首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
CIITA and MHC class II expression is silenced during the differentiation of B cells to plasma cells. When B cell differentiation is carried out ex vivo, CIITA silencing occurs rapidly, but the factors contributing to this event are not known. ZBTB32, also known as repressor of GATA3, was identified as an early repressor of CIITA in an ex vivo plasma cell differentiation model. ZBTB32 activity occurred at a time when B lymphocyte-induced maturation protein-1 (Blimp-1), the regulator of plasma cell fate and suppressor of CIITA, was minimally induced. Ectopic expression of ZBTB32 suppressed CIITA and I-A gene expression in B cells. Short hairpin RNA depletion of ZBTB32 in a plasma cell line resulted in re-expression of CIITA and I-A. Compared with conditional Blimp-1 knockout and wild-type B cells, B cells from ZBTB32/ROG-knockout mice displayed delayed kinetics in silencing CIITA during ex vivo plasma cell differentiation. ZBTB32 was found to bind to the CIITA gene, suggesting that ZBTB32 directly regulates CIITA. Lastly, ZBTB32 and Blimp-1 coimmunoprecipitated, suggesting that the two repressors may ultimately function together to silence CIITA expression. These results introduce ZBTB32 as a novel regulator of MHC-II gene expression and a potential regulatory partner of Blimp-1 in repressing gene expression.  相似文献   

6.
beta-Catenin is a central mediator of Wnt signaling pathway, components of which have been implicated in B cell development and function. B cell progenitors and bone marrow stromal cells express Wnt ligands, Frizzled receptors and Wnt antagonists, suggesting fine tuned regulation of this pathway in B cell development. In particular, deletion of Frizzled 9 gene results in developmental defects at the pre-B stage of development and an accumulation of plasma cells. Furthermore, Wnt signals regulate B cell proliferation through lymphocyte enhancer-binding factor-1. However, it is not known whether Wnt signaling in B cell development is mediated by beta-catenin and whether beta-catenin plays a role in mature B cell function. In this report, we show that mice bearing B cell-specific deletion of beta-catenin have normal B cell development in bone marrow and periphery. A modest defect in plasma cell generation in vitro was documented, which correlated with a defective expression of IRF-4 and Blimp-1. However, B cell response to T-dependent and T-independent Ags in vivo was found to be normal. Thus, beta-catenin expression was found to be dispensable for normal B cell development and function.  相似文献   

7.
8.
9.
Blimp-1 is a master regulator of terminal B cell differentiation and plays a pivotal role in various developmental processes. In addition to full length Blimp-1, a Blimp-1 mRNA lacking exon 7 (Blimp-1Δ7) has been described to occur in murine B cells. The activity and function of the mutant mRNA-encoded protein (Blimp-1Δ7), lacking three crucial zinc fingers necessary for DNA interaction, is completely unknown. Since isoforms of other prdm family proteins affect each other's functions, we wondered whether Blimp-1Δ7 still plays a role in B cells, independent of direct DNA binding. In this study, we found that Blimp-1Δ7 is preferentially expressed in naïve CD19+ B cells. A fraction of Blimp-1Δ7 migrates to the nucleus, colocalizes with HDAC2 and is found at sites of repressed chromatin, although it does not bind to the Blimp-1 DNA consensus site. Unexpectedly, Blimp-1 and Blimp-1Δ7 homodimerize as well as heterodimerize with each other. Ectopic expression of Blimp-1Δ7 in WEHI 231 cells, a Blimp-1-negative murine lymphoma line, leads to cessation of proliferation and enhancement of apoptosis. Importantly, LPS-induced differentiation is suppressed in the presence of Blimp-1Δ7. This is in agreement with our finding that Blimp-1Δ7 interferes with endogenous Blimp-1 expression. Thus, our data suggest an auto-regulatory mechanism of Blimp-1 activation.  相似文献   

10.
11.
12.
13.
14.
The importance of c-myc as a target of the Blimp-1 repressor has been studied in BCL-1 cells, in which Blimp-1 is sufficient to trigger terminal B-cell differentiation. Our data show that Blimp-1-dependent repression of c-myc is required for BCL-1 differentiation, since constitutive expression of c-Myc blocked differentiation. Furthermore, ectopic expression of cyclin E mimicked the effects of c-Myc on both proliferation and differentiation, indicating that the ability of c-Myc to drive proliferation is responsible for blocking BCL-1 differentiation. However, inhibition of c-Myc by a dominant negative form was not sufficient to drive BCL-1 differentiation. Thus, during Blimp-1-dependent plasma cell differentiation, repression of c-myc is necessary but not sufficient, demonstrating the existence of additional Blimp-1 target genes.  相似文献   

15.
16.
Increased proportions of naive B cell subset and B cells defined as CD27(neg)CD21(neg)CD38(neg) are frequently found in patients with common variable immunodeficiency (CVID) syndrome. Current methods of polychromatic flow cytometry and PCR-based detection of κ deletion excision circles allow for fine definitions and replication history mapping of infrequent B cell subsets. We have analyzed B cells from 48 patients with CVID and 49 healthy controls to examine phenotype, frequency, and proliferation history of naive B cell subsets. Consistent with previous studies, we have described two groups of patients with normal (CVID-21norm) or increased (CVID-21lo) proportions of CD27(neg)CD21(neg)CD38(neg) B cells. Upon further analyses, we found two discrete subpopulations of this subset based on the expression of CD24. The B cell subsets showed a markedly increased proliferation in CVID-21lo patients as compared with healthy controls, suggesting developmental arrest rather than increased bone marrow output. Furthermore, when we analyzed CD21(pos) naive B cells, we found two different subpopulations based on IgM and CD24 expression. They correspond to follicular (FO) I and FO II cells previously described in mice. FO I subset is significantly underrepresented in CVID-21lo patients. A comparison of the replication history of naive B cell subsets in CVID patients and healthy controls implies refined naive B cell developmental scheme, in which human transitional B cells develop into FO II and FO I. We propose that the CD27(neg)CD21(neg)CD38(neg) B cells increased in some of the CVID patients originate from the two FO subsets after loss of CD21 expression.  相似文献   

17.
Lymphocyte enhancer binding factor 1 (LEF-1) plays a crucial role in B lineage development and is only expressed in B cell precursors as B cell differentiation into mature B and plasma cells silences its expression. Chronic lymphocytic leukemia (CLL) cells aberrantly express LEF-1 and its expression is required for cellular survival. We hypothesized that modification of the differentiation status of CLL cells would result in loss of LEF-1 expression and eliminate the survival advantage provided by its aberrant expression. In this study, we first established a methodology that induces CLL cells to differentiate into immunoglobulin (Ig) secreting cells (ISC) using the TLR9 agonist, CpG, together with cytokines (CpG/c). CpG/c stimulation resulted in dramatic CLL cell phenotypic and morphologic changes, expression of cytoplasmic Ig, and secretion of light chain restricted Ig. CpG/c stimulation also resulted in decreased CLL cell LEF-1 expression and increased Blimp-1 expression, which is crucial for plasma cell differentiation. Further, Wnt pathway activation and cellular survival were impaired in differentiated CLL cells compared to undifferentiated CLL cells. These data support the notion that CLL can differentiate into ISC and that this triggers decreased leukemic cell survival secondary to the down regulation of LEF-1 and decreased Wnt pathway activation.  相似文献   

18.
19.
Systemic lupus erythematosus (SLE) is characterized by prominent autoinflammatory tissue damage associated with impaired removal of dying cells and DNA. Self DNA-containing immune complexes are able to activate both innate and adaptive immune responses and play an important role in the maintenance and exacerbation of autoimmunity in SLE. In this study, we used DNA from lymphocytes that have undergone activation-induced cell death (ALD-DNA) and analyzed its role on the activation and differentiation of B cells from normal BALB/c mice as well as lupus-prone MRL+/+ and MRL/lpr mice. We found that ALD-DNA directly increased the expression of costimulatory molecules and the survival of naïve B cells in vitro. Although ALD-DNA alone had little effect on the proliferation of naïve B cells, it enhanced LPS-activated B cell proliferation in vitro and in vivo. In addition, ALD-DNA increased plasma cell numbers and IgG production in LPS-stimulated cultures of naïve B cells, in part via enhancing IL-6 production. Importantly, B cells from lupus mice were hyperresponsive to ALD-DNA and/or LPS relative to normal control B cells in terminal plasma cell differentiation, as evidenced by increases in CD138+ cell numbers, IgM production, and mRNA levels of B lymphocyte-induced maturation protein-1 (Blimp-1) and the X-box binding protein 1 (XBP1). Furthermore, ALD-DNA enhanced CD40-activated naïve B cell proliferation. Collectively, these data indicate that self DNA can serve as a DAMP (damage-associated molecular pattern) that cooperates with signals from both innate and adaptive immunity to promote polyclonal B cell activation, a common characteristic of autoimmune diseases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号