首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BALB/c mice immunized with a vaccinia virus expressing the attachment (G) glycoprotein of respiratory syncytial virus (RSV) develop a virus-specific CD4(+) T cell response that consists of a mixture of Th1 and Th2 CD4(+) T cells following intranasal infection with live RSV. Recent work has shown that both Th1 and Th2 CD4(+) T cells are elicited to a single region comprising aa 183-197 of the G protein. To more precisely define the CD4(+) T cell epitope(s) contained within this region, we created a panel of amino- and carboxyl-terminal truncated as well as single alanine-substituted peptides spanning aa 183-197. These peptides were used to examine the ex vivo cytokine response of memory effector CD4(+) T cells infiltrating the lungs of G-primed RSV-infected mice. Analysis of lung-derived memory effector CD4(+) T cells using intracellular cytokine staining and/or ELISA of effector T cell culture supernatants revealed a single I-E(d)-restricted CD4(+) T cell epitope with a core sequence mapping to aa 185-193. In addition, we examined the T cell repertoire of the RSV G peptide-specific CD4(+) T cells and show that the CD4(+) T cells directed to this single immunodominant G epitope use a restricted range of TCR Vss genes and predominantly express Vss14 TCR.  相似文献   

2.
Virus neutralizing MAb binding and T helper cell stimulating peptide epitopes from structural and non-structural proteins of Japanese encephalitis virus were delineated. It was observed that priming by T helper peptides potentiated neutralizing antibody response against JE virus. Immunization with chimeric T helper - B cell peptides could thus protect mice from lethal challenge with JE virus.  相似文献   

3.
Activation of CD4(+) T cells helps establish and sustain CD8(+) T cell responses and is required for the effective clearance of acute infection. CD4-deficient mice are unable to control persistent infection and CD4(+) T cells are usually defective in chronic and persistent infections. We investigated the question of how persistent infection impacted pre-existing lymphocytic choriomeningitis virus (LCMV)-specific CD4(+) T cell responses. We identified class II-restricted epitopes from the entire set of open reading frames from LCMV Armstrong in BALB/c mice (H-2(d)) acutely infected with LCMV Armstrong. Of nine epitopes identified, six were restricted by I-A(d), one by I-E(d) and two were dually restricted by both I-A(d) and I-E(d) molecules. Additional experiments revealed that CD4(+) T cell responses specific for these epitopes were not generated following infection with the immunosuppressive clone 13 strain of LCMV. Most importantly, in peptide-immunized mice, established CD4(+) T cell responses to these LCMV CD4 epitopes as well as nonviral, OVA-specific responses were actively suppressed following infection with LCMV clone 13 and were undetectable within 12 days after infection, suggesting an active inhibition of established helper responses. To address this dysfunction, we performed transfer experiments using both the Smarta and OT-II systems. OT-II cells were not detected after clone 13 infection, indicating physical deletion, while Smarta cells proliferated but were unable to produce IFN-gamma, suggesting impairment of the production of this cytokine. Thus, multiple mechanisms may be involved in the impairment of helper responses in the setting of early persistent infection.  相似文献   

4.
The immunogenicity of an isolated murine helper T cell determinant was studied. Mice were immunized with a synthetic peptide corresponding to amino acid residues 111-120 of the influenza PR8 hemagglutinin (HA) heavy chain, a region previously identified as a major target of the helper T cell response to the HA molecule in virus-primed BALB/c mice. Lymph node T cells from these mice were fused with BW 5147 cells to produce T hybrids for clonal analysis of their recognition specificities. Three T cell hybridoma clones, obtained from two different mice, responded to the immunizing peptide when presented by syngeneic antigen-presenting cells. All of these clones responded also to antigen provided as intact wild-type PR8 virus. The fine specificity of the peptide-induced T cell hybridomas, in response to a panel of mutant and variant influenza viruses, was indistinguishable from the fine specificities of T cells to the corresponding region of the HA1 chain of the HA molecule which had been generated by priming of mice with intact wild-type virus. These results suggest that an immunogenic determinant is contained within the 111-120 sequence that is able to elicit anti-influenza virus T cells with a similar repertoire to those elicited by immunization with whole virus.  相似文献   

5.
6.
Although current anti-cancer protocols are reasonably effective, treatment-associated long-term side effects, induced by lack of specificity of the anti-cancer procedures, remain a challenging problem in pediatric oncology. TAT-RasGAP317-326 is a RasGAP-derived cell-permeable peptide that acts as a sensitizer to various anti-cancer treatments in adult tumor cells. In the present study, we assessed the effect of TAT-RasGAP317-326 in several childhood cancer cell lines. The RasGAP-derived peptide-induced cell death was analyzed in several neuroblastoma, Ewing sarcoma and leukemia cell lines (as well as in normal lymphocytes). Cell death was evaluated using flow cytometry methods in the absence or in the presence of the peptide in combination with various genotoxins used in the clinics (4-hydroperoxycyclophosphamide, etoposide, vincristine and doxorubicin). All tested pediatric tumors, in response to at least one genotoxin, were sensitized by TAT-RasGAP317-326. The RasGAP-derived peptide did not increase cell death of normal lymphocytes, alone or in combination with the majority of the tested chemotherapies. Consequently, TAT-RasGAP317-326 may benefit children with tumors by increasing the efficacy of anti-cancer therapies notably by allowing reductions in anti-cancer drug dosage and the associated drug-induced side effects.  相似文献   

7.
Major histocompatibility complex (MHC) class I molecules (proteins) bind peptides of eight to ten amino acids to present them at the cell surface to cytotoxic T cells. The class I binding groove binds the peptide via hydrogen bonds with the peptide termini and via diverse interactions with the anchor residue side chains of the peptide. To elucidate which of these interactions is most important for the thermodynamic and kinetic stability of the peptide-bound state, we have combined molecular dynamics simulations and experimental approaches in an investigation of the conformational dynamics and binding parameters of a murine class I molecule (H-2Kb) with optimal and truncated natural peptide epitopes. We show that the F pocket region dominates the conformational and thermodynamic properties of the binding groove, and that therefore the binding of the C terminus of the peptide to the F pocket region plays a crucial role in bringing about the peptide-bound state of MHC class I.  相似文献   

8.
A major objective in vaccine development is the design of reagents that give strong, specific T cell responses. We have constructed a series of rAb with specificity for MHC class II (I-E). Each has one of four different class II-restricted T cell epitopes genetically introduced into the first C domain of the H chain. These four epitopes are: 91-101 lambda2(315), which is presented by I-E(d); 110-120 hemagglutinin (I-E(d)); 323-339 OVA (I-A(d)); and 46-61 hen egg lysozyme (I-A(k)). We denote such APC-specific, epitope-containing Ab "Troybodies." When mixed with APC, all four class II-specific Troybodies were approximately 1,000 times more efficient at inducing specific T cell activation in vitro compared with nontargeting peptide Ab. Furthermore, they were 1,000-10,000 times more efficient than synthetic peptide or native protein. Conventional intracellular processing of the Troybodies was required to load the epitopes onto MHC class II. Different types of professional APC, such as purified B cells, dendritic cells, and macrophages, were equally efficient at processing and presenting the Troybodies. In vivo, class II-specific Troybodies were at least 100 times more efficient at targeting APC and activating TCR-transgenic T cells than were the nontargeting peptide Ab. Furthermore, they were 100-100,000 times more efficient than synthetic peptide or native protein. The study shows that class II-specific Troybodies can deliver a variety of T cell epitopes to professional APC for efficient presentation, in vitro as well as in vivo. Thus, Troybodies may be useful as tools in vaccine development.  相似文献   

9.
TAT-RasGAP317–326, a cell-permeable 10-amino acid-long peptide derived from the N2 fragment of p120 Ras GTPase-activating protein (RasGAP), sensitizes tumor cells to apoptosis induced by various anticancer therapies. This RasGAP-derived peptide, by targeting the deleted in liver cancer-1 (DLC1) tumor suppressor, also hampers cell migration and invasion by promoting cell adherence and by inhibiting cell movement. Here, we systematically investigated the role of each amino acid within the RasGAP317–326 sequence for the anticancer activities of TAT-RasGAP317–326. We report here that the first three amino acids of this sequence, tryptophan, methionine, and tryptophan (WMW), are necessary and sufficient to sensitize cancer cells to cisplatin-induced apoptosis and to reduce cell migration. The WMW motif was found to be critical for the binding of fragment N2 to DLC1. These results define the interaction mode between the active anticancer sequence of RasGAP and DLC1. This knowledge will facilitate the design of small molecules bearing the tumor-sensitizing and antimetastatic activities of TAT-RasGAP317–326.  相似文献   

10.
Murine antibodies derived from the V1 S107/T15 germline structure combined with Vk 22 L chains express the property of self-binding. Previous studies have shown that the self-binding is mediated by the Fab fragment involving structures of the hapten binding site. The molecular locus of self-binding has also been identified by showing that a peptide derived from the CDR2/FR3 region of the V1 S107 H chain inhibits self-binding. We have addressed the question of whether self-binding antibodies interact with peptides that inhibit self-binding. We found that labeled TEPC15 (T15) binds to immobilized VH (50-73) peptide; the peptide binding is specific because different CDR peptides and other unrelated peptides do not inhibit this binding. Furthermore, the hapten phosphorylcholine is a potent inhibitor for the T15-peptide binding. We have demonstrated the presence of naturally occurring antibodies that bind to the T15H(50-73) peptide in the sera of different strains of mice and also in humans, indicating that the CDR2/FR3 sequence of T15 is a conserved Id determining region. We have isolated peptide-specific antibodies from pooled normal human Ig preparations. Human anti-peptide antibodies have self-binding properties similar to their murine counterparts. This interspecies conserved peptide binding of antibodies that are self-binding indicates the existence of an evolutionarily important and biologically active site.  相似文献   

11.
A fusion protein of single chain antibody (scFv) specific for transferrin receptor (TfR, CD71) and viral peptide/HLA-A2 complex was prepared in this study to redirect cytotoxic T cells (CTLs) of viral specificity to tumor cells by attaching the ligand of T cell receptor (TCR) to tumor cells via binding of TfR scFv to TfR. The results demonstrate that the fusion protein can attach the active virus-peptide/HLA-A2 complex to HLA class I-negative, TfR-expressing K562 cells through binding of TfR scFv to TfR, and mediate cytotoxicity of viral peptide-specific CTLs against K562 cells in vitro. In addition, the fusion protein can induce inhibition of solid tumor formation and improve survival time in tumor xenograft nude mouse with the injection of the sorted viral peptide-specific CTLs generated by co-culture of peripheral blood lymphocytes from HLA-A2 positive donors with inactivated T2 cells pulsed with the viral peptide.  相似文献   

12.
RasGAP is a multifunctional protein that controls Ras activity and that is found in chromosomal passenger complexes. It also negatively or positively regulates apoptosis depending on the extent of its cleavage by caspase-3. RasGAP has been reported to bind to G3BP1 (RasGAP SH3-domain-binding protein 1), a protein regulating mRNA stability and stress granule formation. The region of RasGAP (amino acids 317–326) thought to bind to G3BP1 corresponds exactly to the sequence within fragment N2, a caspase-3-generated fragment of RasGAP, that mediates sensitization of tumor cells to genotoxins. While assessing the contribution of G3BP1 in the anti-cancer function of a cell-permeable peptide containing the 317–326 sequence of RasGAP (TAT-RasGAP317–326), we found that, in conditions where G3BP1 and RasGAP bind to known partners, no interaction between G3BP1 and RasGAP could be detected. TAT-RasGAP317–326 did not modulate binding of G3BP1 to USP10, stress granule formation or c-myc mRNA levels. Finally, TAT-RasGAP317–326 was able to sensitize G3BP1 knock-out cells to cisplatin-induced apoptosis. Collectively these results indicate that G3BP1 and its putative RasGAP binding region have no functional influence on each other. Importantly, our data provide arguments against G3BP1 being a genuine RasGAP-binding partner. Hence, G3BP1-mediated signaling may not involve RasGAP.  相似文献   

13.
We designed and expressed a single-chain class II major histocompatibility complex molecule capable of forming a stable complex with an antigenic peptide. The peptide-binding preference of the single-chain (sc) human leukocyte antigen derived from DRB5(*)0101 (DR51) was determined to be similar to that of the authentic one, which requires a bulky hydrophobic residue at position-1 (P1) as a primary anchor. For modulation of the peptide-binding affinity, we modified binding pocket 1 of sc DR51 by site-directed mutagenesis. The relative binding affinity of the engineered sc DR51 for several P1-substituted peptides was measured by competition assaying with a fluorescence labeled peptide. The sc DR51 molecule showed high affinity to the self-peptide derived from myelin basic protein, 87-98 with Phe as the P1 residue (F90F). While reduction of pocket 1 volume (betaG86V) decreased the affinity of F90F, it rather increased the affinity of the Ala-substituted peptide as to the P1 residue (F90A). Through more extensive engineering in the peptide-binding groove of the sc DR51 molecule, it is expected that we can construct sc DR51 variants with various peptide ligand motifs.  相似文献   

14.
The ability to generate proliferative and helper T lymphocyte responses in mice was compared by using the 14 amino acid peptide, human fibrinopeptide B (hFPB). Lymph node or peritoneal exudate T cells from mice immunized with hFPB were assessed for in vitro proliferation to soluble hFPB as determined by the uptake of 3H-thymidine. The T cell proliferative response to hFPB was found to be under MHC-linked Ir gene control; mice possessing the H-2a,k haplotypes were responders, whereas H-2b,d,q,s mice were nonresponders. The influence of non-H-2 genes on these responses was not investigated, so exclusive regulation by H-2 is provisional. The absence of a detectable lymph node and peritoneal exudate T cell proliferative response persisted in H-2b,d,q,s mice after immunization and boosting with several doses of hFPB. In addition, the capacity to produce a T cell proliferative response was inherited in an autosomal dominant manner and gene(s) controlling responsiveness to hFPB mapped to the I-A subregion of the H-2 complex. To measure peptide-specific helper T cell activity, an in vitro microculture assay in which hFPB-primed lymph node T cells and normal spleen B cells and macrophages were used was developed measuring anti-fluorescein isothiocyanate (FITC) IgM and IgG plaque-forming cell (PFC) responses after culture with FITC-conjugated peptide. Immunization of B10.BR, C57BL/10, B10.D2, and B6AF mice with hFPB primed for significant helper T cell activity as assessed by the ability to augment a primary in vitro IgM response to FITC. The normal B cell IgM responses were completely dependent on hFPB-primed T cells and required that hapten (FITC) and carrier (peptide) be linked. In addition, immunization with FITC-conjugated peptide elicited positive in vivo PFC responses to FITC in B10.BR and C57BL/10 mice, indicating similar genetic control of helper activity in both the intact animals and the in vitro microcultures. Thus, B10.BR mice show both T help and T proliferative responses to hFPB, whereas C57BL/10 mice show only T help and no T proliferative responses. In contrast to B10.BR mice, C3H and CBA mice immunized with hFPB were completely unresponsive when assayed for helper T cell activity in vitro despite their ability to generate positive lymph node T cell proliferative responses. These results indicate responsiveness to hFPB by T helper and proliferating cells is different and is under separate genetic control.  相似文献   

15.
Peptide immunotherapy both activates and suppresses the T cell response against known peptide Ags. Although pretreatment with VP2(121-130) peptide inhibits the development of antiviral CTL specific for the immunodominant D(b):VP2(121-130) epitope expressed during acute Theiler's murine encephalomyelitis virus infection, i.v. injection of this same peptide or MHC tetramers containing the peptide during an ongoing antiviral CTL response results in a peptide-induced fatal syndrome (PIFS) within 48 h. Susceptibility to PIFS is dependent on peptide-specific CD8(+) T cells, varies among inbred strains of mice, and is not mediated by traditionally defined mechanisms of shock. Analyses using bone marrow chimeras and mutant mice demonstrate that susceptibility to PIFS is determined by the genotype of bone marrow-derived cells and requires the expression of perforin. Animals responding to peptide treatment with PIFS develop classical stress responses in the brain. These findings raise important considerations for the development of peptide therapies for active diseases to modify immune responses involving expanded populations of T cells. In summary, treatment with peptides or MHC-tetramers during a peptide-specific immune response can result in a fatal shock-like syndrome. Susceptibility to the syndrome is genetically determined, is mediated by CD8(+) T cells, and requires expression of perforin. These findings raise concerns about the use of peptides and MHC tetramers in therapeutic schemes.  相似文献   

16.
J L Urban  S J Horvath  L Hood 《Cell》1989,59(2):257-271
Experimental autoimmune encephalomyelitis (EAE) results from T helper (TH) cell recognition of myelin basic protein (MBP). We have characterized TH cell reactivity in B10.PL and PL/J (H-2u) mice to 39 N-terminal MBP peptide derivatives of different lengths and with individual amino acid substitutions. The peptide determinant of murine MBP can be divided into a minimal stimulatory core region (residues 1-6) and a tail region (residues 7-20) that alters the structure of the core region to affect both T cell recognition and MHC binding. Core recognition by B10.PL and PL/J mice is highly similar but in one case strain dependent. Peptide analogs that do not stimulate MBP-specific TH cells but bind to the I-Au molecule competitively inhibit T cell reactivity to MBP in vitro and prevent the induction of EAE in vivo.  相似文献   

17.
T cells play an important role in the control of human CMV (HCMV) infection. Peripheral blood CD4+ T cell proliferative responses to the HCMV lower tegument protein pp65 have been detected in most healthy HCMV carriers. To analyze the clonal composition of the CD4+ T cell response against HCMV pp65, we characterized three MHC class II-restricted peptide epitopes within pp65 in virus carriers. In limiting dilution analysis, we observed high frequencies of pp65 peptide-specific CD4+ T cells, many of which expressed peptide-specific cytotoxicity in addition to IFN-gamma secretion. We analyzed the clonal composition of CD4+ T cells specific for defined HCMV peptides by generating multiple independent peptide-specific CD4+ clones and sequencing the TCR beta-chain. In a given carrier, most of the CD4+ clones specific for a defined pp65 peptide had identical TCR nucleotide sequences. We used clonotype oligonucleotide probing to quantify the size of individual peptide-specific CD4+ clones in whole PBMC and in purified subpopulations of CD45RAhighCD45ROlow and CD45RAlowCD45ROhigh cells. Individual CD4+ T cell clones could be large (0.3-1.5% of all CD4+ T cells in PBMC) and were stable over time. Cells of a single clone were distributed in both the CD45RAhigh and CD45ROhigh subpopulations. In one carrier, the virus-specific clone was especially abundant in the small CD28-CD45RAhigh CD4+ T cell subpopulation. Our study demonstrates marked clonal expansion and phenotypic heterogeneity within daughter cells of a single virus-specific CD4+ T cell clone, which resembles that seen in the CD8+ T cell response against HCMV pp65.  相似文献   

18.
We have demonstrated that coupling an immunoregulatory segment of the MHC class II-associated invariant chain (Ii), the Ii-Key peptide, to a promiscuous MHC class II epitope significantly enhances its presentation to CD4+ T cells. Here, a series of homologous Ii-Key/HER-2/neu(776-790) hybrid peptides, varying systematically in the length of the epitope(s)-containing segment, are significantly more potent than the native peptide in assays using T cells from patients with various types of tumors overexpressing HER-2/neu. In particular, priming normal donor and patient PBMCs with Ii-Key hybrid peptides enhances recognition of the native peptide either pulsed onto autologous dendritic cells (DCs) or naturally presented by IFN-gamma-treated autologous tumor cells. Moreover, patient-derived CD4+ T cells primed with the hybrid peptides provide a significantly stronger helper effect to autologous CD8+ T cells specific for the HER-2/neu(435-443) CTL epitope, as illustrated by either IFN-gamma ELISPOT assays or specific autologous tumor cell lysis. Hybrid peptide-specific CD4+ T cells strongly enhanced the antitumor efficacy of HER-2/neu(435-443) peptide-specific CTL in the therapy of xenografted SCID mice inoculated with HER-2/neu overexpressing human tumor cell lines. Our data indicate that the promiscuously presented vaccine peptide HER-2/neu(776-790) is amenable to Ii-Key-enhancing effects and supports the therapeutic potential of vaccinating patients with HER-2/neu+ tumors with such Ii-Key/HER-2/neu(776-790) hybrid peptides.  相似文献   

19.
Establishment of persistent infection in memory B cells by murid herpesvirus-4 (MuHV-4) depends on the proliferation of latently infected germinal center B cells, for which T cell help is essential. Whether the virus is capable of modulating B-T helper cell interaction for its own benefit is still unknown. Here, we investigate if the MuHV-4 latency associated M2 protein, which assembles multiprotein complexes with B cell signaling proteins, plays a role. We observed that M2 led to the upregulation of adhesion and co-stimulatory molecules in transduced B cell lines. In an MHC-II restricted OVA peptide-specific system, M2 polarized to the B-T helper contact zone. Furthermore, it promoted B cell polarization, as demonstrated by the increased proximity of the B cell microtubule organizing center to the interface. Consistent with these data, M2 promoted the formation of B-T helper cell conjugates. In an in vitro competition assay, this translated into a competitive advantage, as T cells preferentially conjugated with M2-expressing B cells. However, expression of M2 alone in B cells was not sufficient to lead to T cell activation, as it only occurred in the presence of specific peptide. Taken together, these findings support that M2 promotes the formation of B-T helper cell conjugates. In an in vivo context this may confer a competitive advantage to the infected B cell in acquisition of T cell help and initiation of a germinal center reaction, hence host colonization.  相似文献   

20.
We report the creation of TCR partial agonists by the novel approach of manipulating the interaction between immunogenic peptide and MHC. Amino acids at MHC anchor positions of the I-E(k)-restricted hemoglobin (64-76) and moth cytochrome c (88-103) peptides were exchanged with MHC anchor residues from the low affinity class II invariant chain peptide (CLIP), resulting in antigenic peptides with altered affinity for MHC class II. Several low affinity peptides were identified as TCR partial agonists, as defined by the ability to stimulate cytolytic function but not proliferation. For example, a peptide containing methionine substitutions at positions one and nine of the I-E(k) binding motif acted as a partial agonist for two hemoglobin-reactive T cell clones (PL.17 and 3.L2). The identical MHC anchor substitutions in moth cytochrome c (88-103) also created a partial agonist for a mCC-reactive T cell (A.E7). Thus, peptides containing MHC anchor modifications mediated similar T cell responses regardless of TCR fine specificity or antigen reactivity. This data contrasts with the unique specificity among individual clones demonstrated using traditional altered peptide ligands containing substitutions at TCR contact residues. In conclusion, we demonstrate that altering the MHC anchor residues of the immunogenic peptide can be a powerful method to create TCR partial agonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号