首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The nature of the MgATP-dependent inactivator of 3-hydroxy-3-methylglutaryl coenzyme A reductase has been studied. Several observations suggest that reductase inactivator preparations from both microsomes and cytosol possess mevalonate kinase activity. (1) Reductase inactivator (reductase kinase) activity copurified with mevalonate kinase activity. (2) Inactivator activity was inhibited by geranyl pyrophosphate and farnesyl pyrophosphate, known to be potent inhibitors of mevalonate kinase. (3) Addition of an excess of mevalonate completely prevented inhibition of reductase activity. (4) Formation of phosphomevalonate fully accounted for the decreased amount of mevalonate formed in the presence of inactivator and MgATP. (5) When reductase activity was measured by NADPH oxidation, no inhibition was observed. Clearly, the presence of mevalonate kinase in reductase inactivator preparations can lead to misinterpretations concerning whether reductase activity is regulated by phosphorylation-dephosphorylation. In this paper, we present several methods and approaches which can be used to critically evaluate this possibility.  相似文献   

2.
The mevalonate pathway is utilized for the biosynthesis of isoprenoids in many bacterial, eukaryotic, and archaeal organisms. Based on previous reports of its feedback inhibition, mevalonate kinase (MVK) may play an important regulatory role in the biosynthesis of mevalonate pathway-derived compounds. Here we report the purification, kinetic characterization, and inhibition analysis of the MVK from the archaeon Methanosarcina mazei. The inhibition of the M. mazei MVK by the following metabolites derived from the mevalonate pathway was explored: dimethylallyl diphosphate (DMAPP), geranyl pyrophosphate (GPP), farnesyl pyrophosphate (FPP), isopentenyl monophosphate (IP), and diphosphomevalonate. M. mazei MVK was not inhibited by DMAPP, GPP, FPP, diphosphomevalonate, or IP, a proposed intermediate in an alternative isoprenoid pathway present in archaea. Our findings suggest that the M. mazei MVK represents a distinct class of mevalonate kinases that can be differentiated from previously characterized MVKs based on its inhibition profile.  相似文献   

3.
The syntheses of 6,7-dihydrogeraniol and of its pyrophosphate are described. It is shown that this analogue of geranyl pyrophosphate is a substrate for liver prenyltransferase and that the product synthesized by this enzyme from it and isopentenyl pyrophosphate is 10,11-dihydrofarnesyl pyrophosphate. The K(m) value for 6,7-dihydrogeranyl pyrophosphate was determined to be 1.11+/-0.19mum as compared with 4.34+/-1.71mum for geranyl pyrophosphate. The maximum reaction velocity with the artifical substrate was, however, only about one-fourth of that observed with geranyl pyrophosphate. The binding of isopentenyl pyrophosphate to the enzyme was not affected by the artificial substrate.  相似文献   

4.
Two enzymes of polyisoprenoid synthesis, 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase (mevalonate:NADP oxidoreductase [acylating CoA], EC 1.1.1.34) and mevalonate kinase (ATP:mevalonate 5-phosphotransferase, EC 2.7.1.36), are present in the microsomal and soluble fractions of Neurospora crassa, respectively. HMG CoA reductase specifically uses NADPH as reductant and has a K(m) for dl-HMG CoA of 30 micro M. The activities of HMG CoA reductase and mevalonate kinase are low in conidia and increase threefold during the first 12 hr of stationary growth. Maximum specific activities of both enzymes occur when aerial hyphae and conidia first appear (2 days), but total activities peak later (3-4 days). Addition to the growth media of ergosterol or beta-carotene, alone or in combination, does not affect the specific or total activity of either enzyme. The mevalonate kinase of N. crassa, purified 200-fold to a specific activity of 5 micro moles/min/mg, is free from HMG CoA reductase, phosphomevalonate kinase, ATPase, adenylate kinase, and NADH oxidase activities. Mevalonate kinase specifically requires ATP as cosubstrate and exhibits a marked preference for Mg(2+) over Mn(2+), especially at high ratios of divalent metal ion to ATP. Kinase activity is inhibited by p-hydroxymercuribenzoate, and this inhibition is partially prevented by mevalonate or MgATP. Optimum activity occurs at pH 8.0-8.5 and at about 55 degrees C. The Neurospora kinase, like that of hog liver, has a sequential mechanism for substrate addition. The Michaelis constants obtained were 2.8 mM for dl-mevalonate and 1.8 mM for MgATP(-2). Geranyl pyrophosphate is an inhibitor competitive with MgATP (K(i) = 0.11 mM).  相似文献   

5.
B C Reed  H C Rilling 《Biochemistry》1976,15(17):3739-3745
Prenyltransferase (farnesyl pyrophosphate synthetase) was purified from avian liver and characterized by Sephadex and sodium dodecyl sulfate gel chromatography, peptide mapping, and end-group analysis. The enzyme is 85 800 +/- 4280 daltons and consists of two identical subunits as judged by sodium dodecyl sulfate gel electrophoresis, peptide mapping, and end-group analysis. Chemical analysis of the protein revealed no lipid or carbohydrate components. Avian prenyltransferase synthesizes farnesyl pyrophosphate from either dimethylallyl or geranyl pyrophosphate and isopentenyl pyrophosphate. A lower rate of geranylgeranyl pyrophosphate synthesis from farnesyl pyrophosphate and isopentenyl pyrophosphate was also demonstrated. Michaelis constants for farnesyl pyrophosphate synthesis are 0.5 muM for both isopentenyl pyrophosphate and geranyl pyrophosphate. The V max for the reaction is 1990 nmol min-1 mg-1 (170 mol min-1 mol-1 enzyme). Substrate inhibition by isopentenyl pyrophosphate is evident at high isopentenyl pyrophosphate and low geranyl pyrophosphate concentrations. Michaelis constants for geranylgeranyl pyrophosphate synthesis are 9 muM for farnesyl pyrophosphate and 20 muM for isopentenyl pyrophosphate. The Vmax is 16 nmol min-1 mg-1 (1.4 mol min-1 mol-1 enzyme). Two moles of each of the allylic substrates is bound per mol of enzyme. The apparent dissociation constants for dimethylallyl, geranyl, and farnesyl pyrophosphates are 1.8, 0.17, and 0.73 muM, respectively. Dimethylallyl and geranyl pyrophosphates bound competitively to prenyltransferase with one-for-one displacement. Four moles of isopentenyl pyrophosphate was bound per mole of enzyme. Citronellyl pyrophosphate, an analogue of geranyl pyrophosphate, was competitive with the binding of 2 of the 4 mol of isopentenyl pyrophosphate bound. The data are interpreted to indicate that each subunit of avian liver prenyltransferase has a single allylic binding site accommodating dimethylallyl, geranyl, and farnesyl pyrophosphates, and one binding site for isopentenyl pyrophosphate. In the absence of an allylic pyrophosphate or analogue, isopentenyl pyrophosphate also can bind to the allylic site.  相似文献   

6.
Regulation of heart muscle pyruvate dehydrogenase kinase   总被引:31,自引:25,他引:6       下载免费PDF全文
1. The activity of pig heart pyruvate dehydrogenase kinase was assayed by the incorporation of [(32)P]phosphate from [gamma-(32)P]ATP into the dehydrogenase complex. There was a very close correlation between this incorporation and the loss of pyruvate dehydrogenase activity with all preparations studied. 2. Nucleoside triphosphates other than ATP (at 100mum) and cyclic 3':5'-nucleotides (at 10mum) had no significant effect on kinase activity. 3. The K(m) for thiamin pyrophosphate in the pyruvate dehydrogenase reaction was 0.76mum. Sodium pyrophosphate, adenylyl imidodiphosphate, ADP and GTP were competitive inhibitors against thiamin pyrophosphate in the dehydrogenase reaction. 4. The K(m) for ATP of the intrinsic kinase assayed in three preparations of pig heart pyruvate dehydrogenase was in the range 13.9-25.4mum. Inhibition by ADP and adenylyl imidodiphosphate was predominantly competitive, but there was nevertheless a definite non-competitive element. Thiamin pyrophosphate and sodium pyrophosphate were uncompetitive inhibitors against ATP. It is suggested that ADP and adenylyl imidodiphosphate inhibit the kinase mainly by binding to the ATP site and that the adenosine moiety may be involved in this binding. It is suggested that thiamin pyrophosphate, sodium pyrophosphate, adenylyl imidodiphosphate and ADP may inhibit the kinase by binding through pyrophosphate or imidodiphosphate moieties at some site other than the ATP site. It is not known whether this is the coenzyme-binding site in the pyruvate dehydrogenase reaction. 5. The K(m) for pyruvate in the pyruvate dehydrogenase reaction was 35.5mum. 2-Oxobutyrate and 3-hydroxypyruvate but not glyoxylate were also substrates; all three compounds inhibited pyruvate oxidation. 6. In preparations of pig heart pyruvate dehydrogenase free of thiamin pyrophosphate, pyruvate inhibited the kinase reaction at all concentrations in the range 25-500mum. The inhibition was uncompetitive. In the presence of thiamin pyrophosphate (endogenous or added at 2 or 10mum) the kinase activity was enhanced by low concentrations of pyruvate (25-100mum) and inhibited by a high concentration (500mum). Activation of the kinase reaction was not seen when sodium pyrophosphate was substituted for thiamin pyrophosphate. 7. Under the conditions of the kinase assay, pig heart pyruvate dehydrogenase forms (14)CO(2) from [1-(14)C]pyruvate in the presence of thiamin pyrophosphate. Previous work suggests that the products may include acetoin. Acetoin activated the kinase reaction in the presence of thiamin pyrophosphate but not with sodium pyrophosphate. It is suggested that acetoin formation may contribute to activation of the kinase reaction by low pyruvate concentrations in the presence of thiamin pyrophosphate. 8. Pyruvate effected the conversion of pyruvate dehydrogenase phosphate into pyruvate dehydrogenase in rat heart mitochondria incubated with 5mm-2-oxoglutarate and 0.5mm-l-malate as respiratory substrates. It is suggested that this effect of pyruvate is due to inhibition of the pyruvate dehydrogenase kinase reaction in the mitochondrion. 9. Pyruvate dehydrogenase kinase activity was inhibited by high concentrations of Mg(2+) (15mm) and by Ca(2+) (10nm-10mum) at low Mg(2+) (0.15mm) but not at high Mg(2+) (15mm).  相似文献   

7.
Sites of control of hepatic cholesterol biosynthesis   总被引:9,自引:0,他引:9  
An inhibition in the conversion of mevalonate to cholesterol has been demonstrated in liver of cholesterol-fed rats by both in vitro and in vivo methods. Synthesis decreased to 30% of the control value after 1 week and 20% after 1 month on a 1% cholesterol diet. After a year, synthesis from mevalonate was almost completely inhibited. The rate of conversion of squalene to cholesterol was not consistently decreased but that of farnesyl pyrophosphate to cholesterol was decreased considerably. The rate of conversion of mevalonate to farnesyl pyrophosphate by a soluble liver enzyme preparation was also decreased in cholesterol-fed animals. Sites of inhibition of cholesterol synthesis were detected before mevalonate, between mevalonate and farnesyl pyrophosphate, and after farnesyl pyrophosphate, probably at the conversion of farnesyl pyrophosphate to squalene. The inhibition of mevalonate conversion to cholesterol developed more slowly than that of acetate and appeared to be secondary to it. The maximum capacities of normal liver homogenates and slices to synthesize cholesterol from mevalonate were shown to be far greater than from acetate. Consequently, sites of inhibition after mevalonate probably do not have a significant effect on the over-all rate of cholesterol synthesis in the intact cholesterol-fed animal.  相似文献   

8.
1. The development of the total rat brain creatine kinase was studied in brain homogenates. Until approx. 14-15 days after birth, the activity remains less than one-third that of the adult activity (207+/-6 units/g wet wt. s.d.; n=3). Over the next 10 days the activity increases markedly to the adult value and thereafter remains essentially constant. 2. In the adult brain, approx. 5% (11.9+/-2.2 units/g wet wt. s.d.; n=5) of the total creatine kinase is associated with the mitochondrial fraction. This creatine kinase could not be solubilized by sodium acetate solutions of up to 0.8m concentration, whereas 66% of the hexokinase associated with brain mitochondria was released under these conditions. 3. Rat brain mitochondria incubated in the presence of various concentrations of creatine (1, 5 and 10mm) and ADP (100mum) synthesized phosphocreatine at rates of approx. 4.5, 11 and 17.5nmol/min per mg of mitochondrial protein. Atractyloside (50mum) or oligomycin (1.5mug/mg of mitochondrial protein) completely inhibited the synthesis of phosphocreatine. 4. The apparent K(m) and V(max.) values of the mitochondrially bound rat brain creatine kinase were determined in both directions. The V(max.) in the direction of phosphocreatine synthesis is 237nmol/min per mg of mitochondrial protein, with an apparent K(m) for creatine of 1.67mm and for MgATP(2-) of 0.1mm, and in the reverse direction V(max.) is 489nmol/min per mg of mitochondrial protein, with an apparent K(m) for phosphocreatine of 0.4mm and for MgADP(-) of 27mum. 5. The results are discussed with reference to the role that the mitochondrially bound creatine kinase may play in the development of brain energy metabolism.  相似文献   

9.
The biochemical mechanism(s) by which Nm23 proteins/nucleoside diphosphate kinases suppress tumor metastasis, inhibit cell motility, and affect cellular differentiation are not known. Here we report that Nm23 proteins can phosphorylate geranyl and farnesyl pyrophosphates to give triphosphates. Wild type Nm23-H1 had higher geranyl and farnesyl pyrophosphate kinase activities than did mutants of Nm23-H1 that do not inhibit cell motility. The phosphorylation of farnesyl pyrophosphate appears to occur in vivo as cells with an elevated level of Nm23-H1 contained more farnesyl triphosphate than did control cells. To our knowledge, this is the first report that farnesyl triphosphate exists in cells. The phosphorylation of farnesyl pyrophosphate by Nm23 proteins could alter isoprenoid metabolism, and cells with an elevated level of Nm23 proteins were found to contain more farnesylated 46- and 24-kDa proteins than did control cells. The phosphorylation of geranyl and farnesyl pyrophosphates by Nm23 proteins provides a novel mechanism by which these proteins might exert their biological effects.  相似文献   

10.
11.
It has been proposed that isoprenoid biosynthesis in several gram-positive cocci depends on the mevalonate pathway for conversion of acetyl coenzyme A to isopentenyl diphosphate. Mevalonate kinase catalyzes a key reaction in this pathway. In this study the enzyme from Staphylococcus aureus was expressed in Escherichia coli, isolated in a highly purified form, and characterized. The overall amino acid sequence of this enzyme was very heterologous compared with the sequences of eukaryotic mevalonate kinases. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and analytical gel filtration chromatography suggested that the native enzyme is a monomer with a molecular mass of approximately 33 kDa. The specific activity was 12 U/mg, and the pH optimum was 7.0 to 8.5. The apparent K(m) values for R,S-mevalonate and ATP were 41 and 339 micro M, respectively. There was substantial substrate inhibition at millimolar levels of mevalonate. The sensitivity to feedback inhibition by farnesyl diphosphate and its sulfur-containing analog, farnesyl thiodiphosphate, was characterized. These compounds were competitive inhibitors with respect to ATP; the K(i) values were 46 and 45 micro M for farnesyl diphosphate and its thio analog, respectively. Parallel measurements with heterologous eukaryotic mevalonate kinases indicated that S. aureus mevalonate kinase is much less sensitive to feedback inhibition (K(i) difference, 3 orders of magnitude) than the human enzyme. In contrast, both enzymes tightly bound trinitrophenyl-ATP, a fluorescent substrate analog, suggesting that there are similarities in structural features that are important for catalytic function.  相似文献   

12.
Farnesyl pyrophosphate synthetase from Bacillus subtilis   总被引:3,自引:0,他引:3  
Farnesyl pyrophosphate synthetase was detected in extracts of Bacillus subtilis and partially purified by Sephadex G-100, hydroxylapatite, and DEAE-Sephadex chromatography. The enzyme catalyzed the exclusive formation of all-trans farnesyl pyrophosphate from isopentenyl pyrophosphate and either dimethylallyl or geranyl pyrophosphate. Mg2+ was essential for the catalytic activity and Mn2+ was less effective. The enzyme was slightly activated by sulfhydryl reagents. This enzyme was markedly stimulated by K+, NH4+, or detergents such as Triton X-100 and Tween 80, unlike the known farnesyl pyrophosphate synthetases from eucaryotes. The molecular weight of the enzyme was estimated by gel filtration to be 67,000. The Michaelis constants for dimethylallyl and geranyl pyrophosphate were 50 microM and 18 microM, respectively.  相似文献   

13.
Mevalonate kinase (MK), which catalyzes a key reaction in polyisoprenoid and sterol metabolism in many organisms, is subject to feedback regulation by farnesyl diphosphate and related compounds. The structures of human mevalonate kinase and a binary complex of the rat enzyme incubated with farnesyl thiodiphosphate (FSPP) are reported. Significant FSPP hydrolysis occurs under crystallization conditions; this results in detection of farnesyl thiophosphate (FSP) in the structure of the binary complex. Farnesyl thiodiphosphate competes with substrate ATP to produce feedback inhibition of mevalonate kinase. The binding sites for these metabolites overlap, with the phosphate of FSP nearly superimposed on ATP's beta-phosphate and FSP's polyisoprenoid chain overlapping ATP's adenosine moiety. Several hydrophobic amino acid side chains are positioned near the polyisoprenoid chain of FSP and their functional significance has been evaluated in mutagenesis experiments with human MK, which exhibits the highest reported sensitivity to feedback inhibition. Results suggest that single and double mutations at T104 and I196 produce a significant inflation of the K(i) for FSPP (approximately 40-fold for T104A/I196A). Such an effect persists when K(i) values are normalized for effects on the K(m) for ATP, suggesting that it may be possible to engineer MK proteins with altered sensitivity to feedback inhibition. Comparison of animal MK protein alignments and structures with those of a MK protein from Streptococcus pneumoniae indicates that sequence differences between N- and C-terminal domains correlate with differences in interdomain angles. Bacterial MK proteins exhibit more solvent exposure of feedback inhibitor binding sites and, consequently, weaker binding of these inhibitors.  相似文献   

14.
Cell-free homogenates from sage (Salvia officinalis) leaves convert dimethylallyl pyrophosphate and isopentenyl pyrophosphate to a mixture of geranyl pyrophosphate, farnesyl pyrophosphate, and geranylgeranyl pyrophosphate, with farnesyl pyrophosphate predominating. These prenyltransferase activities were localized primarily in the soluble enzyme fraction, and separation of this preparation on Sephadex G-150 revealed the presence of a partially resolved, labile geranyl pyrophosphate synthase activity. The product of the condensation reaction between [1-14C]dimethylallyl pyrophosphate and [1-3H]isopentenyl pyrophosphate was verified as [14C,1-3H]geranyl pyrophosphate by TLC isolation, enzymatic hydrolysis to geraniol, degradative studies, and the preparation of the crystalline diphenylurethane. The cis-isomer, neryl pyrophosphate, was not a product of the enzymatic reaction. By employing a selective tissue extraction procedure, the geranyl pyrophosphate synthase activity was localized in the leaf epidermal glands, the site of monoterpene biosynthesis, suggesting that the role of this enzyme is to supply the C10 precursor for the production of monoterpenes. Glandular extracts enriched in geranyl pyrophosphate synthase were partially purified by a combination of hydrophobic interaction chromatography on phenyl-Sepharose and gel permeation chromatography on Sephadex G-150. Substrate and product specificity studies confirmed the selective synthesis of geranyl pyrophosphate by this enzyme, which was also characterized with respect to molecular weight, pH optimum, cation requirement, inhibitors, and kinetic parameters, and shown to resemble other prenyltransferases.  相似文献   

15.
1. The purine bases adenine, hypoxanthine and guanine were rapidly incorporated into the nucleotide fraction of Ehrlich ascites-tumour cells in vivo. 2. The reaction of 5'-phosphoribosyl pyrophosphate with adenine phosphoribosyltransferase from ascites-tumour cells (K(m) 6.5-11.9mum) was competitively inhibited by AMP, ADP, ATP and GMP (K(i) 7.5, 21.9, 395 and 118mum respectively). Similarly the reactions of 5'-phosphoribosyl pyrophosphate with both hypoxanthine phosphoribosyltransferase and guanine phosphoribosyltransferase (K(m) 18.4-31 and 37.6-44.2mum respectively) were competitively inhibited by IMP (K(i) 52 and 63.5mum) and by GMP (K(i) 36.5 and 5.9mum). 3. The nucleotides tested as inhibitors did not appreciably compete with the purine bases in the phosphoribosyltransferase reactions. 4. It was postulated that the purine phosphoribosyltransferases of Ehrlich ascites-tumour cells may be effectively separated from the adenine nucleotide pool of these cells.  相似文献   

16.
Leucoplasts of immature calamondin and satsuma fruits were incubated with [1-14C] isopentenyl pyrophosphate under various conditions. Optimal incorporation of the tracer into geranyl pyrophosphate and monoterpene hydrocarbons occurred in the presence of exogenous dimethylallyl pyrophosphate and Mn2+ which was more effective than Mg2+. The dependence of dimethylallyl pyrophosphate showed that about 10 moles were required for 1 mole of isopentenyl pyrophosphate for the best recovery in monoterpene hydrocarbon biosynthesis. A time-course incorporation of isopentenyl pyrophosphate revealed that the C10 hydrocarbon elaboration was dependent on the geranyl pyrophosphate production and at no time neryl pyrophosphate was synthesized by leucoplasts. The amount of labelled farnesyl pyrophosphate was rather low whatever the conditions used in the experiments and sesquiterpene hydrocarbon biosynthesis was never observed.Abbreviations DMAPP dimethylallyl pyrophosphate - FPP farnesyl pyrophosphate - GPP geranyl pyrophosphate - IPP isopentenyl pyrophosphate - LPP linalyl pyrophosphate - NPP neryl pyrophosphate  相似文献   

17.
The enzyme catalysing the synthesis of farnesyl pyrophosphate from dimethylallyl pyrophosphate and isopentenyl pyrophosphate, or from geranyl pyrophosphate and isopentenyl pyrophosphate, has been purified 100-fold from homogenates of pig liver. The enzyme has optimum pH 7.9 and requires Mg(2+) as activator in preference to Mn(2+); it is inhibited by iodoacetamide, N-ethylmaleimide, p-hydroxymercuribenzoate and phosphate ions in addition to the products of the reaction, inorganic pyrophosphate and farnesyl pyrophosphate. From product-inhibition studies of the geranyltransferase reaction, the order of addition of substrates to and release of products from the enzyme has been deduced: geranyl pyrophosphate combines with the enzyme first, followed by isopentenyl pyrophosphate. Farnesyl pyrophosphate dissociates from the enzyme before inorganic pyrophosphate. The existence of isopentenyl pyrophosphate isomerase in liver is confirmed. Methods for the preparation of the pyrophosphate esters of isopentenol, 3,3-dimethylallyl alcohol, geraniol and farnesol are also described.  相似文献   

18.
The mechanism of inhibition of yeast mitochondrial F(1)-ATPase by its natural regulatory peptide, IF1, was investigated by correlating the rate of inhibition by IF1 with the nucleotide occupancy of the catalytic sites. Nucleotide occupancy of the catalytic sites was probed by fluorescence quenching of a tryptophan, which was engineered in the catalytic site (beta-Y345W). Fluorescence quenching of a beta-Trp(345) indicates that the binding of MgADP to F(1) can be described as 3 binding sites with dissociation constants of K(d)(1) = 10 +/- 2 nm, K(d2) = 0.22 +/- 0.03 microm, and K(d3) = 16.3 +/- 0.2 microm. In addition, the ATPase activity of the beta-Trp(345) enzyme followed simple Michaelis-Menten kinetics with a corresponding K(m) of 55 microm. Values for the K(d) for MgATP were estimated and indicate that the K(m) (55 microm) for ATP hydrolysis corresponds to filling the third catalytic site on F(1). IF1 binds very slowly to F(1)-ATPase depleted of nucleotides and under unisite conditions. The rate of inhibition by IF1 increased with increasing concentration of MgATP to about 50 mum, but decreased thereafter. The rate of inhibition was half-maximal at 5 microm MgATP, which is 10-fold lower than the K(m) for ATPase. The variations of the rate of IF1 binding are related to changes in the conformation of the IF1 binding site during the catalytic reaction cycle of ATP hydrolysis. A model is proposed that suggests that IF1 binds rapidly, but loosely to F(1) with two or three catalytic sites filled, and is then locked in the enzyme during catalytic hydrolysis of ATP.  相似文献   

19.
Isopentenyl pyrophosphate isomerase, farnesyl pyrophosphate synthetase, and geranylgeranyl pyrophosphate synthetase were detected in cell-free extracts of Bombyx mori and were partially purified by hydroxyapatite and Sephadex G-100 chromatography. Two forms of farnesyl pyrophosphate synthetase were chromatographically separated. They were designated as farnesyl pyrophosphate synthetases I and II in the order of their elution from hydroxyapatite. Both enzymes catalyzed the exclusive formation of (E,E)-farnesyl pyrophosphate from isopentenyl pyrophosphate and either dimethylallyl pyrophosphate or geranyl pyrophosphate. However, they were not interconvertible, unlike the enzyme from pig liver. These two enzymes resembled each other in pH optima and molecular weights but differed in susceptibility to metal ions. Farnesyl pyrophosphate synthetase II was stimulated by Triton X-100 while synthetase I was inhibited by the same reagent.  相似文献   

20.
An improved procedure for the purification of pig liver mevalonate kinase (ATP:mevalonate 5-phosphotransferase, EC 2.7.1.36) is described. A high-voltage electrophoresis assay was developed for mevalonate kinase. The procedure separates mevalonate from phosphomevalonate and also from diphosphomevalonate so that it can be used to measure the subsequent enzyme, phosphomevalonate kinase (EC 2.7.4.2). The assay has allowed the reassessment of the metal ion and nucleotide specificity of the pig liver enzyme. Some of the previously reported properties reflected those of the enzymes in the coupling assay rather than mevalonate kinase itself. A series of compounds were tested as activators or inhibitors of mevalonate kinase. It was found that ATP4-, arsenate and, to a smaller extent, inorganic phosphate activated the enzyme. At fixed MgATP2- (1 mM) concentrations the activation of mevalonate kinase by free ATP4- at pH 8.0 was observed at concentrations at up to 10-fold that of MgATP2- before causing any inhibition. The presence of free ATP4- resulted in a biphasic Lineweaver-Burke plot with apparent Km values for MgATP2- being 0.14 mM and 60 microM, respectively. Fluorescence measurements were consistent with the notion that the binding of excess ATP4- to the enzyme caused a conformational change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号