (Mediterranean-Central Asia). ? Conclusions: Molecular phylogeny confirms the subtribal classification of Fumarieae based on morphology. However it provides different results regarding the relationships among genera within each subtribe, which affects the inference of the evolutionary pathway followed by the four selected characters. The disjunct distribution of the tribe is explained by different vicariance scenarios.  相似文献   

9.
The taxonomic treatment within the unigeneric tribe Yinshanieae(Brassicaceae) is controversial, owing to differences in generic delimitation applied to its species. In this study, sequences from nuclear ITS and chloroplast trn L-F regions were used to test the monophyly of Yinshanieae, while two nuclear markers(ITS, ETS) and four chloroplast markers(trnL-F, trn H-psbA, rps16, rpL32-trnL) were used to elucidate the phylogenetic relationships within the tribe. Using maximum parsimony, maximum likelihood, and Bayesian inference methods, we reconstructed the phylogeny of Brassicaceae and Yinshanieae. The results show that Yinshanieae is not a monophyletic group, with the taxa splitting into two distantly related clades: one clade contains four taxa and falls in Lineage I, whereas the other includes all species previously placed in Hilliella and is embedded in the Expanded Lineage II. The tribe Yinshanieae is redefined, and a new tribe, Hillielleae, is proposed based on combined evidence from molecular phylogeny, morphology, and cytology.  相似文献   

10.
Phylogenetic relationships within the mite Family Phytoseiidae are little known. The presently accepted classification is based on the opinion of specialists, but not on cladistics analysis. The present paper focuses on the tribe Euseiini, containing 271 species, three subtribes and 10 genera. It aims to determine phylogenetic relationships between these taxa and test their monophyly. Molecular analysis combining six markers has been carried out for taxa we succeeded in collecting. Morphological, biogeographic and ecological data have been analysed to determine how these factors can explain the evolutionary relationships emphasized on the phylogenetic tree. Those analyses have been carried out for the taxa available for the molecular study, but also for all species of the tribe. The tribe Euseiini and the two subtribes considered are monophyletic (at least considering the available taxa), supporting the present hypothesis on Phytoseiidae classification. However, the genus Iphiseius seems to not be valid and its unique species is included in the genus Euseius. Clades that were observed within the genus Euseius do not match with recent work on species groups within this genus. It seems that some morphological features such as an insemination apparatus shape and seta length on the dorsal shield constitute some elements explaining the clusters within the genus Euseius. Biogeographic and ecological data analysis led us to hypothesize a west Gondwanian origin of the tribe Euseiini (Africa and Neotropical areas) on Rosids plants (especially of the Orders Malpiphiales and Fabales: subclass Fabidae). Further analyses are still required to (i) take into account more taxa (especially rare ones and species from the Ethiopian part), (ii) to consider more accurate morphological features through more powerful microscopic apparatus, and (iii) to associate a phylogenetic and evolutionary scenario to life traits (pollen feeders).  相似文献   

11.
The focus of this study was to reconstruct a phylogenetic hypothesis for the moth subfamily Arctiinae (tiger moths, woolly bears) to investigate the evolution of larval and adult pharmacophagy of pyrrolizidine alkaloids (PAs) and the pathway to PA chemical specialization in Arctiinae. Pharmacophagy, collection of chemicals for non-nutritive purposes, is well documented in many species, including the model species Utetheisa ornatrix L. A total of 86 exemplar ingroup species representing tiger moth tribes and subtribes (68 genera) and nine outgroup species were selected. Ingroup species included the most species-rich generic groups to represent the diversity of host-plant associations and pharmacophagous behaviors found throughout Arctiinae. Up to nine genetic markers were sequenced: one mitochondrial (COI barcode region), one nuclear rRNA (D2 region, 28S rRNA), and seven nuclear protein-coding gene fragments: elongation factor 1-α protein, wingless, ribosomal protein subunit S5, carbamoylphosphate synthase domain regions, glyceraldehyde-3-phosphate dehydrogenase, isocitrate dehydrogenase and cytosolic malate dehydrogenase. A total of 6984 bp was obtained for most species. These data were analyzed using model-based phylogenetic methods: maximum likelihood (ML) and Bayesian inference (BI). Ancestral pharmacophagous behaviors and obligate PA associations were reconstructed using the resulting Bayes topology and Reconstructing Ancestral States in Phylogenies (RASP) software. Our results corroborate earlier studies on the evolution of adult pharmacophagous behaviors, suggesting that this behavior arose multiple times and is concentrated in the phaegopterine-euchromiine-ctenuchine clade (PEC). Our results suggest that PA specialization may have arisen early in the phylogeny of the subfamily and that facultative larval pharmacophagous behaviors are the derived condition.  相似文献   

12.
We have inferred the first empirically supported hypothesis of relationships for the cosmopolitan butterfly subfamily Satyrinae. We used 3090 base pairs of DNA from the mitochondrial gene COI and the nuclear genes EF-1alpha and wingless for 165 Satyrinae taxa representing 4 tribes and 15 subtribes, and 26 outgroups, in order to test the monophyly of the subfamily and elucidate phylogenetic relationships of its major lineages. In a combined analysis, the three gene regions supported an almost fully resolved topology, which recovered Satyrinae as polyphyletic, and revealed that the current classification of suprageneric taxa within the subfamily is comprised almost completely of unnatural assemblages. The most noteworthy findings are that Manataria is closely related to Melanitini; Palaeonympha belongs to Euptychiina; Oressinoma, Orsotriaena and Coenonympha group with the Hypocystina; Miller's (1968). Parargina is polyphyletic and its components group with multiple distantly related lineages; and the subtribes Elymniina and Zetherina fall outside the Satyrinae. The three gene regions used in a combined analysis prove to be very effective in resolving relationships of Satyrinae at the subtribal and tribal levels. Further sampling of the taxa closely related to Satyrinae, as well as more extensive sampling of genera within the tribes and subtribes for this group will be critical to test the monophyly of the subfamily and establish a stronger basis for future biogeographical and evolutionary studies.  相似文献   

13.
The phylogenetic relationships of 27 species of common Indo-Pacific snappers (Lutjanidae) were explored using the 16S ribosomal RNA and cytochrome b mitochondrial genes with minimum evolution, maximum parsimony, maximum likelihood and Bayesian inference analyses. Included were species representing four subfamilies, the Caesioninae, Etelinae, Paradicichthyinae, and Lutjaninae. Members of the closely related families Haemulidae, Lethrinidae, Nemipteridae and Sparidae, were included for outgroup comparisons and to explore the relationships between the Haemuloidea, Lutjanoidea and Sparoidea. Monophyly of the Lutjanidae was resolved. The Caesioninae was nested within the Lutjaninae, supporting the recent view that the Caesionidae should be treated as a synonym of the Lutjanidae. The subfamilies Etelinae and Paradicichthyinae were resolved as sister taxa to the remainder of the Lutjanidae, which corroborates previous cladistic analyses conducted to determine relationships of lutjanid subfamilies. Bayesian inference and maximum likelihood analyses suggest that Macolor is the sister taxon to the Caesioninae and may represent a transitional form between the Lutjaninae and Caesioninae. Three species of Western Atlantic lutjanids, Lutjanus campechanus, L. synagris, and Rhomboplites aurorubens, were included in the analyses to examine their relationships to Indo-Pacific species; they formed a well-supported clade nested within Pacific lutjanines suggesting that Atlantic species of Lutjaninae are derived from an Indo-Pacific lineage. Results of our molecular phylogenetic analyses are congruent with the general morphology and external colouration of the resolved groups of species of Lutjanus. The "black spot" complex containing L. fulviflamma, L. monostigma, and L. russelli was resolved with strong support, and had L. carponotatus nested within. The morphology of L. carponotatus suggests a close relationship to this group, and the lack of the black spot near the lateral line below the soft dorsal fin is possibly a secondary loss. As expected, the "blue-lined" species, L. kasmira and L. quinquelineatus, formed a strongly supported clade. Lutjanus bohar and L. gibbus, both distinctly red, long-lived fish that often accumulate large quantities of ciguatera toxin in their tissues, were resolved as sister taxa.  相似文献   

14.
Phylogenetic relationships between two New World Syrphinae taxa (Diptera, Syrphidae), i.e. the highly diverse genus Ocyptamus and the large genus Toxomerus, were analysed based on molecular characters. The monophyly of both taxa was tested and the taxonomic status of included subgenera and species groups was examined. Toxomerus constitutes the monogeneric tribe Toxomerini with more than 140 described species, while Ocyptamus (tribe Syrphini) is a very diverse genus (over 300 spp.) with multiple recognised subgenera and species groups. Sequence data from three gene regions were used: the mitochondrial protein-coding gene cytochrome c oxidase subunit I (COI) and the nuclear 28S and 18S ribosomal RNA genes. The secondary structure of two expansion segments (D2, D3) of the ribosomal 28S RNA gene is presented for the family Syrphidae and used for the first time in a multiple sequence alignment. Molecular data were analysed using parsimony, maximum likelihood and Bayesian inference. Toxomerus was always recovered as monophyletic within Ocyptamus, and relationships to other New World taxa such as Salpingogaster (Eosalpingogaster) were well-supported. Only the subgenera and species groups of Ocyptamus were consistently recovered as monophyletic lineages, thus the apparent non-monophyly of Ocyptamus demands reclassification of this clade.  相似文献   

15.
测定了分布于中国的锯眼蝶亚科4族10属共20个种的线粒体ND1和COI基因的部分序列,结合从GenBank中获得的4个国外种类的同源序列,以凤蝶科的迪洛尔娟凤蝶(Allancatria deyrolle)、丝带凤蝶(Sericinus montela),以及娟蝶科的西猛娟蝶(Parnassius simonius)为外类群,通过邻接法、最大简约法、最大似然法和贝叶斯法重建了分子系统树,分析了该亚科内主要类群的系统发生关系。分析结果表明:帻眼蝶族和锯眼蝶族具有较近的亲缘关系;黛眼蝶族不是单系群,该族中的黛眼蝶属、荫眼蝶属与眉眼蝶族具有较近的亲缘关系,带眼蝶属、藏眼蝶属、毛眼蝶属和帕眼蝶属聚合为一个独立的支系,其中带眼蝶属和藏眼蝶属在所有的分析方法中均以100%的置信度(BP=100%,PP=1.00)相聚合,建议将它们合并为一属。  相似文献   

16.
Host use by herbivores is largely determined by host properties such as nutrient content and chemical defence against foragers. The impacts of these attributes on a herbivore may largely depend on its life cycle stage. Lichen species are known to differ in nutritional quality and level of chemical defence and, consequently, vary as fodder for herbivores. The aim of this study was to explore the impact of several lichen species and the presence of their secondary metabolites on their use as hosts by a specialist lichen-feeder, Cleorodes lichenaria. This study also addressed, for the first time, how a specialist lichen-feeder deals with different lichen secondary metabolites. In the beginning of their development, larvae grew better on Xanthoria parietina than on the other host lichens, whereas older larvae grew best on Ramalina fraxinea. Lichen secondary chemicals in R. fraxinea and Parmelia sulcata hindered larval growth in the beginning but after 75 days lichen secondary chemicals had no impact on the mass of larvae. Physodic acids in Hypogymnia physodes were lethal to larvae. In general, larvae metabolized 70–95% of ingested lichen secondary chemicals and the rest of these were excreted in frass. Lichen secondary metabolites in P. sulcata restrict and in H. physodes prevent their use as a host for C. lichenaria larvae. Our main finding, the ability of larvae to metabolize several lichen secondary metabolites, indicates digestive adaptation to these chemicals. No signs of sequestration of these chemicals were found.  相似文献   

17.
Lichenized fungi synthesize a great variety of secondary metabolites. These are typically crystalline compounds, which are deposited extracellularly on the fungal hyphae. While we know a lot about the chemical properties and structures of these substances, we have very little information on the molecular background of their biosynthesis. In the current study we analyze the diversity of non-reducing polyketide synthase (PKS) genes in members of the lichenized Pertusariales. This order primarily contains fully oxidized secondary metabolites from different substance classes, and is chemically and phylogenetically well studied. Using a degenerate primer approach with subsequent cloning we detected up to five non-reducing PKS sequences in a single PCR product. Eighty-five new KS sequence fragments were obtained for this study. Analysis of the 157 currently available fungal KS sequence fragments in a Bayesian phylogenetic framework revealed 18 highly supported clades that included only lichenized taxa, only non-lichenized taxa, or both. Some Pertusarialean groupings of PKS sequences corresponded partly to phylogenetic groupings based on ribosomal DNA. This is reasonable, because a correlation between well-supported phylogenetic lineages and the occurrence of secondary metabolites in the Pertusariales has been observed before. However, no clear linkage was found between the PKS genes analyzed and the ability to produce a particular secondary substance. Several PKS clades did not reveal obvious patterns of secondary compound distribution or phylogenetic association. Compared with earlier phylogenetic analyses of KS sequences the increased sampling in the current study allowed us to detect many new groupings within the fungal non-reducing PKSs.  相似文献   

18.
The first comprehensive phylogenetic analyses of the most diverse subfamily of plant bugs, Mirinae, is presented in this study, for 110 representative taxa based on total evidence analysis. A total of 85 morphological characters and 3898 bp of mitochondrial (16S, COI) and nuclear (18S, 28S) sequences were analysed for each partitioned and combined dataset based on parsimony, maximum likelihood and Bayesian inference. Major results obtained in this study include monophyly of the tribe Mecistoscelini. The largest tribe, Mirini, was recovered as polyphyletic, and Stenodemini was recovered as paraphyletic. The clade of Stenodemini + Mecistoscelini is the sister group of the remaining Mirinae. The monophyly of two complexes composed of superficially similar genera were tested; the Lygus complex was recovered as nonmonophyletic, and the Adelphocoris–Creontiades–Megacoelum complex was confirmed to be monophyletic. The generic relationships of the main clades within each tribe based on the phylogeny, as well as their supported morphological characters, are discussed.  相似文献   

19.
The lichen-forming genus Porpidia (Porpidiaceae, Ascomycota) provides excellent opportunities for evolutionary, reproductive, and ecological studies of crustose epilithic lichen symbioses. However, despite the fact that the genus itself seemed to be clearly delimited, the group was thought to be a hopeless case with regard to intrageneric relationships and species delimitations due to apparently rampant homoplasy throughout most character systems. Contrary to the situation for non-molecular data, a robust and generally well-resolved phylogeny was recovered based on DNA-sequence data. Separate and combined analyses of nuclear ribosomal RNA large subunit and nuclear beta-tubulin gene fragments were performed using maximum parsimony, maximum likelihood, and Bayesian approaches. Branch support was estimated using non-parametic bootstrapping and posterior probabilities, while monophyly of a priori defined groups was tested using posterior probabilities. The results reveal a highly supported "Porpidia sensu lato," however, Porpidia itself is not monophyletic. Several smaller genera of the Porpidiaceae and probably the large genus Lecidea (Lecideaceae) are nested within the group. Most taxa analyzed fall into one of four major subgroups within Porpidia s.l., though the basal relationships among these subgroups could not be supported. This phylogeny will make it possible to re-evaluate morphological and chemical characters in the group, and to conduct detailed studies of species delimitations within the monophyletic subgroups.  相似文献   

20.
The Carangidae represent a diverse family of marine fishes that include both ecologically and economically important species. Currently, there are four recognized tribes within the family, but phylogenetic relationships among them based on morphology are not resolved. In addition, the tribe Carangini contains species with a variety of body forms and no study has tried to interpret the evolution of this diversity. We used DNA sequences from the mitochondrial cytochrome b gene to reconstruct the phylogenetic history of 50 species from each of the four tribes of Carangidae and four carangoid outgroup taxa. We found support for the monophyly of three tribes within the Carangidae (Carangini, Naucratini, and Trachinotini); however, monophyly of the fourth tribe (Scomberoidini) remains questionable. A sister group relationship between the Carangini and the Naucratini is well supported. This clade is apparently sister to the Trachinotini plus Scomberoidini but there is uncertain support for this relationship. Additionally, we examined the evolution of body form within the tribe Carangini and determined that each of the predominant clades has a distinct evolutionary trend in body form. We tested three methods of phylogenetic inference, parsimony, maximum-likelihood, and Bayesian inference. Whereas the three analyses produced largely congruent hypotheses, they differed in several important relationships. Maximum-likelihood and Bayesian methods produced hypotheses with higher support values for deep branches. The Bayesian analysis was computationally much faster and yet produced phylogenetic hypotheses that were very similar to those of the maximum-likelihood analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号