首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glutamate toxicity has been implicated in the pathogenesis of various neurological diseases. Glial glutamate transporters play a key role in the regulation of extracellular glutamate levels in the brain by removing glutamate from the extracellular fluid. Since human blood platelets possess an active glutamate uptake system, they have been used as a peripheral model of glutamate transport in the central nervous system (CNS). The present study is aimed at identifying the glutamate transporter on blood platelets, and to asses the influence of platelet activation on glutamate uptake. Platelets from healthy donors showed Na+-dependent glutamate uptake (Km, 3.5+/-0.9 microM; Vmax, 2.8+/-0.2 pmol glutamate/75 x 10(6)platelets/30 min), which could be blocked dose-dependently by the EAAT specific inhibitors DL-threo-E-benzyloxyaspartate (TBOA), L-trans-pyrrolidine-2,4-dicarboxylic acid (tPDC) and high concentrations of the EAAT2 inhibitor dihydrokainate (DHK). Analysis of platelet homogenates on Western blots showed EAAT2 as the predominant glutamate transporter. Platelet activation by thrombin caused an increase in glutamate uptake, which could be inhibited by TBOA and the EAAT2 inhibitor DHK. Kinetic analysis showed recruitment of new transporters to the membrane. Indeed, Western blot analysis of subcellular fractions revealed that alpha-granules, which fuse with the membrane upon thrombin stimulation, contained significant EAAT2 immunoreactivity. Inhibition of the second messengers involved in alpha-granule secretion (protein kinase C, phosphatidylinositol-3-kinase) inhibited thrombin-stimulated uptake, but not basal uptake. These data show that the glial EAAT2 is the predominant glutamate transporter on blood platelets and suggest, that thrombin increases glutamate uptake capacity by recruiting new transporters (EAAT2) from alpha-granules.  相似文献   

2.
EAAT2 is a high affinity, Na+-dependent glutamate transporter with predominant astroglial localization. It accounts for the clearance of the bulk of glutamate released at central nervous system synapses and therefore has a crucial role in shaping glutamatergic neurotransmission and limiting excitotoxicity. Caspase-3 activation and impairment in expression and activity of EAAT2 are two distinct molecular mechanisms occurring in human amyotrophic lateral sclerosis (ALS) and in the transgenic rodent model of the disease. Excitotoxicity caused by down-regulation of EAAT2 is thought to be a contributing factor to motor neuron death in ALS. In this study, we report the novel evidence that caspase-3 cleaves EAAT2 at a unique site located in the cytosolic C-terminal domain of the transporter, a finding that links excitotoxicity and activation of caspase-3 as converging mechanisms in the pathogenesis of ALS. Caspase-3 cleavage of EAAT2 leads to a drastic and selective inhibition of this transporter. Heterologous expression of mutant SOD1 proteins linked to the familial form of ALS leads to inhibition of EAAT2 through a mechanism that largely involves activation of caspase-3 and cleavage of the transporter. In addition, we found evidence in spinal cord homogenates of mutant SOD1 ALS mice of a truncated form of EAAT2, likely deriving from caspase-3-mediated proteolytic cleavage, which appeared concurrently to the loss of EAAT2 immunoreactivity and to increased expression of activated caspase-3. Taken together, our findings suggest that caspase-3 cleavage of EAAT2 is one mechanism responsible for the impairment of glutamate uptake in mutant SOD1-linked ALS.  相似文献   

3.
4.
A considerable body of evidence indicates that the activity of glutamine synthetase is decreased in the cerebral cortices of brains affected by Alzheimer's disease. It is difficult to discern the reason for this decrease because it is not known whether the cellular distribution of glutamine synthetase is altered in Alzheimer's disease. Therefore the present study has used immunocytochemistry to compare the cellular distributions of glutamine synthetase in the inferior temporal cortices of six Alzheimer's diseased brains and six age-matched, non-demented brains. Double-label immunocytochemistry has been used to examine whether the distribution of cellular glutamine synthetase is influenced by the distribution of senile plaques. It was found that glutamine synthetase expression in astrocytes is diminished in Alzheimer's disease, particularly in the vicinity of senile plaques. The most striking finding of the present study was that glutamine synthetase was expressed in a subpopulation of pyramidal neurons in all six Alzheimer's diseased brains, whereas glutamine synthetase was not observed in any neurons from control brains. The changed expression of glutamine synthetase may be triggered by toxic agents in senile plaques, a reduced noradrenergic supply to the cerebral cortex, and increased brain ammonia levels. That such dramatic changes occur in the distribution of this critical, and normally stable enzyme, suggests that the glutamate-glutamine cycle is profoundly impaired in Alzheimer's disease. This is significant because impairments of the glutamate-glutamine cycle are known to cause alterations of mood and behaviour, disturbance of sleeping patterns, amnesia, confusion and reduced awareness. Since these behavioural changes are also seen in Alzheimer's disease, it is speculated that they might be attributable to the reduced expression of glutamine synthetase or to impairments of the glutamate-glutamine cycle.  相似文献   

5.
6.
Human neuroblastoma SH-SY5Y cells transfected with either familial amyotrophic lateral sclerosis-typical G93A mutant or wild-type copper/zinc superoxide dismutase were compared to untransfected cells in term of glutamate transport. Vmax of glutamate uptake was reduced in mutant cells, with no change in Km. No difference in EAAT1, EAAT2 and EAAT3 glutamate transporter mRNAs and immunoreactive proteins was found, suggesting that one or more transporters are functionally inactivated, possibly due to increased oxidative stress induced by the G93A mutation. Mutant cells showed a marked sensitivity to oxidants, resulting in a more pronounced reduction of glutamate uptake. Short-term antioxidant treatment did not reverse the impairment of glutamate uptake in G93A cells. Interestlingly, N-acetylcysteine was partially effective in preventing glutamate uptake reduction due to exogenous oxidative insults. Since the inhibition of the EAAT2 transporter subtype had no effect on glutamate re-uptake in this model, our study suggests an impaired function of the EAAT1/3 transporter subtypes, possibly due to oxidative inactivation, in the presence of mutant copper/zinc superoxide dismutase. Therefore, this model might prove to be a valuable tool to study the effects of mutant copper/zinc superoxide dismutase associated with amyotrophic lateral sclerosis on glutamate transport in neuronal cells, without the specific contribution of glial cells. These findings might lead to the identification of new therapeutic strategies aimed at preventing the damage associated with ALS.  相似文献   

7.
The ouabain-induced suppression of glutamine synthesis and retention in incubating rat brain cortex slices was found to be mimicked by changes in the cationic content of the incubation medium, which cause an increase in the intracellular [Na+] and a decrease in the intracellular [K+]. The suppression of glutamine synthesis (and fixation of ammonia) was also found to take place when Ca2+ was omitted from the incubation medium. This occurred whether endogenous or exogenous glutamate was the substrate for glutamine synthesis. The suppressions cannot be due solely to an effect on glutamate uptake, because the uptake is not markedly affected by these conditions. The results show that Na+, K+, and Ca2+ influence the synthesis and distribution of glutamine in the brain. They suggest that Ca2+ and the Na+, K+ pump may serve a role in regulating the activity of ATP-dependent glutamine synthetase, a key enzyme of the glutamate-glutamine cycle, located in the astrocytes. This may be mediated via a direct effect on the enzyme or through an effect on the production of ATP.  相似文献   

8.
9.
Glutamate metabolism in HIV-infected macrophages: implications for the CNS   总被引:2,自引:0,他引:2  
Central nervous system disorders are still a common complication of human immunodeficiency virus (HIV) infection and can lead to dementia and death. They are mostly the consequences of an inflammatory macrophagic activation and relate to glutamate-mediated excitotoxicity. However, recent studies also suggest neuroprotective aspects of macrophage activation through the expression of glutamate transporters and glutamine synthetase. We thus aimed to study whether HIV infection or activation of macrophages could modulate glutamate metabolism in these cells. We assessed the effect of HIV infection on glutamate transporter expression as well as on glutamate uptake by macrophages and showed that glutamate transport was partially decreased in the course of virus replication, whereas excitatory amino acid transporter-2 (EAAT-2) gene expression was dramatically increased. The consequences of HIV infection on glutamine synthetase were also measured and for the first time we show the functional expression of this key enzyme in macrophages. This expression was repressed during virus production. We then quantified EAAT-1 and EAAT-2 gene expression as well as glutamate uptake in differentially activated macrophages and show that the effects of HIV are not directly related to pro- or anti-inflammatory mediators. Finally, this study shows that glutamate transport by macrophages is less affected than what has been described in astrocytes. Macrophages may thus play a role in neuroprotection against glutamate in the infected brain, through their expression of both EAATs and glutamine synthetase. Because glutamate metabolism by activated macrophages is sensitive to both HIV infection and inflammation, it may thus be of potential interest as a therapeutic target in HIV encephalitis. excitatory amino acid transporter; cystine-glutamate antiporter; glutathione; inflammation; oxidative stress; glutamine synthetase  相似文献   

10.
The human excitatory amino acid transporter (EAAT)2 is the major glutamate carrier in the mammalian CNS. Defective expression of the transporter results in neuroexcitotoxicity that may contribute to neuronal disorders such as amyotrophic lateral sclerosis (ALS). The serum and glucocorticoid inducible kinase (SGK) 1 is expressed in the brain and is known to interact with the ubiquitin ligase Nedd4-2 to modulate membrane transporters and ion channels. The present study aimed to investigate whether SGK isoforms and the related kinase, protein kinase B (PKB), regulate EAAT2. Expression studies in Xenopus oocytes demonstrated that glutamate-induced inward current (IGLU) was stimulated by co-expression of SGK1, SGK2, SGK3 or PKB. IGLU is virtually abolished by Nedd4-2, an effect abrogated by additional co-expression of either kinase. The kinases diminish the effect through Nedd4-2 phosphorylation without altering Nedd4-2 protein abundance. SGKs increase the transporter maximal velocity without significantly affecting substrate affinity. Similar to glutamate-induced currents, [3H] glutamate uptake and cell surface abundance of the transporter were increased by the SGK isoforms and down-regulated by the ubiquitin ligase Nedd4-2. In conclusion, all three SGK isoforms and PKB increase EAAT2 activity and plasma membrane expression and thus, may participate in the regulation of neuroexcitability.  相似文献   

11.
Glutamate, the major excitatory transmitter in the vertebrate brain, is removed from the synaptic cleft by a family of sodium‐dependent glutamate transporters profusely expressed in glial cells. Once internalized, it is metabolized by glutamine synthetase to glutamine and released to the synaptic space through sodium‐dependent neutral amino acid carriers of the N System (SNAT3/slc38a3/SN1, SNAT5/slc38a5/SN2). Glutamine is then taken up by neurons completing the so‐called glutamate/glutamine shuttle. Despite of the fact that this coupling was described decades ago, it is only recently that the biochemical framework of this shuttle has begun to be elucidated. Using the established model of cultured cerebellar Bergmann glia cells, we sought to characterize the functional and physical coupling of glutamate uptake and glutamine release. A time‐dependent Na+‐dependent glutamate/aspartate transporter/EAAT1‐induced System N‐mediated glutamine release could be demonstrated. Furthermore, D‐aspartate, a specific glutamate transporter ligand, was capable of enhancing the co‐immunoprecipitation of Na+‐dependent glutamate/aspartate transporter and Na+‐dependent neutral amino acid transporter 3, whereas glutamine tended to reduce this association. Our results suggest that glial cells surrounding glutamatergic synapses may act as sensors of neuron‐derived glutamate through their contribution to the neurotransmitter turnover.  相似文献   

12.
谷氨酸是脑内必需的兴奋性神经递质之一,兴奋性氨基酸转运体(Excitatory amino acid transporterEAAT)2是最主要的谷氨酸转运体,负责脑内90%以上的谷氨酸再摄取,调节突触间隙的谷氨酸浓度。EAAT2功能紊乱导致胞外谷氨酸过量积聚,在多种神经退行性疾病的发病过程中起重要作用,如阿尔茨海默病、亨廷顿舞蹈病、肌萎缩侧索硬化等。对于人EAAT2启动子的研究发现,NF-kB在星形胶质细胞中对EAAT2表达起关键作用。通过筛选1 040种FDA批准的化合物,发现多种β-内酰胺类抗生素如头孢曲松钠等是EAAT2的转录激活剂,可以增加EAAT2的蛋白表达水平,产生神经保护作用。  相似文献   

13.
Islet function is incompletely understood in part because key steps in glutamate handling remain undetermined. The glutamate (excitatory amino acid) transporter 2 (EAAT2; Slc1a2) has been hypothesized to (a) provide islet cells with glutamate, (b) protect islet cells against high extracellular glutamate concentrations, (c) mediate glutamate release, or (d) control the pH inside insulin secretory granules. Here we floxed the EAAT2 gene to produce the first conditional EAAT2 knock-out mice. Crossing with Nestin-cyclization recombinase (Cre) eliminated EAAT2 from the brain, resulting in epilepsy and premature death, confirming the importance of EAAT2 for brain function and validating the genetic construction. Crossing with insulin-Cre lines (RIP-Cre and IPF1-Cre) to obtain pancreas-selective deletion did not appear to affect survival, growth, glucose tolerance, or β-cell number. We found (using TaqMan RT-PCR, immunoblotting, immunocytochemistry, and proteome analysis) that the EAAT2 levels were too low to support any of the four hypothesized functions. The proteome analysis detected more than 7,000 islet proteins of which more than 100 were transporters. Although mitochondrial glutamate transporters and transporters for neutral amino acids were present at high levels, all other transporters with known ability to transport glutamate were strikingly absent. Glutamate-metabolizing enzymes were abundant. The level of glutamine synthetase was 2 orders of magnitude higher than that of glutaminase. Taken together this suggests that the uptake of glutamate by islets from the extracellular fluid is insignificant and that glutamate is intracellularly produced. Glutamine synthetase may be more important for islets than assumed previously.  相似文献   

14.
Excitatory amino acid transporter 2 (EAAT2) is a high affinity glutamate transporter predominantly expressed in astroglia. Human EAAT2 encompasses eight transmembrane domains and a 74-amino acid C-terminal domain that resides in the cytoplasm. We examined the role of this region by studying various C-terminal truncations and mutations using heterologous expression in mammalian cells, whole-cell patch clamp recording and confocal imaging. Removal of the complete C terminus (K498X EAAT2) results in loss of function because of intracellular retention of truncated proteins in the cytoplasm. However, a short stretch of amino acids (E500X EAAT2) within the C terminus results in correctly processed transporters. E500X reduced glutamate transport currents by 90%. Moreover, the voltage and substrate dependence of E500X EAAT2 anion currents was significantly altered. WT and mutant EAAT2 anion channels are modified by external Na(+) in the presence as well as in the absence of L-glutamate. Whereas Na(+) stimulates EAAT2 anion currents in the presence of L-glutamate, increased [Na(+)] reduces such currents without glutamate. In cells internally dialyzed with Na(+), WT, and truncated EAAT2 display comparable Na(+) dependence. With K(+) as main internal cation, E500X drastically increased the apparent dissociation constant for external Na(+). The effects of E500X can be represented by a kinetic model that allows translocation of the empty transporter from the outward- to the inward-facing conformation and stabilization of the inward-facing conformation by internal K(+). Our results demonstrate that the C terminus modifies the glutamate uptake cycle, possibly affecting the movements of the translocation domain of EAAT2 glutamate transporter.  相似文献   

15.
To date, the glutamate-glutamine cycle has been the dominant paradigm for understanding the coordinated, compartmentalized activities of phosphate-activated glutaminase (PAG) and glutamine synthetase (GS) in support of functional glutamate trafficking in vivo. However, studies in cell cultures have repeatedly challenged the notion that functional glutamate trafficking is accomplished via the glutamate-glutamine cycle alone. The present study introduces and elaborates alternative cycles for functional glutamate trafficking that integrate glucose metabolism, glutamate anabolism, transport, and catabolism, and trafficking of TCA cycle intermediates from astrocytes to presynaptic neurons. Detailed stoichiometry for each of these alternative cycles is established by strict application of the principle of conservation of atomic species to cytosolic and mitochondrial compartments in both presynaptic neurons and astrocytes. In contrast to the glutamate-glutamine cycle, which requires ATP, but not necessarily oxidative metabolism, to function, cycles for functional glutamate trafficking based on intercellular transport of TCA cycle intermediates require oxidative processes to function. These proposed alternative cycles are energetically more efficient than, and incorporate an inherent mechanism for transporting nitrogen from presynaptic neurons to astrocytes in support of the coordinated activities of PAG and GS that is absent in, the glutamate-glutamine cycle. In light of these newly elaborated alternative cycles, it is premature to presuppose that functional glutamate trafficking in synaptic neurotransmission in vivo is sustained by the glutamate-glutamine cycle alone.  相似文献   

16.
17.
The Na+-dependent glutamate transporter EAAT3 facilitates glutamate uptake into neurons as well as many other cell types. GTRAP3-18 (JWA, Arl6ip5) is a novel protein that interacts with EAAT3 and negatively modulates EAAT3-mediated glutamate uptake. Previous studies suggest that retinoic acid (RA) decreases Na+-dependent glutamate uptake and increases GTRAP3-18 protein expression. However, the RA used in those studies was complexed with methyl-beta-cyclodextrin (MebetaCD). In the present study we found that MebetaCD, but not RA, significantly reduced Na+-dependent EAAT3-mediated [3H]glutamate uptake in human embryonic kidney 293 (HEK293) cells. MebetaCD also significantly increased GTRAP3-18 protein expression in HEK293 cells as well as in rat hypothalamic neuron cultures. Intracerebroventricular administration of MebetaCD to the mouse brain resulted in a significant increase in GTRAP3-18 immunoreactivity in the hippocampus and cerebral cortex. In conclusion, we have shown that MebetaCD reduces EAAT3-mediated glutamate uptake and induces the expression of GTRAP3-18 protein.  相似文献   

18.
19.
Excessive glutamatergic neurotransmission has been implicated in some neurodegenerative disorders. It would be of value to know whether glutamate transport, which terminates the glutamate signal, can be up-regulated pharmacologically. Here we show that chronic treatment of rats with the anti-epileptic drug sodium valproate (200 mg or 400 mg/kg bodyweight, twice per day for 90 days) leads to a dose-dependent increase in hippocampal glutamate uptake capacity as measured by uptake of [(3)H]glutamate into proteoliposomes. The level of glutamate transporters EAAT1 and EAAT2 in hippocampus also increased dose-dependently. No effect of sodium valproate on glutamate transport was seen in frontal or parietal cortices or in cerebellum. The hippocampal levels of glial fibrillary acidic protein and glutamine synthetase were unaffected by valproate treatment, whereas the levels of synapsin I and phosphate-activated glutaminase were reduced by valproate treatment, suggesting that the increase in glutamate transporters was not caused by astrocytosis or increased synaptogenesis. A direct effect of sodium valproate on the glutamate transporters could be excluded. The results show that hippocampal glutamate transport is an accessible target for pharmacological intervention and that sodium valproate may have a role in the treatment of excitotoxic states in the hippocampus.  相似文献   

20.
In the present study, we investigated the role of membrane cholesterol in the function of glutamate transporters. Depletion of membrane cholesterol by methyl-beta-cyclodextrin resulted in reduced Na(+)-dependent glutamate uptake in primary cortical cultures. Glial glutamate transporter EAAT2-mediated uptake was more sensitive to this effect. Cell surface biotinylation and immunostaining experiments revealed that the loss of cholesterol significantly altered the trafficking of EAAT2 to the plasma membrane as well as their membrane distribution. These effects were also observed in neuronal glutamate transporter EAAT3 but to a lesser extent. Furthermore, the treatment of mouse brain plasma membrane vesicles with methyl-beta-cyclodextrin resulted in a significant reduction in glutamate uptake, suggesting that cholesterol depletion has a direct effect on the function of the glutamate transporters. Plasma membrane cholesterol is localized within discreet microdomains known as lipid rafts. Analyses of purified lipid raft microdomains revealed that a large portion of total EAAT2 and a minor portion of total EAAT1, EAAT3, and EAAT4 were associated with lipid rafts. Artificial aggregation of lipid rafts in vivo resulted in the formation of larger EAAT2-immunoreactive clusters on the cell surface. The purified lipid raft-associated fractions were capable of Na(+)-dependent glutamate uptake. Our data suggest that the glutamate transporters, especially EAAT2, are associated with cholesterol-rich lipid raft microdomains of the plasma membrane and that the association with these cholesterol-rich microdomains is important for excitatory amino acid transporter localization and function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号