首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A radioimmunoassay for myeloperoxidase was established with the use of affinity-purified anti-(human myeloperoxidase) immunoglobulins. By the use of ion-exchange followed by immunoaffinity chromatography a preparation of immunoreactive, catalytically active myeloperoxidase was obtained from fresh human plasma. In non-denaturing gel electrophoresis, the plasma preparation showed about four catalytically active components of mobility very similar to that of the granulocyte enzyme. SDS/polyacrylamide-gel electrophoresis combined with protein blotting showed that the two polypeptides of strongest antigenicity in the plasma preparation corresponded in Mr to the large and the small subunits of the granulocyte enzyme. In addition, the plasma preparation contained a higher-Mr immunoreactive polypeptide, possibly a precursor form of the enzyme, together with another of Mr similar to that of the large subunit of eosinophil peroxidase.  相似文献   

2.
Eosinophil peroxidase (donor:hydrogen peroxide oxidoreductase, EC 1.11.1.7) was isolated from outdated human white blood cells. The purified enzyme has a molecular weight of 71000 +/- 1000. The enzyme is composed of two subunits, of Mr 58000 and 14000, in a 1:1 stoichiometry. Amino-acid analyses showed that eosinophil peroxidase has a high content of the amino acids arginine, leucine and aspartic acid. The millimolar absorbance coefficient of the Soret band at 412 nm of eosinophil peroxidase was determined. Three independent methods yield a value for epsilon 412nm of 110 +/- 4 mm-1 X cm-1. Purified eosinophil peroxidase showed a homogeneous high-spin EPR signal with rhombic symmetry (gx = 6.50; gy = 5.40; gz = 1.982) for the haem group. EPR spectroscopy of low-spin cyanide and azide derivatives of eosinophil peroxidase, lactoperoxidase, myeloperoxidase and catalase revealed that the haem-ligand structure of eosinophil peroxidase is closely related to lactoperoxidase, whereas that of myeloperoxidase shows great resemblance to catalase.  相似文献   

3.
The rabbit Acrosome Stabilizing Factor (ASF) is a glycoprotein synthesized in the corpus epididymis that demonstrates the ability to reversibly decapacitate sperm. Separation of the molecule into its individual subunits (92,000 Da and 38,000 Da) was accomplished via electroelution from polyacrylamide gels or via gel filtration on a Sephadex G-200 column in the presence of 0.1% sodium dodecyl sulfate. Column separation of the subunits revealed an entity of low molecular mass (500 daltons) associated with the ASF molecule. Amino acid compositional analysis of the subunits revealed the lack of cysteine and high glycine in the small subunit (38,000 Da) and high proline and glycine in the large subunit (92,000 Da). Lysine and aspartic acid were identified as the N-terminal amino acids for the large and small subunits, respectively. Identification of a 20 amino acid N-terminal sequence was accomplished for both of the subunits. Carbohydrate compositional analysis demonstrated that the small subunit contained N-asparagine-linked high mannose sugar chains while the large subunit contained N-asparagine-linked complex sugar chains. Endoglycosidase-H and N-Glycanase treatment of ASF indicated that the small subunit appears to contain four high mannose chains and the large subunit contains three complex chains.  相似文献   

4.
The two subunits of the nickel-iron hydrogenase from Desulfovibrio gigas have been purified by preparative sodium dodecyl sulfate polyacrylamide gel electrophoresis and their amino acid compositions have been determined. The N-terminal sequences for 15 residues of the large subunit (Mr 62,000) and 25 residues of the small subunit (Mr 26,000), respectively, were established. The occurrence of several cysteine residues in the small subunit is discussed in relation with their possible role in the binding of the redox centers of the enzyme.  相似文献   

5.
Polyclonal, monospecific antibodies were produced against the two subunits (Mr 62,000, and Mr 31,000), isolated from the membrane-bound hydrogenase of Alcaligenes eutrophus H16. The antibodies (IgG fractions) were purified from crude sera by Protein A-Sepharose CL-4B chromatography. By double immunodiffusion assays and tandem-crossed immunoelectrophoresis the large and the small subunit were demonstrated not to be immunologically related. Immunological comparison of these subunits with the four non-identical subunits (Mr 63,000, 56,000, 30,000 and 26,000) of the NAD-linked, soluble hydrogenase from A. eutrophus H16 showed that the subunits of the membrane-bound hydrogenase did not cross-react with any of the antibodies raised against the four subunits of the NAD-linked enzyme and that, vice versa, none of these four subunits cross-reacted with antibodies raised against the two subunits of the membrane-bound hydrogenase. This means that A. eutrophus H16 contains altogether six non-identical immunologically unrelated hydrogenase polypeptides. The membrane-bound hydrogenases were isolated and purified from various aerobic H2-oxidizing bacteria: A. eutrophus H16, A. eutrophus type strain, A. eutrophus CH34, A. eutrophus Z1, A. hydrogenophilus, Paracoccus denitrificans and strain Cd2/01. All these proteins resembled each other and each consisted of two non-identical polypeptides. A complete separation of these subunits was achieved at high-yield by preparative FPLC gel filtration on three Superose 12 columns connected in series, using SDS and DTT-containing sodium phosphate buffer (pH 7.0). The small subunits of these enzymes turned out to be immunologically closely related to each other; they were either identical or almost identical. The large subunits were also related, but less pronounced. Only the large subunits from Z1 and type strain reacted fully identical with the H16 subunit. Of the two isolated, homogeneous subunits of the membrane-bound hydrogenase from A. eutrophus H16, the amino acid compositions and the NH2-terminal sequences have been determined. The results confirmed the diversity of the large and the small subunit. Furthermore, for comparison also the NH2-terminal sequences of the two subunits from the hydrogenase of A. eutrophus CH34 have been analysed.  相似文献   

6.
M Ikeda-Saito 《FEBS letters》1986,202(2):245-250
The molecular structure of the spleen green heme protein was reinvestigated by gel-permeation, SDS-polyacrylamide gel electrophoresis, and amino acid analysis. The results showed that the enzyme is a tetramer (Mr 1.5 X 10(5)) with two heavy subunits (Mr 6 X 10(4) with a single prosthetic group per subunit) and two light subunits (Mr 1.5 X 10(4)), and that the tetramer structure is maintained by disulfide bond(s). The amino acid composition of the spleen green heme protein is similar to that of granulocyte myeloperoxidase. The present results contradict the data of Davis and Averill [(1981) J. Biol. Chem. 256, 5992-5996], who reported the enzyme as a monomeric peroxidase with an Mr of 57 000.  相似文献   

7.
Regulatory (R) subunits and their association with catalytic subunits to form cAMP-dependent protein kinase holoenzymes were investigated in corpora lutea of pregnant rats. Following separation by DEAE-cellulose chromatography, R subunits were identified by labeling with 8-N3[32P]cAMP and autophosphorylation on one and two-dimensional gel electrophoresis and by reactivity with antisera. DEAE-cellulose elution of R subunits with catalytic subunits as holoenzymes or without catalytic subunits was determined by sedimentation characteristics on sucrose density gradient centrifugation and by cAMP-stimulated kinase activation characteristics on Eadie-Scatchard analysis. We identified the presence of a type I holoenzyme containing RI alpha (Mr 47,000) subunits, a prominent type II holoenzyme containing RII beta (Mr 52,000) subunits, and a second more acidic type II holoenzyme peak containing both RII beta and RII alpha (Mr 54,000) subunits. However, the majority of total R subunit activity was associated with a catalytic subunit-free peak of RI alpha protein which on elution from DEAE-cellulose was associated with cAMP. This report establishes the more basic elution position from DEAE-cellulose of the prominent rat luteal RII beta holoenzyme in very close proximity to free RI alpha and presents one of the few reports of a normal tissue containing a large percentage of catalytic subunit-free RI alpha.  相似文献   

8.
High-Ca2+-requiring calcium-activated neutral protease (mCANP), a dimeric enzyme composed of large (Mr = 80,000) and small (Mr = 28,000) subunits, is resistant to carboxypeptidase Y (CPase Y) in the absence of NaSCN. In the presence of 0.2 M NaSCN, CPase Y digested mCANP, one or two amino acids being released from the COOH-termini of the large and small subunits, but no change occurred in the activity of the digested mCANP. In the presence of 1 M NaSCN, 8-10 amino acids were released from the subunits by CPase Y, and the COOH-terminal potential Ca2+-binding sites of both subunits were destroyed. On digestion under these conditions, mCANP lost the ability to form a complex, and the proteolytic activity was not recovered even when the digested subunits were mixed with native subunits. These results suggest that the COOH-terminal regions of the two subunits of mCANP, which constitute the helical portions of the COOH-terminal E-F hand structures in both subunits, are essential for the subunit association and resulting proteolytic activity.  相似文献   

9.
Studies on the subunits of human myeloperoxidase.   总被引:4,自引:3,他引:1       下载免费PDF全文
The subunit composition of human myeloperoxidase was studied with the use of sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and gel filtration. The subunit pattern observed depended on the manner in which the enzyme was treated before analysis. Reduction before heat treatment in detergent led to two main protein species (Mr 57 000 and 10 500), whereas reduction during or after heat treatment yielded an additional species of Mr 39 000. Heating without any reductive pretreatment yielded the 39 000-Mr form as the major electrophoretic species. Carbohydrate staining showed large amounts of sugar on the 57 000-Mr species and little on the 10 500-Mr form. Significant amounts of haem were associated with this latter subunit. Haem also seemed to be associated with the 57 000-Mr form but not with the 39 000-Mr one. These three subunit forms were isolated and their amino acid composition analysed. The 57 000-Mr and 39 000-Mr forms had very similar amino acid composition and yielded an apparently identical collection of fragments on incubation with CNBr. Once separated, the subunits could not be interconverted. Generally, minor amounts of other molecular-mass forms were observed. The nature of the various molecular-mass forms originating from myeloperoxidase is discussed.  相似文献   

10.
A structural comparison between the A and B subunits of the five tetrameric Griffonia simplicifolia I isolectins (A4, A3B, A2B2, AB3, B4) was undertaken to determine the extent of homology between the subunits. The first 25 N-terminal amino acids of both A and B subunits were determined following the enzymatic removal of N-terminal pyroglutamate blocking groups with pyroglutamate aminopeptidase. Although 21 amino acids were common to both subunits, there were four unique amino acids in the N-terminal sequence of A and B. Residues 8, 9, 17, and 19 were asparagine, leucine, lysine, and asparagine in subunit A and threonine, phenylalanine, glutamic acid, and serine in subunit B. The last six C-terminal amino acids, released by digestion with carboxypeptidase Y, were the same for both subunits: Arg-(Phe, Val)-Leu-Thr-Ser-COOH. Subunit B, which contains one methionyl residue, was cleaved by cyanogen bromide into two fragments, a large (Mr = 31,000) and a small (Mr = 2700) polypeptide. Failure of the small fragment to undergo manual Edman degradation indicated an N-terminal blocking group, presumably pyroglutamate. Both subunits were digested with trypsin and the tryptic peptides were analyzed using reverse-phase HPLC. Tryptic glycopeptides were identified by labeling the carbohydrate moiety of the A and B subunit using sodium [3H] borohydride. Cysteine-containing tryptic peptides were similarly identified by using [1-14C]iodoacetamide. Approximately 30% of the tryptic peptides were common to both subunits. Thus, although the N- and C-terminal regions of A and B are similar, the subunits each possess unique sequences.  相似文献   

11.
Two different forms of procarboxypeptidase A (I and II) were obtained from pig pancreas extracts. The Mr values, the pattern found on polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate, and the sedimentation coefficients indicate that form I is a binary complex formed by two different subunits, whereas form II is a monomer. The carboxypeptidase A-precursor subunit of form I and the form II monomer are very similar with respect to Mr value, amino acid composition and fragmentation by CNBr and iodosobenzoic acid. The activation process of both forms is unspecific with respect to the activating enzyme, the peptide released during activation is unusually long (Mr approx.sor subunit of form I and the form II monomer are very similar with respect to Mr value, amino acid composition and fragmentation by CNBr and iodosobenzoic acid. The activation process of both forms is unspecific with respect to the activating enzyme, the peptide released during activation is unusually long (Mr approx.sor subunit of form I and the form II monomer are very similar with respect to Mr value, amino acid composition and fragmentation by CNBr and iodosobenzoic acid. The activation process of both forms is unspecific with respect to the activating enzyme, the peptide released during activation is unusually long (Mr approx. 12500) and, in the case of the binary complex, the activation with trypsin follows a rather complex pattern, suggesting that the accompanying subunit of form I might play a modulating role in the activation process. Although the appearance of enzymic activity is rather slow, a protein with an Mr equivalent to that of active carboxypeptidase A is found very early in the activation process. Both zymogens are glycoproteins (so far no carbohydrate has been reported in any procarboxypeptidase A) and both contain two strongly bound Zn2+ ions/molecule. Other chemical and physical properties were also determined.  相似文献   

12.
The very late antigen complexes VLA-1 and VLA-2 which appear on long-term activated human T cells have been characterized with respect to 1) subunit arrangement, 2) location of monoclonal antibody (MAb) binding sites, 3) carbohydrate content, and 4) protein homology. Cross-linking experiments showed that the VLA-1 complex is a heterodimer composed of an Mr 210,000 subunit (alpha 1) in acid-labile association with an Mr 130,000 subunit (beta). The VLA-2 complex is a heterodimer with an Mr 165,000 subunit (alpha 2) in base-labile association with the Mr 130,000 beta subunit. The subunits of VLA-1 (alpha 1 beta) and VLA-2 (alpha 2 beta) each appear to be arranged with 1:1 stoichiometry. The MAb A-1A5 has been shown to bind to an epitope on the common beta subunit, consistent with its recognition of both the VLA-1 and VLA-2 heterodimers. On the other hand, MAb TS2/7 bound to an epitope of the alpha 1 subunit, thus explaining the specific recognition of the VLA-1 heterodimer by TS2/7. Digestion of the alpha 1, alpha 2, and beta subunits with neuraminidase and with endoglycosidase F revealed that each subunit contains substantial sialic acid and N-linked carbohydrate. By one-dimensional peptide mapping, the alpha 1, alpha 2, and beta subunits were shown to be highly nonhomologous with respect to each other, although each subunit from different T cell sources appeared highly homologous if not identical.  相似文献   

13.
Myeloperoxidase and eosinophil peroxidase were separated and purified from rat bone marrow cells using cetyltrimethylammonium bromide as the solubilizer and then with column chromatographies on CM-Sephadex C-50 and Con A-Sepharose. Both purified enzymes were observed to be apparently homogeneous by SDS-polyacrylamide gel electrophoresis. Myeloperoxidase consisted of two subunits of Mr 57,000 and 15,000, and eosinophil peroxidase two of 53,000 and 14,000. On structural analysis of the enzymes, their visual and ESR spectra revealed that the structure surrounding the heme in myeloperoxidase was different from that in eosinophil peroxidase. Moreover, substrate specificity and sensitivity to inhibitors such as azide and cyanide differed between the two enzymes. Rat bone marrow possesses two distinct peroxidases, myeloperoxidase and eosinophil peroxidase, which have different subunits and different heme microenvironments. Therefore, the difference in enzymatic function between the two peroxidases may be due to their structures.  相似文献   

14.
15.
Antibodies were raised against the large catalytic subunit (apparent Mr 96000) and the glycoprotein (apparent Mr 60000) of the sodium- and potassium-dependent adenosine triphosphatase [(Na+, K+)-ATPase] from Bufo marinus. The specificity of each antiserum was assessed by two-dimensional immunoelectrophoresis using toad kidney microsomes or the purified holoenzyme as a source of antigen and by indirect immunoprecipitation of detergent-solubilized (Na+, K+)-ATPase subunits from radioiodinated or biosynthetically labeled kidney holoenzyme, microsomes, or postnuclear supernatant. The anticatalytic subunit serum reacted exclusively with a 96000-dalton protein. The antiserum to the glycoprotein was rendered specific to this subunit by absorption with purified catalytic subunit. The two antisera were agglutinating and lytic in the presence of complement when toad erythrocytes were used as targets, indicating that antigenic determinants of both subunits were exposed on the cell surface. The specific reactivities with surface-exposed antigenic determinants of both subunits could be absorbed with toad red blood cells. Such absorbed antisera still reacted with detergent-treated or untreated kidney microsomes, revealing the presence of cytoplasmic and/or intramembranous antigenic sites. Our immunochemical data demonstrate that the glycoprotein subunit of (Na+, K+)-ATPase spans the lipid bilayer and confirm the transmembrane orientation of the catalytic subunit postulated from functional studies.  相似文献   

16.
The human plasma metallo-protease carboxypeptidase N of Mr 280,000 consists of two small, enzymatically active subunits of Mr 50,000 and two large subunits. Only the large subunits are glycosylated. They may have a function in stabilizing the complex in plasma. The N-terminal sequence of the small subunit was determined from the isolated protein and used to specify a unique 59-mer oligonucleotide probe. A cDNA clone of 1.7 kbp containing the entire coding sequence of the small subunit of carboxypeptidase N was isolated from a human-liver cDNA library. The cDNA clone encodes a signal sequence of 20 amino acids and the 438 amino acids of the mature subunit. There is a remarkable primary structure similarity of 49% to bovine carboxypeptidase E (enkephalin convertase). A more distant relationship to the bovine pancreatic, digestive carboxypeptidases A and B or even to the metallo-endopeptidases is based mainly on the occurrence of conserved, mechanistically important residues.  相似文献   

17.
Translation in vitro of mRNA and immunoprecipitation with specific rabbit antisera showed that the unglycosylated precursor polypeptides of the mouse Mac-1 and lymphocyte function associated antigen (LFA-1) alpha subunits are 130,000 Mr and 140,000 Mr, respectively. Furthermore, polysomes purified by using anti-Mac-1 IgG yielded a similar major product of translation in vitro of Mr = 130,000. The Mac-1 and LFA-1 alpha subunit translation products are immunologically noncross-reactive, showing that differences between these related proteins are not due to post-translational processing. Mac-1 and LFA-1 alpha subunits could only be in vitro translated from mRNA from cell lines the surfaces of which express the corresponding Mac-1 and LFA-1 alpha-beta complexes, showing tissue-specific expression is regulated at the mRNA level. The glycosylation of Mac-1 was examined by both translation in vitro in the presence of dog pancreas microsomes and by biosynthesis in vivo and treatment with tunicamycin, endoglycosidase H, and the deglycosylating agent trifluoromethane sulfonic acid. High mannose oligosaccharides are added to the Mac-1 alpha and beta polypeptide backbones of Mr = 130,000 and 72,000, respectively, to yield precursors of Mr = 164,000 and 91,000, respectively. The alpha and beta subunit precursors are then processed with partial conversion of high mannose to complex type carbohydrate to yield the mature subunits of Mr = 170,000 and 95,000, respectively.  相似文献   

18.
The Mr 10,000 phosphoprotein was purified from photosystem II particles by solubilization of the particles in 5% (w/v) dodecyl dimethylamine oxide, centrifugation in 10% (w/v) sucrose, and three chromatography steps. The purified phosphoprotein showed a unique NH2 terminus indicating a highly purified polypeptide. The amino acid sequence for the first nine residues is NH2-Ala-Thr-Gln-Thr-Val-Glu-Ser-Ser-Ser . . . COOH. The amino acid composition was determined and could also be used to help distinguish the polypeptide from other known thylakoid proteins. The sequence and composition data indicated that the Mr 10,000 phosphoprotein is neither the hydrophobic 8-kDa subunit of the energy coupling complex nor cytochrome b-559, but rather a unique, as yet unidentified, polypeptide associated with photosystem II.  相似文献   

19.
The atpA and atpB genes coding for the alpha and beta subunits, respectively, of membrane ATPase were cloned from a methanogen Methanosarcina barkeri, and the amino acid sequences of the two subunits were deduced from the nucleotide sequences. The methanogenic alpha (578 amino acid residues) and beta (459 amino acid residues) subunits were highly homologous to the large and small subunits, respectively, of vacuolar H+-ATPases; 52% of the residues of the methanogenic alpha subunit were identical with those of the large subunit of vacuolar enzyme of carrot or Neurospora crassa, respectively, and 59, 60, and 59% of the residues of the methanogenic beta subunit were identical with those of the small subunits of N. crassa, Arabidopsis thaliana, and Sacharomyces cerevisiae, respectively. The methanogenic subunits were also highly homologous to the corresponding subunits of Sulfolobus acidocaldarius ATPase. The methanogenic alpha and beta subunits showed 22 and 24% identities with the beta and the alpha subunits of Escherichia coli F1, respectively. Furthermore, important amino acid residues identified genetically in the E. coli enzyme were conserved in the methanogenic enzyme. This sequence conservation suggests that vacuolar, F1, methanogenic, and S. acidocaldarius ATPases were derived from a common ancestral enzyme.  相似文献   

20.
Two forms of protein phosphatase which dephosphorylate cardiac myosin or myosin light chains and the inhibitory subunit of cardiac troponin were purified from bovine cardiac muscle. The enzymes were composed of subunits of Mr = 63,000, 55,000, and 38,000 in a 1:1:1 molar ratio (PT-1) or Mr = 63,000 and 38,000 in a 1:1 molar ratio (PT-2). Native gel electrophoresis and sucrose gradient sedimentation indicated that activity toward all three substrates was due to a single enzyme species. A monoclonal antibody and polyclonal antiserum directed against an Mr = 38,000 protein phosphatase from this tissue specifically reacted with the Mr = 38,000 subunit of PT-1 and PT-2. The specificity of antibodies for the Mr = 38,000 subunit indicated that it was distinct from the other subunits. The Mr = 63,000 subunits of PT-1 and PT-2 were identical based on mobility on sodium dodecyl sulfate gels and one-dimensional peptide maps. Specificity of antiserum against the Mr = 55,000 subunit of PT-1 showed that this subunit was a distinct protein and not derived from the Mr = 63,000 subunit by proteolysis. PT-2 but not PT-1 could interact with antiserum against the Mr = 38,000 catalytic subunit in competitive immunoassays indicating that the presence of the Mr = 55,000 subunit may alter or mask antigenic site(s). Analysis of the enzymatic properties of PT-1 and PT-2 showed that PT-2 had higher activity with myosin, myosin light chains, and phosphorylase while PT-1 had higher activity with troponin. The results indicate that the presence of the Mr = 55,000 subunit may alter the enzymatic properties of the catalytic subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号