首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A structural transition in d(AT)n.d(AT)n inserts within superhelical DNA   总被引:7,自引:0,他引:7  
We have constructed plasmids carrying d(AT)n.d(AT)n inserts of different lengths. Two-dimensional gel electrophoresis patterns show that an increase in the negative superhelicity of these DNAs brings about a structural transition within the inserts, resulting in a reduction of the superhelical stress. However, this reduction corresponds to the expected values neither for cruciform nor the Z form. Those DNA topoisomers in which the structural transition had occurred proved to be specifically recognizable by single-strand-specific endonuclease S1, with the cleavage site situated at the centre of the insert. These data, as well as kinetic studies, suggest that the cloned d(AT)n.d(AT)n sequences adopt a cruciform rather than the Z-form structure. We discuss plausible reasons of the discrepancy between the observed superhelical stress release and that expected for the transition of the insert to the cruciform state.  相似文献   

2.
We have targeted the d[G(AG)5] · d[C(TC)5] duplex for triplex formation at neutral pH with either d[G(AG)5] or d[G(TG)5]. Using a combination of gel electrophoresis, uv and CD spectra, mixing and melting curves, along with DNase I digestion studies, we have investigated the stability of the 2:1 pur*pur · pyr triplex, d[G(AG)5] * d[G(AG)5] · d[C(TC)5], in the presence of MgCl2. This triplex melts in a monophasic fashion at the same temperature as the underlying duplex. Although the uv spectrum changes little upon binding of the second purine strand, the CD spectrum shows significant changes in the wavelength range 200–230 nm and about a 7 nm shift in the positive band near 270 nm. In contrast, the 1:1:1 pur/pyr*pur · pyr triplex, d[G(TG)5] * d[G(AG)5] · d[C(TC)5], is considerably less stable thermally, melting at a much lower temperature than the underlying duplex, and possesses a CD spectrum that is entirely negative from 200 to 300 nm. Ethidium bromide undergoes a strong fluorescence enhancement upon binding to each of these triplexes, and significantly stabilizes the pur/pyr*pur · pyr triplex. The uv melting and differential scanning calorimetry analysis of the alternating sequence duplex and pur*pur · pyr triplex shows that they are lower in thermodynamic stability than the corresponding 10-mer d(G3A4G3) · d(C3T4C3) duplex and its pur*pur · pyr triplex under identical solution conditions. © 1997 John Wiley & Sons, Inc.  相似文献   

3.
Y Wang  D J Patel 《Biochemistry》1992,31(35):8112-8119
We report below on proton NMR studies of the G-quadruplex structure formed by the human telomere sequence d(T2AG3) and the tetrahymena telomere sequence d(T2G4) in K cation containing solution. We observe well-resolved proton NMR spectra corresponding to a G-quadruplex monomer conformation predominant at 50 mM K cation concentration and a G-quadruplex dimer conformation predominant at 300 mM K cation concentration. By contrast, d(T2AG3T) and d(T2G4T) form only the G-quadruplex monomer structures independent of K cation concentration as reported previously [Sen, D., & Gilbert, W. (1992) Biochemistry 31, 65-70]. We detect well-resolved resonances for the exchangeable guanine imino and amino protons involved in G-tetrad formation with the hydrogen-bonded and exposed amino protons separated by up to 3.5 ppm. The observed NOEs between the amino and H8 protons on adjacent guanines within individual G-tetrads support the Hoogsteen pairing alignment around the tetrad. The imino protons of the internal G-tetrads exchange very slowly with solvent H2O in the d(T2AG3) and d(T2G4) quadruplexes. The nature and intensity of the observed NOE patterns establish formation of parallel-stranded right-handed G-quadruplexes with all anti guanine glycosidic torsion angles. A model for the parallel-stranded G-quadruplex is proposed which is consistent with the experimental NOE data on the d(T2AG3) and d(T2G4) quadruplexes in solution.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
A Schwartz  L Marrot  M Leng 《Biochemistry》1989,28(20):7975-7979
The purpose of this work was the comparison of the conformational changes induced in the double helix by the adducts formed at d(GG) and d(AG) sites in the reaction between the antitumor drug cis-diamminedichloroplatinum(II) (cis-DDP) and DNA. Two duplexes (20-mer) containing either a single d(A*G*) or a single d(G*G) adduct were studied by means of gel electrophoresis and artificial nuclease and chemical probes. It is shown that the d(G*G*) and the d(A*G*) adducts bend DNA similarly, but at the nucleotide level they distort differently the double helix. We suggest that the weaker interactions between platinated A residues and the other nucleotides, as compared to the interactions between platinated G residues and the other nucleotides, are largely responsible for the differences in the distortions induced in DNA by the d(A*G) and d(G*G*) adducts. This suggestion is supported by the study of the distortions induced in duplexes by the d(G*G*) adducts, one of the platinated G residues being paired with a T residue.  相似文献   

5.
Photochemical alterations following ultraviolet irradiation of the alternating copolymer d(GT)n.d(CA)n were studied. We found that in solution conditions which produced circular dichroism spectra compatible with B-form or A-form DNA, no interstrand cross-linking or photoproduct formation could be demonstrated. Zimmer et al. (Zimmer, C., Tymen, S., Marck, C., and Guschlbaumer, W. (1982) Nucleic Acids Res. 10, 1081-1091) and Vorlickova et al. (Vorlickova, M., Kypr, J., Sotkrova, S., Sponar, J. (1982) Nucleic Acids Res. 10, 1071-1080) have reported a number of solution conditions which produce a structural transition of this polymer characterized by a negative deviation of the circular dichroism spectrum in the region of 280 nm. The nature of this transition has not yet been elucidated. Following ultraviolet irradiation of d(GT)n.d(CA)n under two conditions which produce this transition (manganese solution or ethanol plus trace salts solution) we found ultraviolet dose-dependent interstrand cross-linking as well as dose-dependent formation of thymine-containing photoproduct. Interstrand cross-linking is demonstrated by two criteria: increase in polymer size as detected by alkaline agarose gel electrophoresis, and generation of intermediate density material in alkaline cesium sulfate isopycnic gradients. The thymine-containing photo-product was demonstrated by thin layer chromatography of acid hydrolysates of the polymer. The photo-product is at least partially photoreversible. These findings suggest that the geometry of the alternative conformation is such that pyrimidines from different strands are closely approximated, allowing for photodimerization.  相似文献   

6.
7.
Our recent binding studies with oligomers derived from base replacements on d(CGTCGTCG) had led to the finding that actinomycin D (ACTD) binds strongly to d(TGTCATTG) of apparent single-stranded conformation without GpC sequence. A fold-back binding model was speculated in which the planar phenoxazone inserts at the GTC site with a loop-out T base whereas the G base at the 3'-terminus folds back to form a basepair with the internal C and stacks on the opposite face of the chromophore. To provide a more concrete support for such a model, ACTD equilibrium binding studies were carried out and the results are reported herein on oligomers of sequence motifs d(TGTCT(n)G) and d(TGT(n)GTC). These oligomers are not expected to form dimeric duplexes and contain no canonical GpC sequences. It was found that ACTD binds strongly to d(TGTCTTTTG), d(TGTTTTGTC), and d(TGTTTTTGTC), all exhibiting 1:1 drug/strand binding stoichiometry. The fold-back binding model with displaced T base is further supported by the finding that appending TC and TCA at the 3'-terminus of d(TGTCTTTTG) results in oligomers that exhibit enhanced ACTD affinities, consequence of the added basepairing to facilitate the hairpin formation of d(TGTCTTTTGTC) and d(TGTCTTTTGTCA) in stabilizing the GTC/GTC binding site for juxtaposing the two G bases for easy stacking on both faces of the phenoxazone chromophore. Further support comes from the observation of considerable reduction in ACTD affinity when GTC is replaced by GTTC in an oligomer, in line with the reasoning that displacing two T bases to form a bulge for ACTD binding is more difficult than displacing a single base. Based on the elucidated binding principle of phenoxazone ring requiring its opposite faces to be stacked by the 3'-sides of two G bases for tight ACTD binding, several oligonucleotide sequences have been designed and found to bind well.  相似文献   

8.
B Pan  C Ban  M C Wahl    M Sundaralingam 《Biophysical journal》1997,73(3):1553-1561
The crystal structure of the DNA heptamer d(GCGCGCG) has been solved at 1.65 A resolution by the molecular replacement method and refined to an R-value of 0.184 for 3598 reflections. The heptamer forms a Z-DNA d(CGCGCG)2 with 5'-overhang G residues instead of an A-DNA d(GCGCGC)2 with 3'-overhang G residues. The overhang G residues from parallel strands of two adjacent duplexes form a trans reverse Hoogsteen G x G basepair that stacks on the six Z-DNA basepairs to produce a pseudocontinuous helix. The reverse Hoogsteen G x G basepair is unusual in that the displacement of one G base relative to the other allows them to participate in a bifurcated (G1)N2 . . . N7(G8) and an enhanced (G8)C8-H . . . O6(G1) hydrogen bond, in addition to the two usual hydrogen bonds. The 5'-overhang G residues are anti and C2'-endo while the 3'-terminal G residues are syn and C2'-endo. The conformations of both G residues are different from the syn/C3'-endo for the guanosine in a standard Z-DNA. The two cobalt hexammine ions bind to the phosphate groups in both GpC and CpG steps in Z(I) and Z(II) conformations. The water structure motif is similar to the other Z-DNA structures.  相似文献   

9.
The thermally induced helix-coil transitions of three A-T DNAs, d(A)n·d(T)n, d(A-T)n·d(A-T)n, and d(A-A-T)n·d(A-T-T)n, were studied. Experimental transition curves of the DNAs were analyzed using the loop entropy model of DNA melting. The calculation of the melting curve of d(A-A-T)n·d(A-T-T)n is presented using the integral equation formalism of Goel and Montroll. The aim of this work was to evaluate thermodynamic parameters which govern DNA stability and to test the theoretical model employed in the analysis. Our results show (1) an excellent over-all agreement between theory and experiment, (2) a loop entropy exponent k = 1.55 ± 0.05 provided the best fit to all the polymer transition curves, (3) the evaluated stacking free energies reflect the relative stability of the DNAs, and (4) the stacking energies of the ApA·TpT dimer evaluated from d(A)n·d(T)n and d(A-A-T)n·d(A-T-T)n differ. The last result is consistent with different conformations for the dimer in these two polymers.  相似文献   

10.
Abstract

Supercoiling-induced structural transition of the d(C24GC21,) · d(G21CG24) sequence in plasmid DNA in the presence of Mg2+ at neutral pH results in alterations of efficiencies of not only single-quantum (pyrimidine[6–4]pyrimidone adducts) but also two-quantum (alkalisensitive lesions of dG residues) photomodifications of nucleoside residues within this sequence. The generation of both types of photoreactions was achieved by the application of high-intensity laser UV radiation (intensity ~ 1011 W/m2, pulse duration ~ 10?8 s, λ= 266 nm) for irradiation of a plasmid DNA The modification extent sufficient for analysis of photoreaction efficiency distributions along both strands of the insert (photofootprinting) was obtained by the action of a single nanosecond pulse of laser UV radiation. The pattern of a laser photofootprinting is consistent with the d(C) · d(G) · d(G) triplex formation in the presence of Mg2+ within the insert and shows some details of this triplex structure.  相似文献   

11.
Transition of a cloned d(AT)n-d(AT)n tract to a cruciform in vivo.   总被引:18,自引:8,他引:10       下载免费PDF全文
A 34 base pair tract of the simple repeating dinucleotide d(AT)n-d(AT)n cloned into a 2.4 kb polylinker plasmid vector undergoes a structural transition in response to negative superhelical coiling. The transition has been characterized by 2 dimensional gel electrophoresis, mapping of S1, P1 and T7 endonuclease 1 sensitive sites, and mapping of sites that are sensitive to modification by bromoacetaldehyde. After S1 nuclease treatment it is possible to trap supercoiled species that are nicked on one or both strands near the center of the palindrome. These data show that the alternate state adopted by the d(AT)n-dAT)n insert is a cruciform rather than a Z conformation. Unlike other B-cruciform transitions the transition in d(AT)n-d(AT)n has a low activation energy and the transition is facilitated by the presence of magnesium ions. Evidence from in-vivo topoisomer distributions is presented which shows that under conditions of blocked protein synthesis the d(AT)n-d(AT)n insert will spontaneously adopt the cruciform state in-vivo in E. coli.  相似文献   

12.
In contrast to shorter homologs which only form a single-stranded nucleic acid alpha-helix in acid solution at [Na+]</=0.02 M Na+, d(A-G)20,30 form in addition a parallel-stranded duplex with (A+.A+) and (G.G) base pairs and interstrand dA+...PO2-ionic and dA+NH2... O=P H-bonds. Under conditions where duplex prevails over alpha-helix, the contribution of the base-backbone interactions to stability varies directly with [H+] and inversely with [Na+], just as in poly(A+.A+). These duplexes are characterized by intense circular dichroism and a large cooperative thermally-induced hyperchromic transition that is dependent on oligomer concentration. Dimethylsulfate reactivity of the dG residues indicates G.G and therefore dA+.dA+rather than dA+.G base pairs. At much higher ionic strength (Na+>/=0.2 M) the protonated base-backbone interactions are so weakened that duplex stability becomes increasingly dependent upon H-bonded base pairing and stacking and almost independent of pH. Between pH 6 and 8 this duplex structure is devoid of protonated dA residues and shows positive dependence of T m on ionic strength similar to that of DNA.  相似文献   

13.
Alternating repeated d(CA.GT)n and d(CG.GC)n sequences constitute a significant proportion of the simple repeating elements found in eukaryotic genomic DNA. These sequences are known to form left-handed Z-DNA in vitro. In this paper, we have addressed the question of the in vivo determination of the Z-DNA-forming potential of such sequences in eukaryotic chromatin. For this purpose, we have investigated the ability of a d(CA.GT)30 sequence and a d(CG.GC)5 sequence to form left-handed Z-DNA when cloned into simian virus 40 (SV40) minichromosomes at two different positions: the TaqI site, which occurs in the intron of the T-antigen gene, and the HpaII site, which is located in the late promoter region within the SV40 control region. Formation of Z-DNA at the inserted repeated sequences was analyzed through the change in DNA linkage associated with the B to Z transition. Our results indicate that regardless of: (1) the site of insertion (either TaqI or HpaII), (2) the precise moment of the viral lytic cycle (from 12 h to 48 h postinfection) and (3) the condition of incorporation of the SV40 recombinants to the host cells (either as minichromosomes or as naked DNA, relaxed or negatively supercoiled), neither the d(CA.GT)30 nor the d(CG.GC)5 sequence are stable in the left-handed Z-DNA conformation in the SV40 minichromosome. The biological relevance of these results is discussed.  相似文献   

14.
The susceptibility of microsatellite DNA sequences to insertions and deletions in vivo makes them useful for genetic mapping and for detecting genomic instability in tumors. An in vitro manifestation of this instability is the production of undesirable frameshift products during amplification of (dC-dA)n x (dG-dT)n microsatellites in the polymerase chain reaction (PCR). These products differ from the primary product by multiples of 2 nucleotides. We have tested the hypothesis that factors known to affect the fidelity of DNA synthesis may affect (dC-dA)n x (dG-dT)n frameshifting during the PCR. Neither modifications of pH, dNTP concentration, and Mg++ concentration using Amplitaq, nor the use of thermophilic DNA polymerases including UITma, Pfu, Vent and Deep Vent significantly decreased the production of frameshift products during amplification. However, 3'-->5' exonuclease activity in thermophilic DNA polymerases inhibited the accumulation of PCR products containing non-templated 3' terminal nucleotides. Most interestingly, extension temperatures of 37 degrees C during amplification using the thermolabile DNA polymerases Sequenase 1.0, Sequenase 2.0, and 3'-->5' exonuclease-deficient Klenow fragment greatly decreased the production of frameshift products. This method can improve the resolution of heterozygous or mutant (dC-dA)n x (dG-dT)n alleles differing in size by one or two repeat units.  相似文献   

15.
A Aharoni  N Baran    H Manor 《Nucleic acids research》1993,21(22):5221-5228
A protein which selectively binds d(GA)n and d(GT)n sequence repeats in single stranded DNA has been identified in human fibroblasts. This protein, designated PGB, has been purified at least 500-fold by ammonium sulfate precipitation followed by DEAE-Sepharose column chromatography and affinity chromatography in a column of d(GA)-Sepharose. Electrophoretic mobility shift assays revealed that the PGB protein bound most avidly d(GA)n and d(GT)n tracts of n > 5. It also bound other G-rich DNA sequence repeats, including dGn tracts, with lower affinities. It did not manifest significant binding affinities to single stranded M13 DNA, or to the homopolynucleotides poly dA, poly dC and poly dT, or to various DNA sequence repeats which do not contain G residues, such as d(A-C)n and d(TC)n. It did not bind double stranded d(T-C)n.d(GA)n tracts or other double stranded DNA sequences. In glycerol gradient centrifugation assays the d(GA)n- and the d(GT)n-binding activities cosedimented as a homogeneous protein species having an S20,w = 9.4 +/- 0.7 and an estimated native molecular weight of 190,000 +/- 7,000. UV crosslinking assays revealed that the protein contains 33.6 +/- 2.1 kd subunits which bind d(GA)n and d(GT)n sequences. However, SDS-polyacrylamide gel electrophoresis of the purified protein followed by silver staining indicated that it may also contain other subunits that do not contact the DNA. It is proposed that binding of the PGB protein to single stranded d(GA)n or d(GT)n tracts in double stranded topologically restricted DNA may stimulate strand separation and formation of triple helices or other unusual DNA structures.  相似文献   

16.
Crystals of self complementary DNA hexamers d(CACGTG), d(CCGCGG) and d(GGCGCC) were grown by vapour diffusion technique and studied by microRaman and microIR spectroscopies. The oligonucleotides were studied in parallel in solution by vibrational spectroscopy. A B- greater than Z transition was detected by Raman spectroscopy during the crystallization process for d(CACGTG). Vibrational spectroscopy shows that the d(GGCGCC) crystals adopt a B geometry. On the contrary the d(CCGCGG) sequence which is shown to be able to undergo in solution or in films quite easily the B- greater than Z transition, remains trapped in crystals in a geometry which may correspond to an intermediate conformation often proposed in models of the B- greater than Z transition. The crystals used in this study were characterized by X-ray diffraction. The unit cell and space group have been determined.  相似文献   

17.
Double stranded multimers (C2A6C2)n, (C2A6G2)n and (G2A6G2)n were prepared from chemically synthesized oligonucleotides to study the influence of sequences flanking the An tract on the curvature of DNA. All these duplexes, including polypurine.polypyrimidine one, exhibit strong retardation in polyacrylamide gel which is indicative of pronounced DNA curvature. It has been proposed previously that among the bends at the boundary with the oligo(A) tract two types should be distinguished: 5'-bends and 3'-bends (Koo et al., 1986) This distinction was deduced from different relative mobilities of two specially designed sequences having phased 5'-bends and 3'-bends, respectively. Our data indicate that the substitutions of nucleotides at both 5' and 3' boundaries of A6 tract result in comparable changes in relative mobility. Therefore, for B-B' bends it is important to take into account not only whether they are at the 5' or 3' end of an oligo(dA) tract, but also the particular sequences at the boundaries of this tract.  相似文献   

18.
The d(G4) and d(C4) molecules in the single stranded state were synthesized by the phosphotriester method and purified. The full duplex of tetramer d(G4).d(C4) was prepared by expending about a month. The duplex-to-single strand transition was observed by UV-spectroscopy. A standard hypochromic effect was observed, which is different from some experimental results reported previously.  相似文献   

19.
Hairpin and tetrahelical structures of a d(CGG)(n) sequence in the FMR1 gene have been implicated in its expansion in fragile X syndrome. The identification of tetraplex d(CGG)(n) destabilizing proteins (Fry, M., and Loeb, L. A.(1999) J. Biol. Chem. 274, 12797-12803; Weisman-Shomer, P., Naot, Y., and Fry, M. (2000) J. Biol. Chem. 275, 2231-2238) suggested that proteins might modulate d(CGG)(n) folding and aggregation. We assayed human TK-6 lymphoblastoid cell extracts for d(CGG)(8) oligomer binding proteins. The principal binding protein was identified as Ku antigen by its partial amino acid sequence and antigenicity. The purified 88/75-kDa heterodimeric Ku bound with similar affinities (K(d) approximately 1. 8-10.2 x 10(-9) mol/liter) to double-stranded d(CGG)(8).d(CCG)(8), hairpin d(CGG)(8), single-stranded d(CII)(8), or tetraplex structures of telomeric or IgG switch region sequences. However, Ku associated more tightly with bimolecular G'2 tetraplex d(CGG)(8) (K(d) approximately 0.35 x 10(-9) mol/liter). Binding to Ku protected G'2 d(CGG)(8) against nuclease digestion and impeded its unwinding by the tetraplex destabilizing protein qTBP42. Stabilization of d(CGG)(n) tetraplex domains in FMR1 by Ku or other proteins might promote d(CGG) expansion and FMR1 silencing.  相似文献   

20.
We studied the parameters of binding of 5,10,15,20-tetra-(N-methyl-3-pyridyl)porphyrin (TMPyP3) to the anti-parallel human telomeric G-quadruplex d(TTAGGG)4, the oligonucleotide dTTAGGGTTAGAG(TTAGGG)2 that does not form a quadruplex structure, as well as to the double stranded d(AC)8 x d(GT) and single stranded d(AC)8 and d(GT)8 DNAs. The analysis of absorption revealed that the binding constants and the number of DNA binding sites for TMPyP3 were d(AC)8 < d(GT)8 < d(AC)8 x d(GT)8 = d(TTAGGG)4 < dTTAGGGTTAGAG(TTAGGG)2. We demonstrated for the first time that the binding constant of TMPyP3 with the non-quadruplex chain dTTAGGGTTAGAG(TTAGGG)2 (1.3 x 10(7) M(-1)) is approximately 3 times bigger than the binding constant with the quadruplex d(TTAGGG)4 (4.6 x 10(6) M(-1)). Binding of two TMPyP3 molecules to d(TTAGGG)4 led to a decrease of thermostability of the G-quadruplex (deltaT(m) = -8 degrees C). Circular dichroism spectra of TMPyP3:d(TTAGGG)4 complexes revealed a shift of DNA structure from the G-quadruplex to an irregular chain. We hypothesize that partial destabilization of the telomeric G-quadruplex by TMPyP3 might be a reason for relatively low potency of this ligand as a telomerase inhibitor, as well as its marginal cytotoxicity for cultured tumor cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号