首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
It was reported recently that the cystic fibrosis transmembrane conductance regulator (CFTR) is required for acidification of phagosomes in alveolar macrophages (Di, A., Brown, M. E., Deriy, L. V., Li, C., Szeto, F. L., Chen, Y., Huang, P., Tong, J., Naren, A. P., Bindokas, V., Palfrey, H. C., and Nelson, D. J. (2006) Nat. Cell Biol. 8, 933-944). Here we determined whether the CFTR chloride channel is a generalized pathway for chloride entry into phagosomes in macrophages and whether mutations in CFTR could contribute to alveolar macrophage dysfunction. The pH of mature phagolysosomes in macrophages was measured by fluorescence ratio imaging using a zymosan conjugate containing Oregon Green(R) 488 and tetramethylrhodamine. Acidification of phagolysosomes in J774A.1 macrophages (pH approximately 5.1 at 45 min), murine alveolar macrophages (pH approximately 5.3), and human alveolar macrophages (pH approximately 5.3) was insensitive to CFTR inhibition by the thiazolidinone CFTR(inh)-172. Acidification of phagolysosomes in alveolar macrophages isolated from mice homozygous for DeltaF508-CFTR, the most common mutation in cystic fibrosis, was not different compared with that in alveolar macrophages isolated from wild-type mice. We also measured the kinetics of phagosomal acidification in J774A.1 and murine alveolar macrophages using a zymosan conjugate containing fluorescein and tetramethylrhodamine. Phagosomal acidification began within 3 min of zymosan binding and was complete within approximately 15 min of internalization. The rate of phagosomal acidification in J774A.1 cells was not slowed by CFTR(inh)-172 and was not different in alveolar macrophages from wild-type versus DeltaF508-CFTR mice. Our data indicate that phagolysosomal acidification in macrophages is not dependent on CFTR channel activity and do not support a proposed mechanism for cystic fibrosis lung disease involving defective phagosomal acidification and bacterial killing in alveolar macrophages.  相似文献   

2.
A fluorescence assay developed for the quantitation of intracellular fusion of sequentially formed endocytic compartments (Salzman, N. H., and F. R. Maxfield. 1988 J. Cell Biol. 106:1083-1091) has been used to measure the time course of endosome fusion accessibility along the recycling and degradative endocytic pathways. Transferrin (Tf) was used to label the recycling pathway, and alpha2-macroglobulin (alpha 2 M) was used to label the lysosomal degradative pathway. Along the degradative pathway, accessibility of vesicles containing alpha 2M to fusion with subsequently formed endocytic vesicles decreased with apparent first order kinetics. The t12 for the loss of fusion accessibility was approximately 8 min. The behavior of Tf is more complex. Initially the fusion accessibility of Tf decayed rapidly (t1/2 less than 3 min), but a constant level of fusion accessibility was then observed for 10 min. This suggests that Tf moves through one fusion accessible endosome rapidly and then enters a second fusion accessible compartment on the recycling pathway. At 18 degrees C, fusion of antifluorescein antibodies (AFA) containing vesicles with F-alpha 2M was observed when the interval between additions was 10 min. However, if the interval was increased to 1 h, no fusion with incoming vesicles was observed. These results identify the site of F-alpha 2M accumulation at 18 degrees C as a prelysosomal late endosome that no longer fuses with newly formed endosomes since no delivery to lysosomes is observed at this temperature.  相似文献   

3.
Osteosarcoma (OS) is the most common primary bone tumour in the paediatric age group. Treatment-refractory pulmonary metastasis continues to be the major complication of OS, reducing the 5-year survival rate for these patients to 10-20%. The mechanisms underlying the metastatic process in OS are still unclear, but undoubtedly, a greater understanding of the factors and interactions involved in its regulation will open new and much needed opportunities for therapeutic intervention. Recent published data have identified a new role for bone-specific macrophages (osteoclasts) and tumour-associated macrophages (TAMs), in OS metastasis. In this review we discuss the contribution of TAMs and osteoclasts in the establishment and maintenance of secondary metastatic lesions, and their novel role in the prevention of metastatic disease in a primary bone cancer such as osteosarcoma.  相似文献   

4.
Shade avoidance responses. Driving auxin along lateral routes   总被引:2,自引:0,他引:2       下载免费PDF全文
  相似文献   

5.
Despite evidence suggesting that protein kinase C (PKC) isoforms are important in phagocytosis by Fcgamma receptors, the mechanisms by which the substrates of these kinases act are largely unknown. We have investigated the role of one PKC substrate, pleckstrin, in cells of the monocyte/macrophage lineage. Pleckstrin expression in mouse macrophages was induced severalfold in response to bacterial LPS and IFN-gamma. In unstimulated cells, the protein was largely confined to the cytosol. Upon ingestion of IgG-opsonized zymosan particles (OPZ), however, pleckstrin accumulated on the phagosomal membrane. This association was transient, being maximal after 15 min and declining thereafter. Similar kinetics of association was also seen for both filamentous actin and the delta isoform of PKC. Ingestion of OPZ was found to induce phosphorylation of pleckstrin. To examine whether phosphorylation was required for phagosomal association, pleckstrin was expressed in CHO-IIA cells that stably express the FcgammaRIIA receptor and are competent for phagocytosis of OPZ. In these cells, both wild-type pleckstrin and mutants in which the phosphoacceptor sites had been mutated to either alanine (nonphosphorylatable) or glutamine (pseudophosphorylated) were found to accumulate on OPZ phagosomes. Thus, association of pleckstrin with phagosomes is independent of its phosphorylation. Our findings suggest that pleckstrin may serve as an intracellular adaptor/targeting protein in response to particulate stimuli. By targeting interacting ligands to the phagosomal compartment, pleckstrin may serve to regulate phagocytosis and/or early steps during maturation of the phagosome.  相似文献   

6.
Phagocytosis requires the internalization of a significant fraction of the plasma membrane and results in the intracellular deposition of large particles. We evaluated the effect of phagocytosis on the cellular distribution of recycling receptors and uptake of ligand to determine whether phagocytosis affects receptor behavior. Phagocytosis of zymosan, latex particles, or IgG-coated red blood cells by rabbit alveolar macrophages did not decrease the number of cell surface receptors for transferrin, alpha 2-macroglobulin X protease complexes, maleylated proteins, or mannosylated proteins. The number of surface receptors for transferrin was also unaltered in J774 cells, a macrophage-like cell line. In both cell types extensive phagocytosis did not affect the rate of receptor-mediated endocytosis or the distribution of receptors between the endosome and the cell surface. However, fluid phase pinocytosis was reduced by phagocytosis. The major reduction appeared to be not in the rate of internalization but rather in the delivery of fluid to the lysosome. These results demonstrate that internalization of a significant amount of the plasma membrane during phagocytosis does not diminish the number of receptors on the cell surface and has no effect on receptor-mediated ligand uptake.  相似文献   

7.
We have used endocytic and phagocytic tracers in an EM immunocytochemical study to define the compartments of the phagocytic and endocytic pathways in mouse peritoneal macrophages. Endocytosed BSA-gold appeared successively in early endosomes, spherical endosomal vesicles, a late endosomal tubuloreticular compartment (TC), and terminal lysosomes. The TC appeared as an elaborate structure enriched for the lysosomal membrane glycoproteins Lamp 1 and Lamp 2, and expressing significant levels of rab7, a late endosome-specific GTP-binding protein. The cation-independent mannose-6-phosphate receptor was restricted to specialized regions of the TC that were predominantly adjacent to the Golgi complex. Both the early endosome and the TC had coated bud structures whose composition and function are presently unknown. Phagolysosomes containing latex beads expressed the same membrane antigens and received endocytic tracers simultaneously with the TC. Since the membrane surrounding both organelles was also in direct continuity, we assume that both structures form one functional compartment. Macrosialin, an antigen confined to macrophages and dendritic cells, was heavily expressed in TC and phagolysosomal membranes with low levels being detected in other endosomal compartments and on the cell surface. Treatment of cells with wheat germ agglutinin drastically altered the morphology of the TC, giving rise to sheets of tightly adherent membrane and greatly expanded vesicles, in which cell-associated wheat germ agglutinin was concentrated. The spherical endosomal carrier vesicles loaded with internalized gold tracers clustered nearby, often making contact without fusing. Since the delivery of endocytic tracer to the TC was significantly delayed these experiments suggest that the lectin is somehow preventing the endosome vesicles from fusing with the TC. Collectively, our data argue first that the PLC is equivalent to the "tubular lysosomes" commonly described in macrophages, and second that the meeting of the phagocytic and endocytic pathway occurs in this compartment.  相似文献   

8.
Transcytotic membrane flow delivers degraded bone fragments from the ruffled border to the functional secretory domain, FSD, in bone resorbing osteoclasts. Here we show that there is also a FSD-to-ruffled border trafficking pathway that compensates for the membrane loss during the matrix uptake process and that rafts are essential for this ruffled border-targeted endosomal pathway. Replacing the cytoplasmic tail of the vesicular stomatitis virus G protein with that of CD4 resulted in partial insolubility in Triton X-100 and retargeting from the peripheral non-bone facing plasma membrane to the FSD. Recombinant G proteins were subsequently endosytosed and delivered from the FSD to the peripheral fusion zone of the ruffled border, which were both rich in lipid rafts as suggested by viral protein transport analysis and visualizing the rafts with fluorescent recombinant cholera toxin. Cholesterol depletion by methyl-beta-cyclodextrin impaired the ruffled border-targeted vesicle trafficking pathway and inhibited bone resorption dose-dependently as quantified by measuring the CTX and TRACP 5b secreted to the culture medium and by measuring the resorbed area visualized with a bi-phasic labeling method using sulpho-NHS-biotin and WGA-lectin. Thus, rafts are vital for membrane recycling from the FSD to the late endosomal/lysosomal ruffled border and bone resorption.  相似文献   

9.
Leishmania donovani promastigotes, the causative agent of visceral leishmaniasis, survive inside macrophages by inhibiting phagosomal maturation. The main surface glycoconjugate on promastigotes, lipophosphoglycan (LPG), is crucial for parasite survival. LPG has several detrimental effects on macrophage function, including inhibition of periphagosomal filamentous actin (F-actin) breakdown during phagosomal maturation. However, in RAW 264.7 macrophages pre-stimulated with lipopolysaccharide (LPS) and interferon gamma (IFNgamma), known to up-regulate inducible nitric oxide synthase (iNOS) and nitric oxide (NO) production, L. donovani promastigotes are unable to inhibit periphagosomal F-actin breakdown and phagosomal maturation proceeds normally. Moreover, the iNOS inhibitor aminoguanidine, blocked the positive effects of LPS/IFNgamma suggesting that NO is a key player in F-actin remodeling. In conclusion, production of NO by stimulated macrophages seems to allow phagosomal maturation following uptake of L. donovani promastigotes, suggesting a novel mechanism whereby NO facilitates killing of an intracellular pathogen.  相似文献   

10.
Protein kinase C alpha (PKC alpha) participates in F-actin remodeling during phagocytosis and phagosomal maturation in macrophages. Leishmania donovani promastigotes, which inhibit phagosomal maturation, cause accumulation of periphagosomal F-actin instead of the disassembly observed around other prey [Cell. Microbiol. 7 (2001) 439]. This accumulation is induced by promastigote lipophosphoglycan (LPG), which has several effects on macrophages including inhibition of PKC alpha. To investigate a possible connection between PKC alpha and LPG's effects on actin dynamics, we utilized RAW264.7 macrophages overexpressing dominant-negative PCK alpha (DN PKC alpha). We found increased cortical F-actin and decreased phagocytic capacity, as well as defective periphagosomal F-actin breakdown and inhibited phagosomal maturation in the DN PKC alpha-overexpressing cells, effects similar to those seen in controls subjected to LPG-coated prey. The results indicate that PKC alpha is involved in F-actin turnover in macrophages and that PKC alpha-dependent breakdown of periphagosomal F-actin is required for phagosomal maturation, and endorse the hypothesis that intracellular survival of L. donovani involves inhibition of PKC alpha by LPG.  相似文献   

11.
Cultured resident murine macrophages are incubated in the continuous presence of the fluorescent endocytic marker Lucifer Yellow and a phorbol ester that activates protein kinase C. Under these steady-state labeling conditions the fluorescent tracer was, for the most part, in a tubular/reticular compartment. Enzyme cytochemical localization of acid phosphatase in the same cells showed essentially a one-to-one correlation between the Lucifer Yellow- and acid phosphatase-containing compartments. Procedures for epifluorescence observation and subsequent enzyme cytochemical examination of the same whole mount cells are described. In addition, chemical fixation methods for the preservation of this labile tubular/reticular compartment are presented.  相似文献   

12.
Rabbit peritoneal exudate (PE) macrophages were separated into subpopulations on discontinuous density gradients of bovine serum albumin. Four such macrophage subpopulations, referred to as bands A, B, C, and D (from lightest to heaviest buoyant density), were examined for differences in enzyme content. With regard to three acid hydrolases—acid phosphatases, β-glucuronidase, and cathepsin D—cells in bands A and B had greater enzyme activity than cells in bands C and D. A similar distribution of activities was observed for acid p-nitrophenylphosphatase. Peroxidase activity was present only in band D. Lysozyme activity was greatest in band D cells and least in band A cells. Only small differences in cytochrome c oxidase activity were observed among the subpopulations. Arginase activity was found to be greater in cells from band A than cells in bands B, C, and D. Macrophage subpopulations derived from PE macrophages placed in tissue culture for 7 days and macrophage subpopulation cells cultured for 2 days showed differences in acid phosphatase content similar to those seen with freshly obtained subpopulations. These results extend previous work demonstrating heterogeneity among PE macrophages.  相似文献   

13.
Summary Radioimmunoassay and immunocytochemical staining methods were used to study the distribution of thyroid hormone in rat alveolar macrophages. The cells were fractionated into six subpopulations by Percoll density gradient. Positive immunoreactive tri-iodothyronine (T3) was observed in all subpopulations of macrophages, especially in low-density (1.040 and 1.050 g cm–3) groups, by avidin-biotin-peroxidase immunostaining techniques. The macrophages also showed various patterns of cellular T3 stainability. Results from radioimmunoassay of macrophage extracts also demonstrated that macrophages of low density had a higher level of total T3 than those of higher densities (1.060 g cm–3).  相似文献   

14.
After cell surface receptors are internalized for endocytosis, they are accurately sorted in endosomes. Some are recycled to the plasma membrane and others are downregulated by delivery to lysosomes. Evidence is rapidly accumulating that ubiquitination of cargo proteins acts as a sorting signal during endocytosis. Sorting devices that recognize ubiquitin are distributed to various compartments, probably acting in a concerted manner. Cholesterol is enriched in the plasma membrane and endosomes, and is involved in protein sorting by forming microdomains called lipid rafts. Ubiquitin and cholesterol hold the key to control the endocytic sorting, and they are likely acting cooperatively.  相似文献   

15.
Phagosomes formed by neutrophils are much less acidic than those of other phagocytic cells. The defective acidification seen in neutrophils has been attributed to consumption of protons during the dismutation of superoxide, because a large, sustained acidification is unmasked when the cells are treated with inhibitors of the NADPH oxidase. Consumption of protons transported into the phagosome by dismutation would tightly couple the activities of the NADPH oxidase and the vacuolar type H(+)-pump (or V-ATPase). We tested the existence of the predicted coupling using microfluorimetry and digital imaging and found that the rate of superoxide generation was independent of the activity of the H(+)-pump. Moreover, we failed to detect the alkalinization predicted to develop through dismutation when the pump was inhibited. Instead, two other mechanisms were found to contribute to the inability of neutrophil phagosomes to acidify. First, the insertion of V-ATPases into the phagosomal membrane was found to be reduced when the oxidase is active. Second, the passive proton (equivalent) permeability of the phagosomal membrane increased when the oxidase was activated. The increased permeability cannot be entirely attributed to the conductive H(+) channels associated with the oxidase, since it is not eliminated by Zn(2+). We conclude that the NADPH oxidase controls the phagosomal pH by multiple mechanisms that include reduced proton delivery to the lumen, increased luminal proton consumption, and enhanced backflux (leak) into the cytosol.  相似文献   

16.
17.
Mitochondrial stress results in changes in mitochondrial function, morphology and homeostasis (biogenesis, fission/fusion, mitophagy) and may lead to changes in mitochondrial subpopulations. While flow cytometric techniques have been developed to quantify features of individual mitochondria related to volume, Ca2+ concentration, mtDNA content, respiratory capacity and oxidative damage, less information is available concerning the identification and characterization of mitochondrial subpopulations, particularly in epithelial cells. Mitochondria from rabbit kidneys were stained with molecular probes for cardiolipin content (nonyl acridine orange, NAO) and membrane potential (tetramethylrhodamine, TMRM) and analyzed using flow cytometry. We validated that side scatter was a better indicator of volume and that as side scatter (SSC) decreased mitochondrial volume increased. Furthermore, those mitochondria with the highest NAO content had greater side scattering and were most highly charged. Mitochondria with average NAO content were of average side scattering and maintained an intermediate charge. Those mitochondria with low NAO content had minimal side scattering and exhibited minimal charge. Upon titration with the uncoupler carbonylcyanide-4-(trifluoromethoxy)-phenylhydrazone (FCCP), it was found that the high NAO content subpopulations were more resistant to uncoupling than lower NAO content populations. Ca2+-induced swelling of mitochondria was evaluated using probability binning (PB) analyses of SSC. Interestingly, only 30 % of the mitochondria showed changes in response to Ca2+, which was blocked by cyclosporine A. In addition, the small, high NAO content mitochondria swelled differentially in response to Ca2+ over time. Our results demonstrate that flow cytometry can be used to identify mitochondrial subpopulations based on high, mid and low NAO content and/or volume/complexity. These subpopulations showed differences in membrane potential, volume, and responses to uncoupling and Ca2+-induced swelling.  相似文献   

18.
By phagocytosis, macrophages engulf large particles, microorganisms and senescent cells in vesicles called phagosomes. Many internalized proteins rapidly shuttle back to the plasma membrane following phagosome biogenesis. Here, we report a new approach to the study of recycling from the phagosomal compartment: streptolysin O- (SLO) permeabilized macrophages. In this semi-intact cell system, energy and cytosol are required to efficiently reconstitute recycling transport. Addition of GDPbetaS strongly inhibits this transport step, suggesting that a GTP-binding protein modulates the dynamics of cargo exit from the phagosomal compartment. GTPases of the Rab family control vesicular trafficking, and Rab11 is involved in transferrin receptor recycling. To unravel the role of Rab11 in the phagocytic pathway, we added recombinant proteins to SLO-permeabilized macrophages. Rab11:S25N, a negative mutant, strongly diminishes the release of recycled proteins from phagosomes. In contrast, wild type Rab11 and its positive mutant (Rab11:Q70L) favor this vesicular transport event. Using biochemical and morphological assays, we confirm that overexpression of Rab11:S25N substantially decreases recycling from phagosomes in intact cells. These findings show the requirement of a functional Rab11 for the retrieval to the plasma membrane of phagosomal content. SLO-permeabilized macrophages likely constitute a useful tool to identify new molecules involved in regulating transport along the phagocytic pathway.  相似文献   

19.
The study of fusion of phagosomes with secondary lysosomes in macrophages is facilitated by assessing transfer of fluorescent or electron-opaque markers (or both) from the lysosomes to the phagosomes. When certain virulent viable pathogens are phagocytosed by mouse peritoneal macrophages, phagosome-lysosome fusion (P-LF) is inhibited. Nonviable counterparts ordinarily cannot impose this block. A similar, but spurious, block to P-LF seems to be mediated from the lysosomal domain following sequestration of certain polyanionic substances. This block has been judged to be relieved by, for example, heat-killed yeasts and various viable bacteria designated as fusion-inducing microorganisms, acting from the phagosome. In this study we tested this concept and believed it to be unfounded. Macrophages labeled with Thorotrast and incubated with dextran sulfate were offered a variety of viable and heat-killed microorganisms for phagocytosis: Saccharomyces cerevisiae, Mycobacterium lepraemurium, Streptococcus faecalis, and Escherichia coli. By electron microscopy, a transfer of Thorotrast to phagosomes up to 18 h was seen to be highly suppressed as compared with controls, but was not notably different for any of the targets, whether viable or not. Instead, inert 0.45-micron carboxylated polystyrene beads (the smallest target) showed the most delivery of marker. If polyanionic agents truly inhibited fusion, then "fusiogenic" microorganisms should free the marker for delivery. If polyanions do not inhibit P-LF and only trap the marker, the behavior of the various targets would correspond to what we found.  相似文献   

20.
Osteoclasts and activated macrophages in culture were shown to generate an acidic microenvironment specifically in the attachment zone between the cell and the base of the culture dish. Measurements using pH microelectrodes revealed that osteoclasts, when firmly attached, could achieve a pH fall of about 1 unit min-1 to a limit value of pH 3.0 or less. Activated macrophages produced a slower fall of 0.5-2 pH units h-1 and a limit value of pH 3.6-3.7 was generally detected. The method of activation was relatively unimportant, but where macrophages formed clumps the pH effect was reinforced. Osteoclasts were also examined in situ in osteoporotic bone fragments in rabbit ear chambers, using a combination H+ and Ca2+ double-barrelled electrode. The pH readings reached a lower limit of 4.7 and the calcium concentration rose to a maximum of 40 mM in the erosion sites. In vivo such acid conditions would favor the direct extracellular action of secreted lysosomal proteinases in the degradation of collagen by both cell types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号