首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of the study was to assess the influence of dietary iron content on lipid and carbohydrate metabolism and on zinc and copper status in rats fed with a diet high in fat, fructose, and salt. Wistar rats were fed with diets high in fat, fructose, and salt, containing differing amounts of iron, namely, deficit, normal, and high levels. After 6 weeks, the animals were weighed and killed. The liver, heart, and pancreas were collected, as were blood samples. The total cholesterol, triglycerides, fasting glucose, and insulin levels in the serum were measured. The iron, zinc, and copper concentrations in tissues and serum were determined. It was found that in rats fed with the iron-deficit diet, cholesterol and glucose profiles improved. Both deficit and excess iron in the diet decreased insulin concentration in rats and disturbed iron, zinc, and copper status. High-iron level in the diet decreased the relative mass of the pancreas. In conclusion, the decrease in serum insulin concentration observed in rats fed with the modified diet high in iron was associated with iron and copper status disorders, and also, with a relatively diminished pancreas mass. A deficit of iron in the diet improved lipid and carbohydrate metabolism in rats.  相似文献   

2.
The hypothesis was tested that dietary fructose vs glucose lowers copper solubility in the digesta in the small intestine of rats, which in turn causes a decreased copper absorption. Male rats were fed adequate-copper (5 mg Cu/kg) diets containing either fructose or glucose (709.4 g monosaccharide/kg) for a period of 5 wk. Fructose vs glucose significantly lowered copper concentrations in plasma and the liver, but did not alter hepatic copper mass. Fructose feeding resulted in a significantly lesser intestinal solubility of copper as based on either a smaller soluble fraction of copper in the liquid phase of small intestinal contents or a lower copper concentration in the liquid phase. The latter fructose effect can be explained by the observed fructose-induced increase in volume of liquid phase of intestinal digesta. After administration of a restricted amount of diet extrinsically labeled with64Cu, rats fed fructose also had significantly lower soluble64Cu fraction in the digesta of the small intestine. Although this study shows that fructose lowered intestinal copper solubility, only a slight reduction of apparent copper absorption was observed. It is suggested that the fructose-induced lowering of copper status in part counteracted the fructose effect on copper absorption at the level of the intestinal lumen.  相似文献   

3.
To evaluate the embryotrophic role of three hexoses (glucose, fructose, and galactose), bovine embryos derived from somatic cell nuclear transfer (SCNT) or in vitro-fertilization (IVF) were cultured in a modified synthetic oviductal fluid (mSOF), which contained either glucose (1.5 or 5.6 mM), fructose (1.5 or 5.6 mM), or galactose (1.5 or 5.6 mM). Compared to 1.5 mM glucose, use of 1.5 mM fructose significantly enhanced blastocyst formation in both SCNT (23 vs. 33%) and IVF embryos (26 vs. 34%), while 5.6 mM fructose did not improve blastocyst formation. Using 1.5 mM galactose did not improve blastocyst formation in SCNT embryos (22 vs. 23%), whereas it significantly inhibited blastocyst formation in IVF embryos (26 vs. 0%). In both SCNT and IVF embryos, 5.6 mM glucose or galactose significantly inhibited embryo development. In a second experiment, in glucose-free mSOF, fructose at concentrations of 0.75, 1.5, 3.0, or 5.6 mM was able to support to morula (32-42 vs. 12%) and blastocyst formation (30-38 vs. 12%) compared to 0 mM fructose. In Experiment 3, addition of fructose (1.5, 3.0, or 5.6 mM) to mSOF containing 1.5 mM glucose did not further promote blastocyst formation in SCNT embryos compared with replacement with 1.5 mM fructose only. Replacement of glucose with 1.5 mM fructose significantly increased total blastomeres (143 vs. 123 cells) and trophectodermal (TE) cells (116 vs. 94 cells) and decreased inner cell mass (ICM) to TE cell ratio (0.24 vs. 0.31) in blastocysts, compared to 1.5 mM glucose. The combined addition of 1.5 mM fructose and glucose significantly increased ICM cell number (36.7 cells) and ICM/TE ratio (0.46). In conclusion, fructose might be a more efficient energy substrate than glucose for producing large number of transferable blastocysts derived from SCNT.  相似文献   

4.
Because reduced nutrient absorption may contribute to malnourishment in the elderly, age and diet modulate fructose uptake in mice, and alterations in fructose uptake may be paralleled by changes in the abundance of fructose transporters, the objectives of this study were to determine 1) the effects of aging on fructose absorption in rats, 2) the effect of feeding diets enriched with saturated fatty acids (SFA) vs. polyunsaturated fatty acids (PUFA), and 3) the mechanisms of these age-and diet-associated changes. Male Fischer 344 rats aged 1, 9, and 24 mo received isocaloric diets enriched with SFA or PUFA. The uptake of (14)C-labeled D-fructose was determined in vitro using the intestinal sheet method. Northern and Western blot analyses and immunohistochemistry were used to determine the abundance of sodium-independent glucose and fructose transporters (GLUT)2 and GLUT5. When expressed on the basis of mucosal surface area, jejunal fructose uptake was increased in 9 and 24 mo compared with 1-mo-old animals fed SFA. PUFA-fed animals demonstrated increased fructose uptake at 24 mo compared with younger animals. Ileal fructose uptake was increased with SFA vs. PUFA in 9-mo-old rats but was reduced with SFA in 1- and 24-mo-old rats. Variations in GLUT2 and GLUT5 abundance did not parallel changes in uptake. These results indicate that 1) age increases fructose uptake when expressed on the basis of mucosal surface area, 2) age influences the adaptive response to dietary lipid modifications, and 3) alterations in fructose uptake are not explained by variations in GLUT2 or GLUT5.  相似文献   

5.
The effect of dietary sucrose, fructose and glucose on the intestinal absorption of fructose and glucose was investigated in adult rats in vivo: Glucose absorption was not affected by the type of dietary carbohydrate, while the absorption of fructose was increased by the ingestion of the sucrose or fructose diet, as compared with the glucose diet. An almost maximal increase of fructose absorption was already observed when the quarter of the total dietary carbohydrates was replaced by fructose. Faecal fructose elimination declined during the feeding experiment. The enhanced intestinal absorption of the fructose load in rats fed the fructose diet was manifested by higher concentrations of fructose, but also of glucose and lactate in the hepatic portal blood.  相似文献   

6.
The objective of this study was to determine whether the effects of a fructose diet, which causes hyperinsulinemia, insulin resistance, and hypertension in male rats, are dependent on sex. Blood pressure was measured via the tail-cuff method, and oral glucose tolerance tests were performed to assess insulin sensitivity. Blood pressure in female rats did not differ between fructose-fed and control rats at any time point (126 +/- 5 and 125 +/- 3 mmHg at week 9 for fructose-fed and control rats, respectively) nor was there a difference in any metabolic parameter measured. Furthermore, the vascular insulin resistance that is present in male fructose-fed rats was not observed. After ovariectomy, fructose caused a significant change in systolic blood pressure from baseline compared with fructose-fed ovary-intact rats (change of 21 +/- 5 vs. -2 +/- 4 mmHg). The results demonstrate that females do not develop hypertension or hyperinsulinemia upon fructose feeding except after ovariectomy, suggesting that female sex hormones may confer protection against the effects of a fructose diet.  相似文献   

7.
Trace element status is known to be altered in the diabetic state, although the factors affecting trace element homeostasis in this condition are not well understood. The authors examined the effects of a high fructose diet (40% wt:wt) vs a control diet on the copper (Cu), zinc (Zn), and iron (Fe) concentrations in the kidney, plasma, and red blood cells of islet transplanted (TX) and shamoperated (SHAM) rats. Male, Wistar Furth rats made diabetic by streptozotocin injection (55 mg/kg, iv) were given an intraportal islet transplant (1000 islets); control animals were shaminjected, shamoperated (SHAM). Rats within TX and SHAM groups were assigned to either a high fructose diet (40% fructose, 25% cornstarch, FR) or a purified control diet (33% cornstarch, 33% dextrose, CNTL) containing identical amounts of mineral mixture for a period of 6 wk. Kidney Cu concentration was significantly elevated among hyperglycemie TXCNTL rats (224 ± 25 nmol/g wet wt), but was markedly reduced in hyperglycemic TXFR rats (109 ± 14 nmol/g) relative to normoglycemic controls. This occurred in spite of similar levels of glucose, insulin (fed and fasted), insulin secretory capacity, body weight, and food intake in the TXCNTL and TXFR groups. Among the subgroup of rats with normal glucose levels post-TX, kidney Cu levels normalized and were unaffected by dietary treatment (normoglycemic TXCNTL = 60 ± 5 nmol/g; normoglycemic TXFR = 40 ± 2 nmol/g). Kidney Cu concentrations also were unaffected by fructose feeding in SHAM animals (CNTL, 60 ± 4 nmol/g and FR, 51 ± 5 nmol/g). Kidney Zn and Fe concentrations were similar among the treatment groups. Plasma and red blood cell (RBC) Cu, Zn, and Fe concentrations were also similar among the groups. Since fructose feeding led to a substantial reduction of kidney Cu concentrations in the presence of hyperglycemia, the authors suggest that this model can be useful in examining effects of altered kidney Cu accumulation in the diabetic animal.  相似文献   

8.
The effects of the interactions between dietary carbohydrates and copper deficiency on superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities and their roles in peroxidative pathways were investigated. Weanling rats were fed diets deficient in copper and containing either 62% starch, fructose, or glucose. Decreased activity of SOD was noted in all rats fed the copper-deficient diets regardless of the nature of dietary carbohydrate. However, the decreased activity was more pronouced in rats fed fructose. Feeding the fructose diets decreased the activity of GSH-Px by 25 and 50% in the copper-supplemented and copper-deficient rats, respectively, compared to enzyme activities in rats fed similar diets containing either starch or glucose. The decreased SOD and GSH-Px activities in rats fed the fructose diet deficient in copper were associated with increased tissue per-oxidation and decreased hepatic adenosine triphosphate (ATP). When the fructose in the diet of copper-deficient rats was replaced with either starch or glucose, tissue SOD and GSH-Px activities were increased and these increases in enzyme activity were associated with a tendency toward reduced mitochondrial peroxidation when compared to the corre-sponding values for rats fed fructose throughout the experiment Dietary fructose aggrevated the symptoms associated with copper deficiency, but starch or glucose ameliorated them. The protective effects were more pronounced with starch than with glucose.  相似文献   

9.
The influences of PO2 of the incubating medium on glucose, 3-O-methylglucose and fructose transport by everted small intestine sacs in semistarved and rats fed ad libitum (controls) was investigated. Moreover fructose uptake and conversion to glucose by intestinal sacs was also studied. The results showed that intestinal sacs from semistarved rats transported larger amounts of glucose and 3-O-methylglucose and took up more fructose than controls, when PO2 of the incubating medium was 150 mm Hg. There was greater fructose conversion to glucose in the intestine of semistarved rats than in controls at all PO2's considered. The greater functional capacity of intestinal tissue of semistarved rats in comparison to controls has been related to larger O2 availability in their intestinal wall.  相似文献   

10.
11.
Gestational diabetes mellitus (GDM) is associated with increased insulin resistance and a heightened level of oxidative stress (OS). Additionally, high iron consumption could also increase insulin resistance and OS, which could aggravate GDM risk. The aim of this study is to evaluate a high fructose diet (F) as an alternative experimental model of GDM on rats. We also have evaluated the worst effect of a fructose iron-enriched diet (FI) on glucose tolerance and OS status during pregnancy. Anthropometric parameters, plasma glucose levels, insulin, and lipid profile were assessed after delivery in rats fed an F diet. The effects observed in mothers (hyperglycemia, and hyperlipidemia) and on pups (macrosomia and hypoglycemia) are similar to those observed in women with GDM. Therefore, the fructose diet could be proposed as an experimental model of GDM. In this way, we can compare the effect of an iron-enriched diet on the metabolic and redox status of mother rats and their pups. The mothers’ glycemic was similar in the F and FI groups, whereas the glycemic was significantly different in the newborn. In rat pups born to mothers fed on an FI diet, the activities of the antioxidant enzyme glutathione peroxidase (GPx) and glutathione-S-transferase in livers and GPx in brains were altered and the gender analysis showed significant differences. Thus, alterations in the glycemic and redox status in newborns suggest that fetuses are more sensitive than their mothers to the effect of an iron-enriched diet in the case of GDM pregnancy. This study proposed a novel experimental model for GDM and provided insights on the effect of a moderate iron intake in adding to the risk of glucose disorder and oxidative damage on newborns.  相似文献   

12.
Levels of glucose 1,6-P2 but not fructose 2,6-P2 were found decreased in skeletal muscle of alloxan-diabetic ketotic rats. Administration of both insulin and vanadate restored the altered values without affecting fructose 2,6-P2 concentrations. In normal rats, insulin increased muscle levels of both sugars, and vanadate decreased glucose 1,6-P2 without changing fructose 2,6-P2 levels. Enzymatic activities involved in glucose 1,6-P2 and fructose 2,6-P2 metabolism were not affected under any experimental condition.  相似文献   

13.
To determine the influence of dietary fructose and glucose on circulating leptin levels in lean and obese rats, plasma leptin concentrations were measured in ventromedial hypothalamic (VMH)-lesioned obese and sham-operated lean rats fed either normal chow or fructose- or glucose-enriched diets (60% by calories) for 2 wk. Insulin resistance was evaluated by the steady-state plasma glucose method and intravenous glucose tolerance test. In lean rats, glucose-enriched diet significantly increased plasma leptin with enlarged parametrial fat pad, whereas neither leptin nor fat-pad weight was altered by fructose. Two weeks after the lesions, the rats fed normal chow had marked greater body weight gain, enlarged fat pads, and higher insulin and leptin compared with sham-operated rats. Despite a marked adiposity and hyperinsulinemia, insulin resistance was not increased in VMH-lesioned rats. Fructose brought about substantial insulin resistance and hyperinsulinemia in both lean and obese rats, whereas glucose led to rather enhanced insulin sensitivity. Leptin, body weight, and fat pad were not significantly altered by either fructose or glucose in the obese rats. These results suggest that dietary glucose stimulates leptin production by increasing adipose tissue or stimulating glucose metabolism in lean rats. Hyperleptinemia in VMH-lesioned rats is associated with both increased adiposity and hyperinsulinemia but not with insulin resistance. Dietary fructose does not alter leptin levels, although this sugar brings about hyperinsulinemia and insulin resistance, suggesting that hyperinsulinemia compensated for insulin resistance does not stimulate leptin production.  相似文献   

14.
During the fructose intestinal transfer in vitro, in the rats receiving a normal diet, no glucose is synthetized. In the high-fructose diet rats, glucose appears in the intestinal wall and in the serosal fluid. This synthesis is probably realized from fructose. When fructose is used as substrate, the intestinal tissue of these latter animals shows a greater oxygen consumption than that of the former animals.  相似文献   

15.
The fructose-induced production of glucose in the liver after partial hepatectomy (PH) was evaluated by using the liver-perfusion system. There was no significant difference in plasma glucose level between hepatectomized (HX) and sham-operated (SO) rats at 24 h after surgery, and, thereafter, almost similar levels were obtained in both groups. However, the level of serum free fatty acids (FFA) was significantly higher in HX rats than that in SO rats at 24 and 48 h after surgery. When both groups of rats were given fructose by gavage, the increment of plasma glucose was significantly larger in HX rats than in SO rats. Lactate infusion failed to increase the rate of glucose production in perfused livers of both HX and SO rats and there was no significant difference in the activity of hepatic phosphoenolpyruvate carboxykinase. By contrast, fructose infusion elicited a large increase in glucose production in the perfused livers of HX rats at 24 and 48 h after PH. The increase was closely associated with not the change in fructose 2,6-bisphosphate levels but the increment of the intracellular levels of citrate. Treatment of octanoate or oleate, which supplies acetyl-CoA via fatty acid oxidation, mimicked the fructose-induced increase in glucose production in SO rats with a concomitant increase in hepatic levels of citrate. These results suggest that the oxidation of FFA may play an important role in glucose production induced by fructose administration during the early phase of liver regeneration.  相似文献   

16.
Copper deficiency was induced in rats by feeding diets containing either 62% starch, fructose or glucose deficient in copper for 6 weeks. All copper deficient rats, regardless of the dietary carbohydrate, exhibited decreased ceruloplasmin activity and decreased serum copper concentrations. Rats fed the fructose diet exhibited a more severe copper deficiency as compared to rats fed either starch or glucose. The increased severity of the deficiency was characterized by reduced body weight, serum copper concentration and hematocrit. In all rats fed the copper adequate diets, blood pressure was unaffected by the type of dietary carbohydrate. Significantly reduced systolic blood pressure was evident only in rats fed the fructose diet deficient in copper. When comparing the three carbohydrate diets, the physiological and biochemical lesions induced by copper deprivation could be magnified by feeding fructose.  相似文献   

17.
Although the oxidative destruction of glucose and fructose has been studied by several investigators over the past century, the mechanism by which phosphate promotes these oxidation reactions is not known. A wide range of oxidation products have been used to monitor the oxidation of sugars and free radicals have been shown to be involved. The influence of phosphate concentration on the rate of production of free radicals and several sugar oxidation products has been studied. It was found that fructose is much more susceptible to autoxidation than glucose, galactose, or sucrose. The promotion of sugar oxidation by phosphate was found to be iron dependent. Addition of the iron chelators, diethylenetriaminepentaacetic acid (DTPA) and desferrioxamine completely suppressed the oxidation reactions, even at high concentrations of phosphate. Formaldehyde was positively identified as a product of fructose oxidation by HPLC analysis of its acetylacetone adduct. A mechanism is proposed in which phosphate cleaves the oxo bridges of the iron(III)-fructose complex, based on UV spectral analysis and magnetic susceptibility measurements, and thereby catalyzes the autoxidation of fructose.  相似文献   

18.
Significant increases (P less than 0.001) in plasma insulin and triglyceride concentrations and in blood pressure were seen when SHR and WKY rats ate a fructose-enriched diet for 14 days. However, all of the changes were significantly accentuated (P less than 0.02-0.001) in SHR rats. Specifically the increment in plasma insulin concentration following the fructose-enriched diet was 42 +/- 4 microU/ml in SHR as compared to 25 +/- 4 microU/ml in WKY rats (P less than 0.001). Plasma triglyceride concentrations also increased to a greater degree in response to fructose in SHR rats (260 +/- 24 vs. 136 +/- 20 mg/dl, P less than 0.001). Finally, the fructose-induced increase in blood pressure of 29 +/- 4 mm of Hg in SHR rats was greater (P less than 0.02) than that seen in WKY rats (19 +/- 2 mm of Hg). There was no change in plasma glucose concentration in response to the fructose diet. WKY rats gained more weight than did the SHR rats. Thus, although plasma triglyceride and insulin concentration and blood pressure increased when either WKY or SHR rats consumed a fructose enriched diet, the magnitude of these changes was greater in SHR rats.  相似文献   

19.
Injection of insulin to fed rats diminished the concentration of fructose 2,6-bisphosphate in white adipose tissue. Incubation of epididymal fat-pads or adipocytes with insulin stimulated lactate release and sugar detritiation and also decreased fructose 2,6-bisphosphate concentration. Such a decrease was, however, not observed in fat-pads from starved or alloxan-diabetic rats. Incubation of adipocytes from fed rats with various concentrations of glucose or fructose led to a dose-dependent rise in fructose 2,6-bisphosphate which correlated with lactate output and detritiation of 3-3H-labelled sugar. In adipocytes from fed rats, palmitate stimulated the detritiation of [3-3H]glucose without affecting lactate production and fructose 2,6-bisphosphate concentration. Incubation of epididymal fat-pads from fed rats in the presence of antimycin stimulated lactate output but decreased fructose 2,6-bisphosphate concentration. Changes in lipolytic rates brought about by noradrenaline, insulin, adenosine and corticotropin in adipocytes from fed rats were not related to changes in fructose 2,6-bisphosphate or to rates of lactate output. In fed rats, the activity of 6-phosphofructo-2-kinase was not changed after treatment of adipocytes with insulin, noradrenaline or adenosine. It is suggested that the decrease in fructose 2,6-bisphosphate concentration observed after insulin treatment can be explained by the increase in sn-glycerol 3-phosphate, an inhibitor of 6-phosphofructo-2-kinase.  相似文献   

20.
The present investigation was designed to study the uptake of67Cu when administered directly, into the portal vein, along with either functose or glucose, by the liver and extrahepatic tissues. Following weaning, male Sprague-Dawley rats were fed for 3 wk either commercial laboratory ration (chow) or semipurified diets deficient in Cu (0.6 ppm) or supplemented with Cu (6.0 ppm) and containing 62% carbohydrate as either fructuse or cornstarch. After an overnight fast, a single dose of rat plasma (0.1 mL) containing fructose or glucose extrinsically labeled with67Cu was injected directly into their portal vein. Although not always statistically significant, rats fed chow retained more radioactivity in the liver and several extrahepatic tissues when67Cu was administered with fructose than with glucose. Regardless of Cu status, rats fed diets containing fructose retained more radioactivity in extrahepatic tissues than rats fed starch. There was an increased uptake of67Cu by the liver, blood, muscle, and fat pad when fructose as compared to glucose was injected in combination with the isotope. These data strongly suggest that Cu requirements or utilization are greater when fructose is the main dietary carbohydrate. The results may also in part explain the reason for the increased severity of Cu deficiency in rats fed fructose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号