首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Complex non-linear relationships exist between air and soil temperature responses to climate change. Despite its influence on hydrological and biogeochemical processes, soil temperature has received less attention in climate impact studies. Here we present and apply an empirical soil temperature model to four forest sites along a climatic gradient of Sweden. Future air and soil temperature were projected using an ensemble of regional climate models. Annual average air and soil temperatures were projected to increase, but complex dynamics were projected on a seasonal scale. Future changes in winter soil temperature were strongly dependent on projected snow cover. At the northernmost site, winter soil temperatures changed very little due to insulating effects of snow cover but southern sites with little or no snow cover showed the largest projected winter soil warming. Projected soil warming was greatest in the spring (up to 4°C) in the north, suggesting earlier snowmelt, extension of growing season length and possible northward shifts in the boreal biome. This showed that the projected effects of climate change on soil temperature in snow dominated regions are complex and general assumptions of future soil temperature responses to climate change based on air temperature alone are inadequate and should be avoided in boreal regions.  相似文献   

2.
3.
The effects of experimental nitrogen (N) additions (0, 12.5, and 50 kg N ha−1 y−1) on long-term (12 years) understorey vegetation dynamics were examined in a boreal forest. The results showed that two types of natural enemies of the dominant dwarf-shrub Vaccinium myrtillus (pathogenic fungus of the species Valdensia heterodoxa and herbivorous larvae of the genus Operophtera) influenced the vegetation dynamics. The pathogenic fungus, causing premature leaf-shed of V. myrtillus, showed a strong positive N response during the initial 5-year period. For the larvae, a relatively modest N response was overshadowed by an almost 40-fold population increase during an outbreak event that followed the initial 5-year period. This outbreak occurred irrespective of N addition, resulting in V. myrtillus decline and depriving the pathogenic fungus of its substrate. Hence our study demonstrates that vegetation dynamics in this relatively species poor and seemingly simple ecosystem are driven by complex biotic interactions. Further, we show that an important component of these interactions is the temporal alternation of the two natural enemies and, resultant regulation of the dominant plant’s abundance. Finally, we emphasize that long-term data are essential to capture the complexity of this type of biotic interactions. In our case, a short-term study may have resulted in markedly different conclusions regarding effects of N enrichment and the role of biotic interactions for forest vegetation dynamics.  相似文献   

4.
We examined the impact climate change (CC) will have on the availability of climatically suitable habitat for three native and one exotic riparian species. Due to its increasing prevalence in arid regions throughout the western US, we predicted that an exotic species, Tamarix, would have the greatest increase in suitable habitat relative to native counterparts under CC. We used an ecological niche model to predict range shifts of Populus fremontii, Salix gooddingii, Salix exigua and Tamarix, from present day to 2080s, under five general circulation models and one climate change scenario (A1B). Four major findings emerged. 1) Contrary to our original hypothesis, P. fremontii is projected to have the greatest increase in suitable habitat under CC, followed closely by Tamarix. 2) Of the native species, S. gooddingii and S. exigua showed the greatest loss in predicted suitable habitat due to CC. 3) Nearly 80 percent of future P. fremontii and Salix habitat is predicted to be affected by either CC or Tamarix by the 2080s. 4) By the 2080s, 20 percent of S. gooddingii habitat is projected to be affected by both Tamarix and CC concurrently, followed by S. exigua (19 percent) and P. fremontii (13 percent). In summary, while climate change alone will negatively impact both native willow species, Tamarix is likely to affect a larger portion of all three native species'' distributions. We discuss these and other results in the context of prioritizing restoration and conservation efforts to optimize future productivity and biodiversity. As we are accounting for only direct effects of CC and Tamarix on native habitat, we present a possible hierarchy of effects- from the direct to the indirect- and discuss the potential for the indirect to outweigh the direct effects. Our results highlight the need to account for simultaneous challenges in the face of CC.  相似文献   

5.
6.
The study on climate-vegetation relationship is the basis for determining the re sponse of terrestrial ecosystem to global change. By means of quantitative analysis on climate-vegetation interaction, vegetation types and their distribution pattern could be corresponded with certain climatic types in a series of mathematical forms. Thus, the climate could be used to predict vegetation types and their distribution, the same is in reverse. Potential evapotranspiration rate is a comprehensive climatological index which combines temperature with precipitation, and could be used to evaluate the effect of climate on vegetation. In this respect, Holdridge life zone system has been drawing much attention and widely applied internationally owing to its simplicity. It is especially used in the assessment of sensibility of terrestrial ecosystems and their distribution in accordance with climate change and in prediction of the changing pattern of vegetation under doubled CO2 condition. However, Prentice (1990) pointed out that the accurancy of Holdridge life zone system is less than 40 % when it is used at global scale. The reason may be that the potential evapotranspiration calculated by Thornthwaite method, which is used in Holdridge life zone system, reflects the potential evapotranspiration from small evaporated area, while climate-vegetation classification is based on the regional scale. The authors try to establish a new climate-vegetation classification system based on the regional potential evapotranspiration. According to the following formula: where E designates regional actual evapotranspiration: Ep local potential evapotran-spiration: Epo, regional potential evapotranspiration. Ed can be calculated from Penman model or other models. E can be calculated from the following model: E=r · Rn (r2+Rn2+r · Rn) / (2) (r+Rn) · (r2+Rn2)where r designates precipitation (mm); Rn, net radiation (mm). Thus, Ep0 can be easily obtained. It is used as the regional thermal index (RTI) of climate-vegetation classification,and can be expressed as: RTl = Epo (3) Moisture index is another index of climate-veggetation classification. Usually, it can be expressed as the ratio between potential evapotranspiration and precipitation. However, this ratio can not reflect soil moisture, which is important for plant. The ratio between regional actual evapotranspiration and regional potential evapotranspiration is associated not only with climatic condition but also with soil moisture. So it can be used as the moisture index of climate-vegetation classification, and is defined as regional moisture index (RMI): RMI = E/Epo (5) Based on the average climatological data of 30 years from 647 meteorological observation stations in China. It was found that RTl could well reflect a regional thermal level. The values of RTI were less than 360 mm in cold temperate zone, 360~650 mm in temperate zone, 650~380 mm in warm temperate zone, 780~1100 mm in subtropical zone. And more than 1100 mm in tropical zone. RMI also reflects a regional moisture level very well. The values of RMI was less than 0.4 in desert area, 0.4~0.7 in grassland area and more than 0.7 in forest area. Thus, the climate-vegetation classification in China is established on the basis of the two indices: RTI and RMI. According to this model, the changing patterns of vegetation zones in China are given under the conditions of mean annual temperature in creasing by 2℃ and 4℃ and mean annual precipitation increasing by 20%. The results showed that the areas of forest and grassland would decrease, the vegetation zones would move northward and upward, and the area of desert would increase. The results also indicate that the Tibetan Plateau is an area highly sensitive to global change. It could be considered as an indicative or forewarning area for global change , and therefore, an area of great siginificance for monitoring and research. The possible beneficial effect of global change on China terrestrial ecosystems is that the plantation boundary will move northwards and upwards; and the disadvantageous effect is the expansion of desertification and the increase of instability in climatic conditions.  相似文献   

7.
8.
Boreal Forests and Global Change   总被引:2,自引:0,他引:2  
  相似文献   

9.
10.
The boreal ecoregion supports about one-third of the world’s forest. Over 90% of boreal forest streams are found in headwaters, where terrestrial–aquatic interfaces are dominated by organic matter (OM)-rich riparian zones (RZs). Because these transition zones are key features controlling catchment biogeochemistry, appropriate RZ conceptualizations are needed to sustainably manage surface water quality in the face of a changing climate and increased demands for forest biomass. Here we present a simple, yet comprehensive, conceptualization of RZ function based on hydrological connectivity, biogeochemical processes, and spatial heterogeneity. We consider four dimensions of hydrological connectivity: (1) laterally along hillslopes, (2) longitudinally along the stream, (3) vertically down the riparian profile, and (4) temporally through event-based and seasonal changes in hydrology. Of particular importance is the vertical dimension, characterized by a ‘Dominant Source Layer’ that has the highest contribution to solute and water fluxes to streams. In addition to serving as the primary source of OM to boreal streams, RZs shape water chemistry through two sets of OM-dependent biogeochemical processes: (1) transport and retention of OM-associated material and (2) redox-mediated transformations controlled by RZ water residence time and availability of labile OM. These processes can lead to both retention and release of pollutants. Variations in width, hydrological connectivity, and OM storage drive spatial heterogeneity in RZ biogeochemical function. This conceptualization provides a useful theoretical framework for environmental scientists and ecologically sustainable and economically effective forest management in the boreal region and elsewhere, where forest headwaters are dominated by low-gradient, OM-rich RZs.  相似文献   

11.
Understory Vegetation Dynamics of North American Boreal Forests   总被引:2,自引:0,他引:2  
Understory vegetation is the most diverse and least understood component of North American boreal forests. Understory communities are important as they act as drivers of overstory succession and nutrient cycling. The objective of this review was to examine how understory vegetation abundance, composition, and diversity change with stand development after a major stand replacing disturbance. Understory vegetation abundance and diversity increase rapidly after fire, in response to abundant resources and an influx of disturbance adapted species. The highest diversity occurs within the first 40 years following fire, and declines indefinitely thereafter as a result of decreasing productivity and increased dominance of a small number of late successional feather mosses and woody plant species. Vascular plant and bryophyte/lichen communities undergo very different successional changes. Vascular plant communities are dynamic and change more dramatically with time after fire, whereas bryophyte and lichen communities are much slower to establish and change over time. Considerable variations in these processes exist depending on canopy composition, site condition, regional climate, and frequently occurring non-stand-replacing disturbances. Forest management practices represent a unique disturbance process and can result in different understory vegetation communities from those observed for natural processes, with potential implications for overstory succession and long-term productivity. Because of the importance of understory vegetation on nutrient cycling and overstory composition, post-harvest treatments emulating stand-replacing fire are required to maintain understory diversity, composition, and promote stand productivity in boreal forests.  相似文献   

12.
We investigated the effects of removing near-stream Rhododendron and of the natural blowdown of canopy trees on nutrient export to streams in the southern Appalachians. Transects were instrumented on adjacent hillslopes in a first-order watershed at the Coweeta Hydrologic Laboratory (35°03′N, 83°25′W). Dissolved organic carbon (DOC), K+, Na+, Ca2+, Mg2+, NO3 -N, NH4 +-N, PO4 3−-P, and SO4 2− were measured for 2 years prior to disturbance. In August 1995, riparian Rhododendron on one hillslope was cut, removing 30% of total woody biomass. In October 1995, Hurricane Opal uprooted nine canopy trees on the other hillslope, downing 81% of the total woody biomass. Over the 3 years following the disturbance, soilwater concentrations of NO3 -N tripled on the cut hillslope. There were also small changes in soilwater DOC, SO4 2−, Ca2+, and Mg2+. However, no significant changes occurred in groundwater nutrient concentrations following Rhododendron removal. In contrast, soilwater NO3 -N on the storm-affected hillslope showed persistent 500-fold increases, groundwater NO3 -N increased four fold, and streamwater NO3 -N doubled. Significant changes also occurred in soilwater pH, DOC, SO4 2−, Ca2+, and Mg2+. There were no significant changes in microbial immobilization of soil nutrients or water outflow on the storm-affected hillslope. Our results suggest that Rhododendron thickets play a relatively minor role in controlling nutrient export to headwater streams. They further suggest that nutrient uptake by canopy trees is a key control on NO3 -N export in upland riparian zones, and that disruption of the root–soil connection in canopy trees via uprooting promotes significant nutrient loss to streams. Received 30 January 2001; accepted 25 July 2002.  相似文献   

13.
Providing an underutilized source of information for paleoenvironmental reconstructions, birds are rarely used to infer paleoenvironments despite their well-known ecology and extensive Quaternary fossil record. Here, we use the avian fossil record to investigate how Western Palearctic bird assemblages and species ranges have changed across the latter part of the Pleistocene, with focus on the links to climate and the implications for vegetation structure. As a key issue we address the full-glacial presence of trees in Europe north of the Mediterranean region, a widely debated issue with evidence for and against emerging from several research fields and data sources. We compiled and analyzed a database of bird fossil occurrences from archaeological sites throughout the Western Palearctic and spanning the Saalian-Eemian-Weichselian stages, i.e. 190,000–10,000 years BP. In general, cold and dry-adapted species dominated these late Middle Pleistocene and Late Pleistocene fossil assemblages, with clear shifts of northern species southwards during glacials, as well as northwards and westwards shifts of open-vegetation species from the south and east, respectively and downwards shifts of alpine species. A direct link to climate was clear in Northwestern Europe. However, in general, bird assemblages more strongly reflected vegetation changes, underscoring their usefulness for inferring the vegetation structure of past landscapes. Forest-adapted birds were found in continuous high proportions throughout the study period, providing support for the presence of trees north of the Alps, even during full-glacial stages. Furthermore, the results suggest forest-dominated but partially open Eemian landscapes in the Western Palearctic, including the Northwestern European subregion.  相似文献   

14.
The Kyoto protocol has focused the attention of the public and policymarkers on the earth's carbon (C) budget. Previous estimates of the impacts of vegetation change have been limited to equilibrium “snapshots” that could not capture nonlinear or threshold effects along the trajectory of change. New models have been designed to complement equilibrium models and simulate vegetation succession through time while estimating variability in the C budget and responses to episodic events such as drought and fire. In addition, a plethora of future climate scenarios has been used to produce a bewildering variety of simulated ecological responses. Our objectives were to use an equilibrium model (Mapped Atmosphere–Plant–Soil system, or MAPSS) and a dynamic model (MC1) to (a) simulate changes in potential equilibrium vegetation distribution under historical conditions and across a wide gradient of future temperature changes to look for consistencies and trends among the many future scenarios, (b) simulate time-dependent changes in vegetation distribution and its associated C pools to illustrate the possible trajectories of vegetation change near the high and low ends of the temperature gradient, and (c) analyze the extent of the US area supporting a negative C balance. Both models agree that a moderate increase in temperature produces an increase in vegetation density and carbon sequestration across most of the US with small changes in vegetation types. Large increases in temperature cause losses of C with large shifts in vegetation types. In the western states, particularly southern California, precipitation and thus vegetation density increase and forests expand under all but the hottest scenarios. In the eastern US, particularly the Southeast, forests expand under the more moderate scenarios but decline under more severe climate scenarios, with catastrophic fires potentially causing rapid vegetation conversions from forest to savanna. Both models show that there is a potential for either positive or negative feedbacks to the atmosphere depending on the level of warming in the climate change scenarios. Received 12 May 2000; accepted 22 November 2000.  相似文献   

15.
A model is presented for predicting the response of global familydiversity to global environmental change. The model assumesthat three primary mechanisms determine diversity: the capacityto survive the absolute minimum temperature of a site, the abilityto complete the life cycle in a given length and warmth of thegrowing season, and the capacity to expand leaves in a definedregime of precipitation and vegetation transpiration. The directeffects of CO2 on vegetation transpiration are also included. About one-third of the floristic regions of the world exhibitincreased diversity with a 3°C increase in temperature,a 10% increase in precipitation, and a doubling of the CO2 concentration.The addition of CO2 offsets the increased rates of transpiration,caused by global warming through its capacity to reduce transpiration.As a consequence, the diversity of dry regions displayed thegreatest increase in diversity due to increased CO2.  相似文献   

16.
秦岭山地植被净初级生产力及对气候变化的响应   总被引:3,自引:0,他引:3  
基于1999~2009年的NDVI数据和气象数据,利用CASA模型对秦岭山地植被净初级生产力(Net primary productivity,NPP)进行模拟估算,并分析了秦岭NPP的时空变化特征及其对气候变化的响应。结果表明:1999~2009年11年间秦岭山地的平均年NPP为542.24 gC·m-2·a-1;研究期内秦岭NPP呈显著增长趋势(P<0.01),2008年最高(718.77 gC·m-2·a-1),2001年最低(471.78 gC·m-2·a-1);四季对全年NPP的贡献率大小依次为夏季(49.90%)>春季(26.16%)>秋季(18.87%)>冬季(5.07%);月NPP与温度和降水都显著相关,但与温度的相关性更高,月水平上温度对NPP的影响比降水大;生长季期间NPP与温度和降水的相关性在空间分布上都以正相关为主。  相似文献   

17.
Global circulation models forecasts indicate a future temperature and rainfall pattern modification worldwide. Such phenomena will become particularly evident in Europe where climate modifications could be more severe than the average change at the global level. As such, river flow regimes are expected to change, with resultant impacts on aquatic and riparian ecosystems. Riparian woodlands are among the most endangered ecosystems on earth and provide vital services to interconnected ecosystems and human societies. However, they have not been the object of many studies designed to spatially and temporally quantify how these ecosystems will react to climate change-induced flow regimes. Our goal was to assess the effects of climate-changed flow regimes on the existing riparian vegetation of three different European flow regimes. Cases studies were selected in the light of the most common watershed alimentation modes occurring across European regions, with the objective of appraising expected alterations in the riparian elements of fluvial systems due to climate change. Riparian vegetation modeling was performed using the CASiMiR-vegetation model, which bases its computation on the fluvial disturbance of the riparian patch mosaic. Modeling results show that riparian woodlands may undergo not only at least moderate changes for all flow regimes, but also some dramatic adjustments in specific areas of particular vegetation development stages. There are circumstances in which complete annihilation is feasible. Pluvial flow regimes, like the ones in southern European rivers, are those likely to experience more pronounced changes. Furthermore, regardless of the flow regime, younger and more water-dependent individuals are expected to be the most affected by climate change.  相似文献   

18.
Rapid changes in global climate are likely to alter species assemblages and environmental characteristics resulting in novel ecosystems. The ability to predict characteristics of future ecosystems is crucial for environmental planning and the development of effective climate change adaptation strategies. This paper presents an approach for envisioning novel ecosystems in future climates. Focusing on riparian ecosystems, we use qualitative process models to predict likely abiotic and biotic changes in four case study systems: tropical coastal floodplains, temperate streams, high mountain streams and urban riparian zones. We concentrate on functional groups rather than individual species and consider dispersal constraints and the capacity for genetic adaptation. Our scenarios suggest that climatic changes will reduce indigenous diversity, facilitate non-indigenous invasion (especially C4 graminoids), increase fragmentation and result in simplified and less distinctive riparian ecosystems. Compared to models based on biota-environment correlations, process models built on mechanistic understanding (like Bayesian belief networks) are more likely to remain valid under novel climatic conditions. We posit that predictions based on species’ functional traits will facilitate regional comparisons and can highlight effects of climate change on ecosystem structure and function. Ecosystems that have experienced similar modification to that expected under climate change (for example, altered flow regimes of regulated rivers) can be used to help inform and evaluate predictions. By manipulating attributes of these system models (for example, magnitude of climatic changes or adaptation strategies used), implications of various scenarios can be assessed and optimal management strategies identified.  相似文献   

19.
20.
Abstract Forest soil ecology was studied in Fennoscandinavian dry Scots pine forests grazed by reindeer to varying extents (ungrazed, lichen-dominated-sites; grazed sites; and bryophyte-dominated sites). We hypothesized that the productivity parameters of the site (i.e., tree growth and soil nutrient concentrations), the vegetation composition, and the microbial activities are directly correlated. Since the productivity of the lichen-dominated ecosystem is low, microbial activities are assumed to be naturally low. Grazing was expected to decrease both the amount of Scots pine fine roots and the soil microbial activities. Several variables on the characteristics of the soil microbial community, Scots pine fine roots, soil nutrients, and tree growth were studied in relation to vegetation composition by using non-metric multidimensional scaling (NMDS). Basal respiration (Bas), metabolic quotient of the microbial community (qCO2), and pine fine root parameters increased toward the ungrazed, nutrient-poor, lichen-dominated sites, which were grouped at one end of the first axis in the NMDS ordination. Soil nutrient and tree growth parameters and thickness of the humus layer increased toward bryophyte-dominated sites, which were grouped at the other end of the first axis in the ordination. The grazed sites fell between them. These were characterized by lower Bas and qCO2 values and longer lag, compared to ungrazed lichen- or bryophyte-dominated sites, probably due to decreased carbon input and microclimatic change (the soil without lichen carpet is exposed to direct sunlight and wind). Microbial biomass (Cmic), fungal biomass (ergosterol concentration), and the specific growth rate (μCO2) were not related to vegetation ordination. The high fine root production is the most plausible explanation for the high microbial activities at nutrient-poor, lichen-dominated sites, which produce qualitatively poor and slowly decomposing litter, as fine roots secrete considerable amounts of organic substances. At bryophyte-dominated sites, the higher soil nutrient concentrations and the higher production of easily decomposable substrates are likely to maintain the microbial activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号