首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
As a first step in elucidating one molecular mechanism of adaptation to life at extreme temperatures, we purified and characterized the enzyme histidinol dehydrogenase (EC 1.1.1.23) from a number of bacilli whose growth temperatures range from 5 degrees t to 90 degrees C. The enzymes were purified by (NH4)2SO4 precipitation, ion-exchange chromatography on Sephadex, affinity chromatography on histamine- or histidine-Sepharose and preparative gradient gel electrophoresis. All had similar mol.wts. (29200), sedimentation coefficients (S20,w 2.56S), affinities for histidinol and NAD+ (Km = 48 micron and 0.2 mM respectively) and all had pH optima at 9.6. Marked differences were observed in stability with respect to temperature and the temperature at which the initial velocity for histidinol dehydrogenation was optimal. These optima range from 25 degrees C for the enzyme from the psychrophilic species through to 41 degrees C for the mesophiles to 85-92 degrees C for the extreme thermophiles. It is concluded that the ability of the enzymes to operate at their various optimum temperatures is an intrinsic property of their amino acid sequences.  相似文献   

2.
3.
Sheep liver cytoplasmic aldehyde dehydrogenase was purified to homogeneity to give a sample with a specific activity of 380 nmol NADH min(-1) mg(-1). An amino acid analysis of the enzyme gave results similar to those reported for aldehyde dehydrogenases from other sources. The isoelectric point was at pH 5.25 and the enzyme contained no significant amounts of metal ions. On the binding of NADH to the enzyme there is a shift in absorption maximum of NADH to 344 nm, and a 5.6-fold enhancement of nucleotide fluorescence. The protein fluorescence (lambdaexcit = 290 nm, lambdaemisson = 340 nm) is quenched on the binding of NAD+ and NADH. The enhancement of nucleotide fluorescence on the binding of NADH has been utilised to determine the dissociation constant for the enzyme . NADH complex (Kd = 1.2 +/- 0.2 muM). A Hill plot of the data gave a straight line with a slope of 1.0 +/- 0.3 indicating the absence of co-operative effects. Ellman's reagent reacted only slowly with the enzyme but in the presence of sodium dodecylsulphate complete reaction occurred within a few minutes to an extent corresponding to 36 thiol groups/enzyme. Molecular weights were determined for both cytoplasmic and mitochondrial aldehyde dehydrogenases and were 212 000 +/- 8 000 and 205 000 respectively. Each enzyme consisted of four subunits with molecular weight of 53 000 +/- 2 000. Properties of the cytoplasmic and mitochondrial aldehyde dehydrogenases from sheep liver were compared with other mammalian liver aldehyde dehydrogenases.  相似文献   

4.
5.
Procedures were developed for the optimal solubilization of D-lactate dehydrogenase, D-mandelate dehydrogenase, L-lactate dehydrogenase and L-mandelate dehydrogenase from wall + membrane fractions of Acinetobacter calcoaceticus. D-Lactate dehydrogenase and D-mandelate dehydrogenase were co-eluted on gel filtration, as were L-lactate dehydrogenase and L-mandelate dehydrogenase. All four enzymes could be separated by ion-exchange chromatography. D-Lactate dehydrogenase and D-mandelate dehydrogenase were purified by cholate extraction, (NH4)2SO4 fractionation, gel filtration, ion-exchange chromatography and chromatofocusing. The properties of D-lactate dehydrogenase and D-mandelate dehydrogenase were similar in several respects: they had relative molecular masses of 62 800 and 59 700 respectively, pI values of 5.8 and 5.5, considerable sensitivity to p-chloromercuribenzoate, little or no inhibition by chelating agents, and similar responses to pH. Both enzymes appeared to contain non-covalently bound FAD as cofactor.  相似文献   

6.
7.
8.
Two isozymes of NADP+-specific isocitrate dehydrogenase [ICDH; EC 1.1.1.42] were confirmed to be present in an obligately psychrophilic marine bacterium, Vibrio sp., strain ABE-1, on the basis of the temperature-activity curve and electrophoretic mobilities. These isozymes were separated and purified about 170-fold for isozyme I (specific activity at 40 degrees C, 24.3 units/mg protein) and about 180-fold for isozyme II (specific activity at 20 degrees C, 59.2 units/mg protein), though the isozymes were still not homogeneous. The molecular weights of these isozymes determined by gel filtration were both about 85,000, but the properties of the isozymes were considerably different from each other. The thermostability of isozyme I resembled those of mesophiles, but isozyme II was extremely labile above 20 degrees C. NaCl affected the ICDH isozymes in different ways; the salt protected isozyme I from heat inactivation, but not isozyme II. Nevertheless it enormously enhanced the activity of isozyme II at low concentrations. Moreover, these ICDH isozymes showed different pH optima, Km values for isocitrate, susceptibilities to concerted inhibition by glyoxylate plus oxalacetate, and effects of 2-mercaptoethanol on their stabilities.  相似文献   

9.
Two forms of succinic semialdehyde dehydrogenase have been isolated in Klebsiella pneumoniae M5a1. The two enzymes could be separated by filtration on Sephacryl S-300 and their apparent molecular weights were approx. 275,000 and 300,000. The large enzyme is specific for NADP. The smaller enzyme, which is induced by growth on 3-hydroxyphenylacetic acid, 4-hydroxyphenylacetic acid, 3,4-dihydroxyphenylacetic acid and gamma-aminobutyrate, has been purified to 96% homogeneity by affinity chromatography. The NAD-linked succinic semialdehyde dehydrogenase was able to use NADP as cofactor. Its induction is coordinated with 3- and 4-hydroxylase, the enzymes which initiate degradation of 3- and 4-hydroxyphenylacetic acid. The NAD-linked form is also induced by exogenous succinic semialdehyde. The large enzyme is specific for NADP and has been isolated from a defective mutant which lacked the activity of the NAD-linked succinic semialdehyde dehydrogenase. Activity and stability conditions and true K m values for substrates and cosubstrates of the two enzymes were determined. Some aspects of the induction of the NAD-linked enzyme participating in the metabolism of 4-hydroxyphenylacetic and gamma-aminobutyrate were studied.  相似文献   

10.
Summary Two alcohol dehydrogenases (ADHI and ADHII, EC 1.1.1.1) were purified to homogeneity from the cell extract of Zymomonas mobilis. The subunit molecular weights of ADHI and ADHII were 40,000 and 38,000, respectively, and both enzymes were homologous dimers. The optimal pHs of ADHI in ethanol oxidation and acetaldehyde reduction reactions were 9.5 and 4.5, and those of ADHII were 9.5 and 6.5, respectively. The optimal temperatures of ADHI and ADHII were 55° C and 45° C, respectively. ADHI was heat-inactivated at 65° C at a 10-fold higher rate than ADHII. ADHI and ADHII were inhibited by 4 M and 1 mM p-chloromercuribenzoate, respectively, and the inhibitions were reversed by the addition of 70 mM 2-mercaptoethanol. ADHII activity was enhanced by 0.02 to 2 mM CoCl2 and inhibited by 0.4 mM o-phenanthroline; and the activity of inactivated ADHII was restored by addition of 1 mM CoCl2 or ZnCl2.ADHI was active on most primary alcohols but not secondary alcohols. ADHII was active on only ethanol, n-propanol, allylalcohol, and furfuryl alcohol.In the anaerobic culture of Z. mobilis, ADHII activity accounted for more than 80% of total alcohol dehydrogenase activity. In aerobic culture, ADHII was the main enzyme but was produced only in the early growth phase.  相似文献   

11.
The changes in the in vivo bacteriochlorophyll fluorescence induced by a Xenon flash at low temperatures (77--200 K) with the "primary" acceptor X chemically prereduced have been examined in whole cells of several species of photosynthetic bacteria which contain carotenoids absorbing in the visible part of the absorption spectrum. Two groups of species with different behaviour could be distinguished. In both cases a flash-induced rise of the fluorescence yield was observed with X prereduced at 77 k; as the temperature was increased the ratio of the maximum fluorescence (FM) and the basal fluorescence (F0) decreased and the kinetics of the decay of the high fluorescent state, as observed during the tail of the flash, apparently accelerated. Of the species examined the flash-induced changes in fluorescence-yield kinetics appeared to occur at higher temperatures in the members of one group (Chromatium vinosum, Rhodopseudomonas gelatinosa and Rhodopseudomonas palustris) than in the members of the other (Rhodopseudomonas palustris) than in the members of the other (Rhodopseudomonas sphaeroides and Rhodospirillum rubrum). These effects are interpreted in terms of the light-induced generation of triplet states within the reaction centre. It is suggested that the species-dependent differences may reflect differences in the molecular organisation of the reaction centre. It was found that in all species the reaction centre carotenoid triplet does not act as a fluorescence quencher under these conditions.  相似文献   

12.
Two isoenzymes of malate dehydrogenase (MDH) were demonstrated in plasmodia of Physarum polycephalum by polyacrylamide-gel electrophoresis. The more "cathodal" form was uniquely associated with mitochondria (M-MDH) and the other form was found in the soluble cytoplasm (S-MDH). The isoenzymes were separated by acetone fractionation of soluble plasmodial homogenates acidified to pH 5.0. The M-MDH was purified 201-fold by cetylpyridinium chloride treatment, fractionation with ammonium sulfate, gradient elution from sulfoethyl cellulose at pH 6.0, and Sephadex G-100 chromatography. The S-MDH was purified 155-fold by ammonium sulfate fractionation, diethylaminoethyl cellulose chromatography, gradient elution from sulfoethyl cellulose at pH 5.5, and Sephadex G-100 chromatography. The optimal cis-oxalacetate concentrations were 0.35 mM for M-MDH and 0.25 mM for S-MDH, and the optimal pH for both isoenzymes was 7.6 for oxalacetate reduction. The optimal l-malate concentrations were 5 mM for S-MDH and 6 mM for M-MDH, and both isoenzymes exhibited an optimal pH of 10.0 for L-malate oxidation. The Michaelis constants of S-MDH and M-MDH served to discriminate between the isoenzymes. The S-MDH was more heat-stable than the M-MDH. High concentrations of oxalacetate and malate inhibited S-MDH more than M-MDH. The isoenzymes were further distinguished by their utilization of analogues of nicotinamide adenine dinucleotide. Many properties of the Physarum isoenzymes were similar to those of more complex organisms, especially vertebrates.  相似文献   

13.
14.
15.
Two structurally different monomeric and dimeric types of isocitrate dehydrogenase (IDH; EC 1.1.1.42) isozymes were confirmed to exist in a psychrophilic bacterium, Colwellia psychrerythraea, by Western blot analysis and the genes encoding them were cloned and sequenced. Open reading frames of the genes (icd-M and icd-D) encoding the monomeric and dimeric IDHs of this bacterium, IDH-M and IDH-D, were 2,232 and 1,251 bp in length and corresponded to polypeptides composed of 743 and 416 amino acids, respectively. The deduced amino acid sequences of the IDH-M and IDH-D showed high homology with those of monomeric and dimeric IDHs from other bacteria, respectively. Although the two genes were located in tandem, icd-M then icd-D, on the chromosomal DNA, a Northern blot analysis and primer extension experiment revealed that they are transcribed independent of each other. The expression of the monomeric and dimeric IDH isozyme genes in C. maris, a psychrophilic bacterium of the same genus as C. psychrerythraea, is known to be induced by low temperature and acetate, respectively, but no such induction in the expression of the C. psychrerythraea icd-M and icd-D genes was detected. IDH-M and IDH-D overexpressed in Escherichia coli were purified and characterized. In C. psychrerythraea, the IDH-M isozyme is cold-active whereas IDH-D is mesophilic, which is similar to C. maris that contains both cold-adapted and mesophilic isozymes of IDH. Experiments with chimeric enzymes between the cold-adapted monomeric IDHs of C. psychrerythraea and C. maris (IDH-M and ICD-II, respectively) suggested that the C-terminal region of the C. maris IDH-II is involved in its catalytic activity.  相似文献   

16.
17.
Purification and comparative studies of alcohol dehydrogenases   总被引:2,自引:0,他引:2  
Alcohol dehydrogenases from various animal and plant sources were purified by a common procedure which employed DEAE, Sephadex-G100 and affinity chromatographies. The procedure achieves an 80-130 fold purification for animal enzymes. However, only a 5-15 fold purification for plant enzymes was attained because of the instability of these enzymes. Purified alcohol dehydrogenases from animal and plant sources differ in coenzyme and substrate specificities. The enzymes from mammalian, avian and fish livers display aldehyde oxidizing and esterolytic activities in addition to alcohol oxidizing activity. However, the enzymes from plants and yeast show only the oxidative activity toward alcohols. Chemical modifications have been performed to identify amino acid residues which are essential to the oxidative and esterolytic activities of alcohol dehydrogenases.  相似文献   

18.
19.
Catalase from Bacillus sp. N2a (BNC) isolated from Antarctic seawater was purified to homogeneity. BNC has a molecular mass of about 230 kDa and is composed of four identical subunits of 56 kDa. The catalase showed optimal activity at 25 degrees C and at a pH range of 6-11. The enzyme could be inhibited by azide, hydroxylamine, and mercaptoethanol. These characteristics suggested that BNC is a small-subunit monofunctional catalase. The activation energy of BNC was 13 kJ/mol and the apparent kcat/Km values were 3.6 x 10(6) and 4 x 10(6) L.mol(-1).s(-1) at 4 and 25 degrees C, respectively. High catalytic efficiency of BNC at low temperatures enables this bacterium to scavenge H2O2 efficiently. BNC exhibited activation energy, catalytic efficiency, and thermostability comparable with some mesophilic homologues. Such similarity of enzymatic characteristics to mesophilic homologues, although uncommon among the cold-adapted enzymes in general, has also been observed in other psychrophilic small-subunit monofunctional catalases.  相似文献   

20.
In the two cold-adapted monomeric isocitrate dehydrogenases from psychrophilic bacteria, Colwellia maris and Colwellia psychrerythraea (CmIDH and CpIDH, respectively), the combined substitutions of amino acid residues between the Leu693, Leu724 and Phe735 residues of CmIDH and the corresponding Phe693, Gln724 and Leu735 residues of CpIDH were introduced by site-directed mutagenesis. A double mutant of CmIDH substituted its Leu724 and Phe735 residues by the corresponding ones of CpIDH, CmL724Q/F735L, and the triple mutant of CpIDH, CpF693L/Q724L/L735F, showed the most decrease and increase of activity, respectively, of each wild-type and its all mutated enzymes. In the case of CmIDH, the substitutions of these three amino acid residues resulted in the decrease of catalytic activity and thermostability for activity, but the combined substitutions of amino acid residues did not necessarily exert additive effects on these properties. On the other hand, similar substitutions in CpIDH had quite opposite effects to CmIDH, and the effects of the combined substitutions were additive. All multiple mutants of CmIDH and CpIDH showed lower and higher catalytic efficiency (k cat/K m) values than the respective wild-type enzymes. Single and multiple mutations of the substituted amino acid residues in the CmIDH and CpIDH led to the increase and decrease of sensitivity to tryptic digestion, indicating that the stability of protein structure was decreased and increased by the mutations, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号