首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The origins of hybrid zones between parapatric taxa have been of particular interest for understanding the evolution of reproductive isolation and the geographic context of species divergence. One challenge has been to distinguish between allopatric divergence (followed by secondary contact) versus primary intergradation (parapatric speciation) as alternative divergence histories. Here, we use complementary phylogeographic and population genetic analyses to investigate the recent divergence of two subspecies of Clarkia xantiana and the formation of a hybrid zone within the narrow region of sympatry. We tested alternative phylogeographic models of divergence using approximate Bayesian computation (ABC) and found strong support for a secondary contact model and little support for a model allowing for gene flow throughout the divergence process (i.e. primary intergradation). Two independent methods for inferring the ancestral geography of each subspecies, one based on probabilistic character state reconstructions and the other on palaeo-distribution modelling, also support a model of divergence in allopatry and range expansion leading to secondary contact. The membership of individuals to genetic clusters suggests geographic substructure within each taxon where allopatric and sympatric samples are primarily found in separate clusters. We also observed coincidence and concordance of genetic clines across three types of molecular markers, which suggests that there is a strong barrier to gene flow. Taken together, our results provide evidence for allopatric divergence followed by range expansion leading to secondary contact. The location of refugial populations and the directionality of range expansion are consistent with expectations based on climate change since the last glacial maximum. Our approach also illustrates the utility of combining phylogeographic hypothesis testing with species distribution modelling and fine-scale population genetic analyses for inferring the geography of the divergence process.  相似文献   

2.
In plants and animals, new biological species clearly have arisen as a byproduct of genetic divergence in allopatry. However, our understanding of the processes that generate new microbial species remains limited [1] despite the large contribution of microbes to the world's biodiversity. A recent hypothesis claims that microbes lack biogeographical divergence because their population sizes are large and their migration rates are presumably high [2, 3]. In recapitulating the classic microbial-ecology dictum that "everything is everywhere, and the environment selects"[4, 5], this hypothesis casts doubt on whether geographic divergence promotes speciation in microbes. To date, its predictions have been tested primarily with data from eubacteria and archaebacteria [6-8]. However, this hypothesis's most important implication is in sexual eukaryotic microbes, where migration and genetic admixture are specifically predicted to inhibit allopatric divergence and speciation [9]. Here, we use nuclear-sequence data from globally distributed natural populations of the yeast Saccharomyces paradoxus to investigate the role of geography in generating diversity in sexual eukaryotic microbes. We show that these populations have undergone allopatric divergence and then secondary contact without genetic admixture. Our data thus support the occurrence of evolutionary processes necessary for allopatric speciation in sexual microbes.  相似文献   

3.
Among the most debated subjects in speciation is the question of its mode. Although allopatric (geographical) speciation is assumed the null model, the importance of parapatric and sympatric speciation is extremely difficult to assess and remains controversial. Here I develop a novel approach to distinguish these modes of speciation by studying the evolution of reproductive isolation (RI) among taxa. I focus on the Drosophila genus, for which measures of RI are known. First, I incorporate RI into age‐range correlations. Plots show that almost all cases of weak RI are between allopatric taxa whereas sympatric taxa have strong RI. This either implies that most reproductive isolation (RI) was initiated in allopatry or that RI evolves too rapidly in sympatry to be captured at incipient stages. To distinguish between these explanations, I develop a new “rate test of speciation” that estimates the likelihood of non‐allopatric speciation given the distribution of RI rates in allopatry versus sympatry. Most sympatric taxa were found to have likely initiated RI in allopatry. However, two putative candidate species pairs for non‐allopatric speciation were identified (5% of known Drosophila). In total, this study shows how using RI measures can greatly inform us about the geographical mode of speciation in nature.  相似文献   

4.
Proximate sources of marine biodiversity   总被引:1,自引:1,他引:0  
When temperature and other kinds of barrier divide formerly continuous populations and confine them to more restricted geographical areas, there is an evolutionary reaction that will, over time, result in the formation of endemic species. In such cases, an allopatric speciation process is considered to have taken place because reproductive isolation was caused by physical means instead of by natural selection. In contrast, when populations exist in a very high-diversity area and remain undivided by physical events, they exhibit a tendency to speciate by means of sympatry (or parapatry). This process, sometimes called competitive or ecological speciation, does involve reproductive isolation by means of natural selection. Populations that exist in geographical provinces bounded by physical barriers add to the overall diversity through the production of endemic species. This increase by species packing is relatively slow due to the very gradual tempo of the allopatric speciation process. Populations existing in centres of origin add to the general diversity through the production of species that are dominant in terms of their ability to spread over large parts of the world. It is proposed that such species are usually formed by sympatric speciation, a process that can be c. 20 times faster than species formation by allopatry. It is not suggested that sympatry is exclusive to centres of origin, nor that allopatry is confined to peripheral provinces. Both processes are widespread, but there do appear to be distinctive geographical concentrations. Considering that numbers of widespread species produced by centres of origin may eventually become subdivided by barriers, and thus give rise to descendants by allopatry, it is difficult to say how much of our present species diversity has come from one source or the other. Both speciation by sympatry from centres of origin and speciation by allopatry in peripheral provinces appear to be important sources of marine biodiversity.  相似文献   

5.
The relative roles of geographical and non-geographical barriers in the genesis of genetic isolation are highly debated in evolutionary biology, yet knowing how speciation occurs is essential to our understanding of biodiversity. In the open ocean, differentiating between the two is particularly difficult, because of the high levels of gene flow found in pelagic communities. Here, we use molecular phylogenetics to test the hypothesis that geography is the primary isolating mechanism in a clade of pelagic nudibranchs, Glaucinae. Our results contradict allopatric expectations: the cosmopolitan Glaucus atlanticus is panmictic, whereas the Indo-Pacific Glaucus marginatus contains two pairs of cryptic species with overlapping distributions. Within the G. marginatus species complex, a parallel reproductive change has occurred in each cryptic species pair: the loss of a bursa copulatrix. Available G. marginatus data are most consistent with non-geographical speciation events, but we cannot rule out the possibility of allopatric speciation, followed by iterative range extension and secondary overlap. Irrespective of ancestral range distributions, our results implicate a central role for reproductive character differentiation in glaucinin speciation—a novel result in a planktonic system.  相似文献   

6.
Despite the fundamental role of speciation in formation of biodiversity, the genetic and ecological mechanisms related to this process, as well as the geography of speciation are still poorly known. In our research we have used methods of molecular phylogenetics and phylogeography to reconstruct the stages of speciation in two model groups of butterflies. Phylogeographic analysis showed that speciation in Agrodiaetus blues started in allopatry. An additional age-range correlation test also revealed a pattern consistent with allopatric speciation. However, the formation of new wing colors, the characters most important for maintenance of pre-zygotic reproductive isolation, was shown to occur after transition from allopatry to sympatry. Analysis of karyotypes, mitochondrial and nuclear molecular markers in the Wood White butterfly Leptidea sinapis L. showed that clinal speciation may have occurred in this case; this process is theoretically possible but difficult to document.  相似文献   

7.
Surveys of tropical insects are increasingly uncovering cryptic species – morphologically similar yet reproductively isolated taxa once thought to comprise a single interbreeding entity. The vast majority of such species are described from a single location. This leaves us with little information on geographic range and intraspecific variation and limits our ability to infer the forces responsible for generating such diversity. For example, in herbivorous and parasitic insects, multiple specialists are often discovered within what were thought to be single more generalized species. Host shifts are likely to have contributed to speciation in these cases. But when and where did those shifts occur, and were they facilitated by geographic isolation? We attempted to answer these questions for two cryptic species within the butterfly Cymothoe egesta that were recently discovered on different host plants in central Cameroon. We first used mtDNA markers to separate individuals collected on the two hosts within Cameroon and then extended our analysis to incorporate individuals collected across the entire pan‐Afrotropical range of the original taxon. To our surprise, we found that the species are almost entirely allopatric, dividing the original range and overlapping only in the narrow zone of West‐Central Africa where they were first discovered in sympatry. This finding, combined with analyses of genetic variation within each butterfly species, strongly suggests that speciation occurred in allopatry, probably during the Pleistocene. We discuss the implications of our results for understanding speciation among other cryptic species recently discovered in the tropics and argue that more work is needed on geographic patterns and host usage in such taxa.  相似文献   

8.
9.
Aim In this study, I examined the relative contributions of geography and ecology to species diversification within the genus Nerita, a prominent clade of marine snails that is widely distributed across the tropics and intertidal habitats. Specifically, I tested whether geographical patterns of speciation correspond primarily to allopatric or sympatric models, and whether habitat transitions have played a major role in species diversification. Location Indo‐West Pacific, eastern Pacific, Atlantic, tropical marine intertidal. Methods I used a previously reconstructed molecular phylogeny of Nerita as a framework to assess the relative importance of geographical and ecological factors in species diversification. To evaluate whether recently diverged clades exhibit patterns consistent with allopatric or sympatric speciation, I mapped the geo‐graphical distribution of each species onto the species‐level phylogeny, and examined the relationship between range overlap and time since divergence using age–range correlation analyses. To determine the relative contribution of habitat transitions to divergence, I traced shifts in intertidal substrate affinity and vertical zonation across the phylogeny using parsimony, and implemented randomization tests to evaluate the resulting patterns of ecological change. Results Within the majority of Nerita clades examined, age–range correlation analysis yielded a low intercept and a positive slope, similar to that expected under allopatric speciation. Approximately 75% of sister species pairs have maintained allopatric distributions; whereas more distantly related sister taxa often exhibited complete or nearly complete geographical overlap. In contrast, only 19% of sister species occupy distinct habitats. For both substrate and zonation, habitat transitions failed to concentrate towards either the tips or the root of the phylogeny. Instead, habitat shifts have occurred throughout the history of Nerita, with a general transition from the lower and mid‐littoral towards the upper and supra‐littoral zones, and multiple independent shifts from hard (rock) to softer substrates (mangrove, mud and sand). Main conclusions Both geography and ecology appear to have influenced diversification in Nerita, but to different extents. Geography seems to play a principal role, with allopatric speciation driving the majority of Nerita divergences. Habitat transitions appear insignificant in shaping the early and recent history of speciation, and promoting successive diversification in Nerita; however, shifts may have been important for respective divergences (i.e. those that correspond to the transitions) and enhancing diversity throughout the clade.  相似文献   

10.
During the last decade, the ecological theory of adaptive radiation, and its corollary ??ecological speciation??, has been a major research theme in evolutionary biology. Briefly, this theory states that speciation is mainly or largely the result of divergent selection, arising from niche differences between populations or incipient species. Reproductive isolation evolves either as a result of direct selection on mate preferences (e.g. reinforcement), or as a correlated response to divergent selection (??by-product speciation??). Although there are now many tentative examples of ecological speciation, I argue that ecology??s role in speciation might have been overemphasised and that non-ecological and non-adaptive alternatives should be considered more seriously. Specifically, populations and species of many organisms often show strong evidence of niche conservatism, yet are often highly reproductively isolated from each other. This challenges niche-based ecological speciation and reveals partial decoupling between ecology and reproductive isolation. Furthermore, reproductive isolation might often evolve in allopatry before ecological differentiation between taxa or possibly through learning and antagonistic sexual interactions, either in allopatry or sympatry. Here I discuss recent theoretical and empirical work in this area, with some emphasis on odonates (dragonflies and damselflies) and suggest some future avenues of research. A main message from this paper is that the ecology of species differences is not the same as ecological speciation, just like the genetics of species differences does not equate to the genetics of speciation.  相似文献   

11.
Aim Three common patterns have emerged in comparative phylogeographic analyses at many barriers: (1) a potential geographic pseudocongruence of lineage divergences; (2) a disconnect between the inference of temporally clustered, relatively recent timing for observed speciation events, and dates spanning a broader, apparently random time‐scale; and (3) an apparent prevalence of speciation with recent or continuing gene flow. It is unclear if there is a unifying explanation for these phenomena. We argue that the interaction between geographic barriers to dispersal and ecological limits on the distribution of species can explain these patterns. We suggest that these patterns can be explained by the presence of a continuum between two underlying processes, here termed ‘hard’ and ‘soft’ allopatric divergence, which result from the interplay between organismal ecology and the physioecological nature of geographic barriers. Location Examples from North America. Methods We examine comparative phylogeographic divergences in 18 groups of terrestrial vertebrates at two major biogeographic features in North America – the Mississippi River Embayment and the Cochise Filter Barrier – to test predictions made by this hypothesis. Results We find support for the two distinct processes of hard and soft allopatry, and note several examples exhibiting characteristics of both. Hard allopatry is caused by physical barriers promoting divergence as a function of consistent geographic isolation. Soft allopatry is caused by ecological processes that isolate populations geographically in allopatric refugia through niche conservatism, or across ecological transition zones through niche divergence, but which may be periodic or inconsistent through time. Main conclusions Viewing geographic speciation as a continuum between hard and soft allopatry can explain all three patterns as a consequence of the physical and ecological mechanisms that isolate populations, and provides an alternative perspective on the impact of ecological factors and physical barriers on lineage formation.  相似文献   

12.
Our objective was to elucidate the biogeography and speciation patterns in an entire avian family, which shows a complex pattern of overlapping and nonoverlapping geographical distributions, and much variation in plumage, but less in size and structure. We estimated the phylogeny and divergence times for all of the world's species of Prunella based on multiple genetic loci, and analyzed morphometric divergence and biogeographical history. The common ancestor of Prunella was present in the Sino‐Himalayan Mountains or these mountains and Central Asia–Mongolia more than 9 million years ago (mya), but a burst of speciations took place during the mid‐Pliocene to early Pleistocene. The relationships among the six primary lineages resulting from that differentiation are unresolved, probably because of the rapid radiation. A general increase in sympatry with increasing time since divergence is evident. With one exception, species in clades younger than c. 3.7 my are allopatric. Species that are widely sympatric, including the most recently diverged (2.4 mya) sympatric sisters, are generally more divergent in size/structure than allo‐/parapatric close relatives. The distributional pattern and inferred ages suggest divergence in allopatry and substantial waiting time until secondary contact, likely due to competitive exclusion. All sympatrically breeding species are ecologically segregated, as suggested by differences in size/structure and habitat. Colonizations of new areas were facilitated during glacial periods, followed by fragmentation during interglacials—contrary to the usual view that glacial periods resulted mainly in fragmentations.  相似文献   

13.
Quantifying the role of gene flow during the divergence of closely related species is crucial to understanding the process of speciation. We collected DNA sequence data from 20 loci (one mitochondrial, 13 autosomal, and six sex‐linked) for population samples of Lazuli Buntings (Passerina amoena) and Indigo Buntings (Passerina cyanea) (Aves: Cardinalidae) to test explicitly between a strict allopatric speciation model and a model in which divergence occurred despite postdivergence gene flow. Likelihood ratio tests of coalescent‐based population genetic parameter estimates indicated a strong signal of postdivergence gene flow and a strict allopatric speciation model was rejected. Analyses of partitioned datasets (mitochondrial, autosomal, and sex‐linked) suggest the overall gene flow patterns are driven primarily by autosomal gene flow, as there is no evidence of mitochondrial gene flow and we were unable to reject an allopatric speciation model for the sex‐linked data. This pattern is consistent with either a parapatric divergence model or repeated periods of allopatry with gene flow occurring via secondary contact. These results are consistent with the low fitness of female avian hybrids under Haldane's rule and demonstrate that sex‐linked loci likely are important in the initial generation of reproductive isolation, not just its maintenance.  相似文献   

14.
Sympatric speciation is now accepted as theoretically plausible and a likely explanation for divergence in a handful of taxa, but its contribution to large-scale patterns of speciation remains contentious. A major problem is that it is difficult to differentiate between alternate scenarios of geographic speciation when species ranges have shifted substantially in the past. Previous studies have searched for a signal of the geographic mode of speciation by testing for a correlation between time since speciation and range overlap. Here we use simulations to show that the proportion of species showing zero or complete range overlap are more reliable indicators of the geography of speciation than is the correlation between time since speciation and overlap. We then apply these findings to the distributions of 291 pairs of avian sister species. Although 49% of pairs show some overlap in their ranges, our simulations show that this is not surprising under allopatric models of speciation. More revealingly, less than 2% show complete range overlap. Our simulations demonstrate that the observed patterns are most consistent with a model in which allopatric speciation is dominant but in which sympatric speciation is also present and contributes 5% of speciation events.  相似文献   

15.
Reinforcement is the process by which selection favors traits that decrease mating between two incipient species in response to costly mating or the production of maladapted hybrids, causing the evolution of greater reproductive isolation between emerging species. I have studied a pair of orchids, Neotinea tridentata and N. ustulata, to examine the level of postmating pre- and post-zygotic isolating mechanisms that maintain these species, and the degree to which the boundary may still be permeable to gene flow. In this study, I performed pollen tube growth rate experiments and I investigated pre- and post-zygotic barriers by performing hand pollination experiments in order to evaluate fruit set, embryonate seed set and seed germination rates by intra- and interspecific crosses. Fruit set, the percentage of embryonate seeds and germinability of interspecific crosses were reduced compared to intraspecific pollinations, showing significant differences between sympatric and allopatric populations. While in allopatric populations the post-pollination isolation index ranged between 0.40 and 0.11, in sympatric populations orchid pairs showed total isolation due to post-pollination prezygotic barriers, guaranteed at the level of pollen–stigma interactions. Indeed, in sympatric populations, pollen tubes reached the ovary after 24 h in only 8 out of 45 plants; in the remaining cases, the pollen tubes did not enter the ovary, and thus no fruit set occurred. This pair of orchids is characterized by postmating pre-zygotic reproductive isolation in sympatric populations that prevents the formation of hybrids. This mechanism of speciation, starting in allopatry and triggering the reinforcement mechanisms of reproductive isolation in secondary sympatry, is the most likely explanation for the pattern of evolutionary transitions found in this pair of orchids.  相似文献   

16.
Speciation is currently an intensely debated topic, much more so than 20–30 years ago when most biologists held the view that new species (at least of animals) were formed through the split of evolutionary lineages by the appearance of physical barriers to gene flow. Recent advances have, however, lent both theoretical and empirical support to speciation in the presence of gene flow. Nevertheless, the allopatric hypothesis of speciation is still the default model. The consequence of this is that to support sympatric and parapatric modes of speciation all allopatric alternatives must be rejected, while an allopatric explanation is usually accepted without rejecting possible non-allopatric alternatives. However, classical cases of allopatric speciation can be challenged by alternative non-allopatric explanations, and this begs for a more respectful view of how to deal with all models of speciation. An appealing approach is studying parallel evolution of reproductive barriers, which allows for comparative approaches to distinguish between allopatric and non-allopatric events, and explicit tests of a suitable null-hypothesis. Parallel evolution of reproductive isolation in a strongly polymorphic marine snail species serves as an illustrative example of such an approach. In conclusion, a more balanced debate on allopatric and non-allopatric speciation is needed and an urgent issue is to treat both allopatric and nonallopatric hypotheses critically, rather than using allopatry as the default model of speciation.  相似文献   

17.
Recent speciation research has generally focused on how lineages that originate in allopatry evolve intrinsic reproductive isolation, or how ecological divergence promotes nonallopatric speciation. However, the ecological basis of allopatric isolation, which underlies the most common geographic mode of speciation, remains poorly understood and largely unstudied. Here, we explore the ecological and evolutionary factors that promote speciation in Desmognathus and Plethodon salamanders from temperate eastern North America. Based on published molecular phylogenetic estimates and the degree of geographic range overlap among extant species, we find strong evidence for a role for geographic isolation in speciation. We then examine the relationship between climatic variation and speciation in 16 sister-taxon pairs using geographic information system maps of climatic variables, new methods for modeling species' potential geographic distributions, and data on geographic patterns of genetic variation. In contrast to recent studies in tropical montane regions, we found no evidence for parapatric speciation along climatic gradients. Instead, many montane sister taxa in the Appalachian Highlands inhabit similar climatic niches and seemingly are allopatric because they are unable to tolerate the climatic conditions in the intervening lowlands. This temporal and spatial-ecological pattern suggests that niche conservatism, rather than niche divergence, plays the primary role in promoting allopatric speciation and montane endemism in this species-rich group of vertebrates. Our results demonstrate that even the relatively subtle climatic differences between montane and lowland habitats in eastern North America may play a key role in the origin of new species.  相似文献   

18.
Gene flow is thought to impede genetic divergence and speciation by homogenizing genomes. Recent theory and research suggest that sufficiently strong divergent selection can overpower gene flow, leading to loci that are highly differentiated compared to others. However, there are also alternative explanations for this pattern. Independent evidence that loci in highly differentiated regions are under divergent selection would allow these explanations to be distinguished, but such evidence is scarce. Here, we present multiple lines of evidence that many of the highly divergent SNPs in a pair of sister morning glory species, Ipomoea cordatotriloba and I. lacunosa, are the result of divergent selection in the face of gene flow. We analysed a SNP data set across the genome to assess the amount of gene flow, resistance to introgression and patterns of selection on loci resistant to introgression. We show that differentiation between the two species is much lower in sympatry than in allopatry, consistent with interspecific gene flow in sympatry. Gene flow appears to be substantially greater from I. lacunosa to I. cordatotriloba than in the reverse direction, resulting in sympatric and allopatric I. cordatotriloba being substantially more different than sympatric and allopatric I. lacunosa. Many SNPs highly differentiated in allopatry have experienced divergent selection, and, despite gene flow in sympatry, resist homogenization in sympatry. Finally, five out of eight floral and inflorescence characteristics measured exhibit asymmetric convergence in sympatry. Consistent with the pattern of gene flow, I. cordatotriloba traits become much more like those of I. lacunosa than the reverse. Our investigation reveals the complex interplay between selection and gene flow that can occur during the early stages of speciation.  相似文献   

19.
Island radiations have played a major role in shaping our current understanding of allopatric, sympatric and parapatric speciation. However, the fact that species divergence correlates with island size emphasizes the importance of geographic isolation (allopatry) in speciation. Based on molecular and morphological data, we investigated the diversification of the land snail genus Theba on the two Canary Islands of Lanzarote and Fuerteventura. Due to the geological history of both islands, this study system provides ideal conditions to investigate the interplay of biogeography, dispersal ability and differentiation in generating species diversity. Our analyses demonstrated extensive cryptic diversification of Theba on these islands, probably driven mainly by non-adaptive allopatric differentiation and secondary gene flow. In a few cases, we observed a complete absence of gene flow among sympatrically distributed forms suggesting an advanced stage of speciation. On the Jandía peninsula genome scans suggested genotype-environment associations and potentially adaptive diversification of two closely related Theba species to different ecological environments. We found support for the idea that genetic differentiation was enhanced by divergent selection in different environments. The diversification of Theba on both islands is therefore best explained by a mixture of non-adaptive and adaptive speciation, promoted by ecological and geomorphological factors.  相似文献   

20.
Islands are bounded areas where high endemism is explained either by allopatric speciation through the fragmentation of the limited amount of space available, or by sympatric speciation and accumulation of daughter species. Most empirical evidence point out the dominant action of allopatric speciation. We evaluate this general view by looking at a case study where sympatric speciation is suspected. We analyse the mode, tempo and geography of speciation in Agnotecous, a cricket genus endemic to New Caledonia showing a generalized pattern of sympatry between species making sympatric speciation plausible. We obtained five mitochondrial and five nuclear markers (6.8 kb) from 37 taxa corresponding to 17 of the 21 known extant species of Agnotecous, and including several localities per species, and we conducted phylogenetic and dating analyses. Our results suggest that the diversification of Agnotecous occurred mostly through allopatric speciation in the last 10 Myr. Highly microendemic species are the most recent ones (<2 Myr) and current sympatry is due to secondary range expansion after allopatric speciation. Species distribution should then be viewed as a highly dynamic process and extreme microendemism only as a temporary situation. We discuss these results considering the influence of climatic changes combined with intricate soil diversity and mountain topography. A complex interplay between these factors could have permitted repeated speciation events and range expansion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号