共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Complex non-linear relationships exist between air and soil temperature responses to climate change. Despite its influence on hydrological and biogeochemical processes, soil temperature has received less attention in climate impact studies. Here we present and apply an empirical soil temperature model to four forest sites along a climatic gradient of Sweden. Future air and soil temperature were projected using an ensemble of regional climate models. Annual average air and soil temperatures were projected to increase, but complex dynamics were projected on a seasonal scale. Future changes in winter soil temperature were strongly dependent on projected snow cover. At the northernmost site, winter soil temperatures changed very little due to insulating effects of snow cover but southern sites with little or no snow cover showed the largest projected winter soil warming. Projected soil warming was greatest in the spring (up to 4°C) in the north, suggesting earlier snowmelt, extension of growing season length and possible northward shifts in the boreal biome. This showed that the projected effects of climate change on soil temperature in snow dominated regions are complex and general assumptions of future soil temperature responses to climate change based on air temperature alone are inadequate and should be avoided in boreal regions. 相似文献
3.
The effects of experimental nitrogen (N) additions (0, 12.5, and 50 kg N ha−1 y−1) on long-term (12 years) understorey vegetation dynamics were examined in a boreal forest. The results showed that two types
of natural enemies of the dominant dwarf-shrub Vaccinium myrtillus (pathogenic fungus of the species Valdensia heterodoxa and herbivorous larvae of the genus Operophtera) influenced the vegetation dynamics. The pathogenic fungus, causing premature leaf-shed of V. myrtillus, showed a strong positive N response during the initial 5-year period. For the larvae, a relatively modest N response was
overshadowed by an almost 40-fold population increase during an outbreak event that followed the initial 5-year period. This
outbreak occurred irrespective of N addition, resulting in V. myrtillus decline and depriving the pathogenic fungus of its substrate. Hence our study demonstrates that vegetation dynamics in this
relatively species poor and seemingly simple ecosystem are driven by complex biotic interactions. Further, we show that an
important component of these interactions is the temporal alternation of the two natural enemies and, resultant regulation
of the dominant plant’s abundance. Finally, we emphasize that long-term data are essential to capture the complexity of this
type of biotic interactions. In our case, a short-term study may have resulted in markedly different conclusions regarding
effects of N enrichment and the role of biotic interactions for forest vegetation dynamics. 相似文献
4.
We examined the impact climate change (CC) will have on the availability of climatically suitable habitat for three native and one exotic riparian species. Due to its increasing prevalence in arid regions throughout the western US, we predicted that an exotic species, Tamarix, would have the greatest increase in suitable habitat relative to native counterparts under CC. We used an ecological niche model to predict range shifts of Populus fremontii, Salix gooddingii, Salix exigua and Tamarix, from present day to 2080s, under five general circulation models and one climate change scenario (A1B). Four major findings emerged. 1) Contrary to our original hypothesis, P. fremontii is projected to have the greatest increase in suitable habitat under CC, followed closely by Tamarix. 2) Of the native species, S. gooddingii and S. exigua showed the greatest loss in predicted suitable habitat due to CC. 3) Nearly 80 percent of future P. fremontii and Salix habitat is predicted to be affected by either CC or Tamarix by the 2080s. 4) By the 2080s, 20 percent of S. gooddingii habitat is projected to be affected by both Tamarix and CC concurrently, followed by S. exigua (19 percent) and P. fremontii (13 percent). In summary, while climate change alone will negatively impact both native willow species, Tamarix is likely to affect a larger portion of all three native species'' distributions. We discuss these and other results in the context of prioritizing restoration and conservation efforts to optimize future productivity and biodiversity. As we are accounting for only direct effects of CC and Tamarix on native habitat, we present a possible hierarchy of effects- from the direct to the indirect- and discuss the potential for the indirect to outweigh the direct effects. Our results highlight the need to account for simultaneous challenges in the face of CC. 相似文献
5.
6.
7.
8.
José L. J. Ledesma Martyn N. Futter M. Blackburn Fredrik Lidman Thomas Grabs Ryan A. Sponseller Hjalmar Laudon Kevin H. Bishop Stephan J. Köhler 《Ecosystems》2018,21(2):297-315
The boreal ecoregion supports about one-third of the world’s forest. Over 90% of boreal forest streams are found in headwaters, where terrestrial–aquatic interfaces are dominated by organic matter (OM)-rich riparian zones (RZs). Because these transition zones are key features controlling catchment biogeochemistry, appropriate RZ conceptualizations are needed to sustainably manage surface water quality in the face of a changing climate and increased demands for forest biomass. Here we present a simple, yet comprehensive, conceptualization of RZ function based on hydrological connectivity, biogeochemical processes, and spatial heterogeneity. We consider four dimensions of hydrological connectivity: (1) laterally along hillslopes, (2) longitudinally along the stream, (3) vertically down the riparian profile, and (4) temporally through event-based and seasonal changes in hydrology. Of particular importance is the vertical dimension, characterized by a ‘Dominant Source Layer’ that has the highest contribution to solute and water fluxes to streams. In addition to serving as the primary source of OM to boreal streams, RZs shape water chemistry through two sets of OM-dependent biogeochemical processes: (1) transport and retention of OM-associated material and (2) redox-mediated transformations controlled by RZ water residence time and availability of labile OM. These processes can lead to both retention and release of pollutants. Variations in width, hydrological connectivity, and OM storage drive spatial heterogeneity in RZ biogeochemical function. This conceptualization provides a useful theoretical framework for environmental scientists and ecologically sustainable and economically effective forest management in the boreal region and elsewhere, where forest headwaters are dominated by low-gradient, OM-rich RZs. 相似文献
9.
J. Alan Yeakley David C. Coleman Bruce L. Haines Brian D. Kloeppel Judy L. Meyer Wayne T. Swank Barry W. Argo James M. Deal Sharon F. Taylor 《Ecosystems》2003,6(2):0154-0167
We investigated the effects of removing near-stream Rhododendron and of the natural blowdown of canopy trees on nutrient export to streams in the southern Appalachians. Transects were instrumented
on adjacent hillslopes in a first-order watershed at the Coweeta Hydrologic Laboratory (35°03′N, 83°25′W). Dissolved organic
carbon (DOC), K+, Na+, Ca2+, Mg2+, NO3
−-N, NH4
+-N, PO4
3−-P, and SO4
2− were measured for 2 years prior to disturbance. In August 1995, riparian Rhododendron on one hillslope was cut, removing 30% of total woody biomass. In October 1995, Hurricane Opal uprooted nine canopy trees
on the other hillslope, downing 81% of the total woody biomass. Over the 3 years following the disturbance, soilwater concentrations
of NO3
−-N tripled on the cut hillslope. There were also small changes in soilwater DOC, SO4
2−, Ca2+, and Mg2+. However, no significant changes occurred in groundwater nutrient concentrations following Rhododendron removal. In contrast, soilwater NO3
−-N on the storm-affected hillslope showed persistent 500-fold increases, groundwater NO3
−-N increased four fold, and streamwater NO3
−-N doubled. Significant changes also occurred in soilwater pH, DOC, SO4
2−, Ca2+, and Mg2+. There were no significant changes in microbial immobilization of soil nutrients or water outflow on the storm-affected hillslope.
Our results suggest that Rhododendron thickets play a relatively minor role in controlling nutrient export to headwater streams. They further suggest that nutrient
uptake by canopy trees is a key control on NO3
−-N export in upland riparian zones, and that disruption of the root–soil connection in canopy trees via uprooting promotes
significant nutrient loss to streams.
Received 30 January 2001; accepted 25 July 2002. 相似文献
10.
Climate Change Effects on Vegetation Distribution and Carbon Budget in the United States 总被引:15,自引:0,他引:15
Dominique Bachelet Ronald P. Neilson James M. Lenihan Raymond J. Drapek 《Ecosystems》2001,4(3):164-185
The Kyoto protocol has focused the attention of the public and policymarkers on the earth's carbon (C) budget. Previous estimates
of the impacts of vegetation change have been limited to equilibrium “snapshots” that could not capture nonlinear or threshold
effects along the trajectory of change. New models have been designed to complement equilibrium models and simulate vegetation
succession through time while estimating variability in the C budget and responses to episodic events such as drought and
fire. In addition, a plethora of future climate scenarios has been used to produce a bewildering variety of simulated ecological
responses. Our objectives were to use an equilibrium model (Mapped Atmosphere–Plant–Soil system, or MAPSS) and a dynamic model
(MC1) to (a) simulate changes in potential equilibrium vegetation distribution under historical conditions and across a wide
gradient of future temperature changes to look for consistencies and trends among the many future scenarios, (b) simulate
time-dependent changes in vegetation distribution and its associated C pools to illustrate the possible trajectories of vegetation
change near the high and low ends of the temperature gradient, and (c) analyze the extent of the US area supporting a negative
C balance. Both models agree that a moderate increase in temperature produces an increase in vegetation density and carbon
sequestration across most of the US with small changes in vegetation types. Large increases in temperature cause losses of
C with large shifts in vegetation types. In the western states, particularly southern California, precipitation and thus vegetation
density increase and forests expand under all but the hottest scenarios. In the eastern US, particularly the Southeast, forests
expand under the more moderate scenarios but decline under more severe climate scenarios, with catastrophic fires potentially
causing rapid vegetation conversions from forest to savanna. Both models show that there is a potential for either positive
or negative feedbacks to the atmosphere depending on the level of warming in the climate change scenarios.
Received 12 May 2000; accepted 22 November 2000. 相似文献
11.
Providing an underutilized source of information for paleoenvironmental reconstructions, birds are rarely used to infer paleoenvironments despite their well-known ecology and extensive Quaternary fossil record. Here, we use the avian fossil record to investigate how Western Palearctic bird assemblages and species ranges have changed across the latter part of the Pleistocene, with focus on the links to climate and the implications for vegetation structure. As a key issue we address the full-glacial presence of trees in Europe north of the Mediterranean region, a widely debated issue with evidence for and against emerging from several research fields and data sources. We compiled and analyzed a database of bird fossil occurrences from archaeological sites throughout the Western Palearctic and spanning the Saalian-Eemian-Weichselian stages, i.e. 190,000–10,000 years BP. In general, cold and dry-adapted species dominated these late Middle Pleistocene and Late Pleistocene fossil assemblages, with clear shifts of northern species southwards during glacials, as well as northwards and westwards shifts of open-vegetation species from the south and east, respectively and downwards shifts of alpine species. A direct link to climate was clear in Northwestern Europe. However, in general, bird assemblages more strongly reflected vegetation changes, underscoring their usefulness for inferring the vegetation structure of past landscapes. Forest-adapted birds were found in continuous high proportions throughout the study period, providing support for the presence of trees north of the Alps, even during full-glacial stages. Furthermore, the results suggest forest-dominated but partially open Eemian landscapes in the Western Palearctic, including the Northwestern European subregion. 相似文献
12.
A model is presented for predicting the response of global familydiversity to global environmental change. The model assumesthat three primary mechanisms determine diversity: the capacityto survive the absolute minimum temperature of a site, the abilityto complete the life cycle in a given length and warmth of thegrowing season, and the capacity to expand leaves in a definedregime of precipitation and vegetation transpiration. The directeffects of CO2 on vegetation transpiration are also included. About one-third of the floristic regions of the world exhibitincreased diversity with a 3°C increase in temperature,a 10% increase in precipitation, and a doubling of the CO2 concentration.The addition of CO2 offsets the increased rates of transpiration,caused by global warming through its capacity to reduce transpiration.As a consequence, the diversity of dry regions displayed thegreatest increase in diversity due to increased CO2. 相似文献
13.
秦岭山地植被净初级生产力及对气候变化的响应 总被引:3,自引:0,他引:3
袁博;白红英;章杰;马新萍 《植物研究》2013,33(2):225-231
基于1999~2009年的NDVI数据和气象数据,利用CASA模型对秦岭山地植被净初级生产力(Net primary productivity,NPP)进行模拟估算,并分析了秦岭NPP的时空变化特征及其对气候变化的响应。结果表明:1999~2009年11年间秦岭山地的平均年NPP为542.24 gC·m-2·a-1;研究期内秦岭NPP呈显著增长趋势(P<0.01),2008年最高(718.77 gC·m-2·a-1),2001年最低(471.78 gC·m-2·a-1);四季对全年NPP的贡献率大小依次为夏季(49.90%)>春季(26.16%)>秋季(18.87%)>冬季(5.07%);月NPP与温度和降水都显著相关,但与温度的相关性更高,月水平上温度对NPP的影响比降水大;生长季期间NPP与温度和降水的相关性在空间分布上都以正相关为主。 相似文献
14.
Rui P. Rivaes Patricia M. Rodríguez-González Maria Teresa Ferreira António N. Pinheiro Emilio Politti Gregory Egger Alicia García-Arias Felix Francés 《PloS one》2014,9(10)
Global circulation models forecasts indicate a future temperature and rainfall pattern modification worldwide. Such phenomena will become particularly evident in Europe where climate modifications could be more severe than the average change at the global level. As such, river flow regimes are expected to change, with resultant impacts on aquatic and riparian ecosystems. Riparian woodlands are among the most endangered ecosystems on earth and provide vital services to interconnected ecosystems and human societies. However, they have not been the object of many studies designed to spatially and temporally quantify how these ecosystems will react to climate change-induced flow regimes. Our goal was to assess the effects of climate-changed flow regimes on the existing riparian vegetation of three different European flow regimes. Cases studies were selected in the light of the most common watershed alimentation modes occurring across European regions, with the objective of appraising expected alterations in the riparian elements of fluvial systems due to climate change. Riparian vegetation modeling was performed using the CASiMiR-vegetation model, which bases its computation on the fluvial disturbance of the riparian patch mosaic. Modeling results show that riparian woodlands may undergo not only at least moderate changes for all flow regimes, but also some dramatic adjustments in specific areas of particular vegetation development stages. There are circumstances in which complete annihilation is feasible. Pluvial flow regimes, like the ones in southern European rivers, are those likely to experience more pronounced changes. Furthermore, regardless of the flow regime, younger and more water-dependent individuals are expected to be the most affected by climate change. 相似文献
15.
Jane A. Catford Robert J. Naiman Lynda E. Chambers Jane Roberts Michael Douglas Peter Davies 《Ecosystems》2013,16(3):382-400
Rapid changes in global climate are likely to alter species assemblages and environmental characteristics resulting in novel ecosystems. The ability to predict characteristics of future ecosystems is crucial for environmental planning and the development of effective climate change adaptation strategies. This paper presents an approach for envisioning novel ecosystems in future climates. Focusing on riparian ecosystems, we use qualitative process models to predict likely abiotic and biotic changes in four case study systems: tropical coastal floodplains, temperate streams, high mountain streams and urban riparian zones. We concentrate on functional groups rather than individual species and consider dispersal constraints and the capacity for genetic adaptation. Our scenarios suggest that climatic changes will reduce indigenous diversity, facilitate non-indigenous invasion (especially C4 graminoids), increase fragmentation and result in simplified and less distinctive riparian ecosystems. Compared to models based on biota-environment correlations, process models built on mechanistic understanding (like Bayesian belief networks) are more likely to remain valid under novel climatic conditions. We posit that predictions based on species’ functional traits will facilitate regional comparisons and can highlight effects of climate change on ecosystem structure and function. Ecosystems that have experienced similar modification to that expected under climate change (for example, altered flow regimes of regulated rivers) can be used to help inform and evaluate predictions. By manipulating attributes of these system models (for example, magnitude of climatic changes or adaptation strategies used), implications of various scenarios can be assessed and optimal management strategies identified. 相似文献
16.
17.
Detailed understanding of a possible decoupling between climatic drivers of plant productivity and the response of ecosystems vegetation is required. We compared trends in six NDVI metrics (1982–2010) derived from the GIMMS3g dataset with modelled biomass productivity and assessed uncertainty in trend estimates. Annual total biomass weight (TBW) was calculated with the LINPAC model. Trends were determined using a simple linear regression, a Thiel-Sen medium slope and a piecewise regression (PWR) with two segments. Values of NDVI metrics were related to Net Primary Production (MODIS-NPP) and TBW per biome and land-use type. The simple linear and Thiel-Sen trends did not differ much whereas PWR increased the fraction of explained variation, depending on the NDVI metric considered. A positive trend in TBW indicating more favorable climatic conditions was found for 24% of pixels on land, and for 5% a negative trend. A decoupled trend, indicating positive TBW trends and monotonic negative or segmented and negative NDVI trends, was observed for 17–36% of all productive areas depending on the NDVI metric used. For only 1–2% of all pixels in productive areas, a diverging and greening trend was found despite a strong negative trend in TBW. The choice of NDVI metric used strongly affected outcomes on regional scales and differences in the fraction of explained variation in MODIS-NPP between biomes were large, and a combination of NDVI metrics is recommended for global studies. We have found an increasing difference between trends in climatic drivers and observed NDVI for large parts of the globe. Our findings suggest that future scenarios must consider impacts of constraints on plant growth such as extremes in weather and nutrient availability to predict changes in NPP and CO2 sequestration capacity. 相似文献
18.
19.
Christofer Åström Joacim Rocklöv Simon Hales Andreas Béguin Valerie Louis Rainer Sauerborn 《EcoHealth》2012,9(4):448-454
Dengue fever is the most important viral vector-borne disease with ~50 million cases per year globally. Previous estimates of the potential effect of global climate change on the distribution of vector-borne disease have not incorporated the effect of socioeconomic factors, which may have biased the results. We describe an empirical model of the current geographic distribution of dengue, based on the independent effects of climate and gross domestic product per capita (GDPpc, a proxy for socioeconomic development). We use the model, along with scenario-based projections of future climate, economic development, and population, to estimate populations at risk of dengue in the year 2050. We find that both climate and GDPpc influence the distribution of dengue. If the global climate changes as projected but GDPpc remained constant, the population at risk of dengue is estimated to increase by about 0.28 billion in 2050. However, if both climate and GDPpc change as projected, we estimate a decrease of 0.12 billion in the population at risk of dengue in 2050. Empirically, the geographic distribution of dengue is strongly dependent on both climatic and socioeconomic variables. Under a scenario of constant GDPpc, global climate change results in a modest but important increase in the global population at risk of dengue. Under scenarios of high GDPpc, this adverse effect of climate change is counteracted by the beneficial effect of socioeconomic development. 相似文献
20.
Olson Stacey K. Smithwick Erica A. H. Lucash Melissa S. Scheller Robert M. Nicholas Robert E. Ruckert Kelsey L. Caldwell Christopher M. 《Ecosystems》2021,24(7):1756-1774
Ecosystems - Emerald ash borer (EAB; Agrilus planipennis Farimaire) has been found in 35 US states and five Canadian provinces. This invasive beetle is causing widespread mortality to ash trees... 相似文献