首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Three aspects of the involvement of tumor necrosis factor in human immunodeficiency virus (HIV) pathogenesis were examined. Tumor necrosis factor alpha (TNF-alpha) mRNA production was analyzed by polymerase chain reaction amplification in monocytic U937 cells and in a chronically HIV infected U937 cell line (U9-IIIB). TNF-alpha RNA was undetectable in U937 cells, whereas a low constitutive level was detected in U9-IIIB cells. Paramyxovirus infection induced a 5- to 10-fold increase in the steady-state level of TNF-alpha RNA in U9-IIIB cells compared with U937 cells, suggesting that HIV-infected monocytic cells produced higher levels of TNF-alpha than did normal cells after a secondary virus infection. The effects of TNF-alpha on gene expression were examined by transient expression assays using reporter chloramphenicol acetyltransferase plasmids linked to regulatory elements from the HIV long terminal repeat (LTR) and the beta interferon promoter. In U937 and Jurkat T lymphoid cells, the inducibility of the different hybrid promoters by TNF-alpha or phorbol ester varied in a cell type- and promoter context-specific manner; the levels of gene activity of NF-kappa B-containing plasmids correlated directly with induction of NF-kappa B DNA-binding activity. Although the intact beta interferon promoter was only weakly stimulated by phorbol ester or TNF-alpha, multimers of the PRDII NF-kappa B-binding domain were inducible by both agents. TNF-alpha was able to increase expression of the HIV LTR in T cells, but in monocytic cells, TNF-alpha did not induce the HIV LTR above a constitutive level of activity. This level of NF-kappa B-independent activity appears to be sufficient for virus multiplication, since TNF-alpha treatment had no effect on the kinetics of de novo HIV type 1 (HIV-1) infection and viral RNA production in U937 cells. However, in Jurkat cells, TNF-alpha dramatically enhanced the spread of HIV-1 through the cell population and increased viral RNA synthesis, indicating that in T cells HIV-1 multiplication was stimulated by TNF-alpha treatment.  相似文献   

5.
6.
7.
8.
艾滋病病毒 (Human immunodeficiency virus,HIV) 通过与靶细胞膜的融合感染宿主细胞,研究表明阻断HIV与受体靶分子的结合可以阻止HIV进入宿主细胞,抑制HIV病毒的感染。设计合成了一个包含CD4和CCR5与HIV-1结合的主要功能结构区,及Flt3-L和Mip-3α分子的融合基因,构建了2个融合基因的真核表达载体pABK-CKR5-CD4/Flt3L-Mip3α (pABK-HIV-MF) 和pABK-CKR5-CD4 (pABK-HIV-MT),在人胚肾293细胞中进行了表达。RT-PCR、细胞免疫荧光技术、ELISA和Western blotting检测结果表明融合基因在真核细胞中获得了正确的表达,这为进一步研究其对于HIV-1的拮抗并靶向树突状细胞 (DC) 清除研究奠定了基础。  相似文献   

9.
10.
11.
12.
13.
Integration of retroviral DNA into the host cell genome requires the interaction of retroviral integrase (IN) protein with the outer ends of both viral long terminal repeats (LTRs) to remove two nucleotides from the 3' ends (3' processing) and to join the 3' ends to newly created 5' ends in target DNA (strand transfer). We have purified the IN protein of human immunodeficiency virus type 1 (HIV-1) after production in Saccharomyces cerevisiae and found it to have many of the properties described for retroviral IN proteins. The protein performs both 3' processing and strand transfer reactions by using HIV-1 or HIV-2 attachment (att) site oligonucleotides. A highly conserved CA dinucleotide adjacent to the 3' processing site of HIV-1 is important for both the 3' processing and strand transfer reactions; however, it is not sufficient for full IN activity, since alteration of nucleotide sequences internal to the HIV-1 U5 CA also impairs IN function, and Moloney murine leukemia virus att site oligonucleotides are poor substrates for HIV-1 IN. When HIV-1 att sequences are positioned internally in an LTR-LTR circle junction substrate, HIV-1 IN fails to cleave the substrate preferentially at positions coinciding with correct 3' processing, implying a requirement for positioning att sites near DNA ends. The 2 bp normally located beyond the 3' CA in linear DNA are not essential for in vitro integration, since mutant oligonucleotides with single-stranded 3' or 5' extensions or with no residues beyond the CA dinucleotide are efficiently used. Selection of target sites is nonrandom when att site oligonucleotides are joined to each other in vitro. We modified an in vitro assay to distinguish oligonucleotides serving as the substrate for 3' processing and as the target for strand transfer. The modified assay demonstrates that nonrandom usage of target sites is dependent on the target oligonucleotide sequence and independent of the oligonucleotide used as the substrate for 3' processing.  相似文献   

14.
15.
Retroviral integrase catalyzes integration of double-stranded viral DNA into the host chromosome by a process that has become an attractive target for drug design. In the 3' processing reaction, two nucleotides are specifically cleaved from both 3' ends of viral DNA yielding a 5' phosphorylated dimer (pGT). The resulting recessed 3' hydroxy groups of adenosine provide the attachment sites to the host DNA in the strand transfer reaction. Here, we studied the effect of modified double-stranded oligonucleotides mimicking both the unprocessed (21-mer oligonucleotides) and 3' processed (19-mer oligonucleotides) U5 termini of proviral DNA on activities of HIV-1 integrase in vitro. The inhibitions of 3' processing and strand transfer reactions were studied using 21-mer oligonucleotides containing isopolar, nonisosteric, both conformationally flexible and restricted phosphonate internucleotide linkages between the conservative AG of the sequence CAGT, and using a 21-mer oligonucleotide containing 2'-fluoroarabinofuranosyladenine. All modified 21-mer oligonucleotides competitively inhibited both reactions mediated by HIV-1 integrase with nanomolar IC50 values. Our studies with 19-mer oligonucleotides showed that modifications of the 3' hydroxyl significantly reduced the strand transfer reaction. The inhibition of integrase with 19-mer oligonucleotides terminated by (S)-9-(3-hydroxy-2-phosphonomethoxypropyl)adenine, 9-(2-phosphonomethoxyethyl)adenine, and adenosine showed that proper orientation of the 3' OH group and the presence of the furanose ring of adenosine significantly influence the strand transfer reaction.  相似文献   

16.
17.
CXCR4-tropic (X4) variants are associated with faster disease progression than CCR5-tropic variants in HIV infection. We previously reported inhibition of CCR5 expression on U937 cells could protect the cells from HIV-1 infection. Here, we established recombinant adenoviruses containing anti-sense CXCR4 cDNA, to investigate its role in the protection of HIV entering into target cells. A fragment of 636 bp cDNA from CXCR4 mRNA was recombined into adenoviral vector and the recombinant adenovirus was obtained from AD-293 cells. The rates of CXCR4 expression on the MT4 cells infected with recombinant adenovirus were measured by FACS. The MT4 cells infected by recombinant adenovirus were challenged by T-tropic HIV-1 strains and then P24 antigen was assayed. The rate of expression of CXCR4 on MT4 cell infected with recombinant adenovirus was decreased from 42% to 1.12% at 24 h, and to 1.03%, 1.39%, and 1.23% at 48 h, 72 h and 10 days respectively. Compared with Ad-control cells, recombinant adenovirus infected MT4 cells produced much less P24 antigen after being challenged with HIV-1. Furthermore, the recombinant adenovirus had no effects on chemotactic activity and proliferation of the MT4 cells. In conclusion, recombinant adenoviruses containing anti-sense can inhibit CXCR4 expression and resist HIV-1 infection on MT4 cell lines.  相似文献   

18.
19.
20.
5'-Phosphites (5'-hydrogenphosphonates) of 2',3'-dideoxynucleosides (T, A, G, C) were synthesized and studied as inhibitors of human immunodeficiency virus type 1 (HIV-1) in MT4 and CEM13 cell cultures. It was shown that all 5'-phosphites effectively inhibit the production of viral antigens and protect cells from the cytotoxic effect of HIV infection. 5'-Phosphites were more active antiviral compounds than the corresponding nucleosides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号