共查询到20条相似文献,搜索用时 15 毫秒
1.
Experimental evidence for impacts of increased climatic variability and extremes on ecosystems is urgently needed. The constraint in our knowledge, however, is not caused by the uncertainty in the applied climate scenarios. We need mechanistic understanding from experiments challenging ecological thresholds coupled with ecosystem models to allow for meaningful up‐scaling. 相似文献
2.
3.
4.
《Plant Ecology & Diversity》2013,6(3-4):307-318
Background: Seedling germination and survival is a critical control on forest ecosystem boundaries, such as at the alpine–treeline ecotone. In addition, while it is known that species respond individualistically to the same suite of environmental drivers, the potential additional effect of local adaptation on seedling success has not been evaluated. Aims: To determine whether local adaptation may influence the position and movement of forest ecosystem boundaries, we quantified conifer seedling recruitment in common gardens across a subalpine forest to alpine tundra gradient at Niwot Ridge, Colorado, USA. Methods: We studied Pinus flexilis and Picea engelmannii grown from seed collected locally at High (3400 m a.s.l.) and Low (3060 m a.s.l.) elevations. We monitored emergence and survival of seeds sown directly into plots and survival of seedlings germinated indoors and transplanted after snowmelt. Results: Emergence and survival through the first growing season was greater for P. flexilis than P. engelmannii and for Low compared with High provenances. Yet survival through the second growing season was similar for both species and provenances. Seedling emergence and survival tended to be greatest in the subalpine forest and lowest in the alpine tundra. Survival was greater for transplants than for field-germinated seedlings. Conclusions: These results suggest that survival through the first few weeks is critical to the establishment of natural germinants. In addition, even small distances between seed sources can have a significant effect on early demographic performance – a factor that has rarely been considered in previous studies of tree recruitment and species range shifts. 相似文献
5.
6.
Rieks D. van Klinken Ben E. Lawson Myron P. Zalucki 《Global Ecology and Biogeography》2009,18(6):688-700
Aim To test how well species distributions and abundance can be predicted following invasion and climate change when using only species distribution and abundance data to estimate parameters.
Location Models were developed for the species' native range in the Americas and applied to Australia.
Methods We developed a predictive model for an invasive neotropical shrub ( Parkinsonia aculeata) using a popular ecophysiological bioclimatic modelling technique (CLIMEX) fitted against distribution and abundance data in the Americas. The effect of uncertainty in model parameter estimates on predictions in Australia was tested. Alternative data sources were used when model predictions were sensitive to uncertainty in parameter estimates. The resulting best-fit model was run under two climate change scenarios.
Results Of the 19 parameters used, 9 could not be fitted using data from the native range. However, only parameters that lowered temperature or increased moisture requirements for growth noticeably altered the model prediction in Australia. Differences in predictions were dramatic, and reflect climates in Australia that were not represented in the Americas (novel climates). However, these poorly fitted parameters could be fitted post hoc using alternative data sources prior to predicting responses to climate change.
Conclusions Novel climates prevented the development of a predictive model which relied only on native-range distribution and abundance data because certain parameters could not be fitted. In fact, predictions were more sensitive to parameter uncertainty than to climate change scenarios. Where uncertainty in parameter estimates affected predictions, it could be addressed through the inclusion of alternative data sources. However, this may not always be possible, for example in the absence of post-invasion data. 相似文献
Location Models were developed for the species' native range in the Americas and applied to Australia.
Methods We developed a predictive model for an invasive neotropical shrub ( Parkinsonia aculeata) using a popular ecophysiological bioclimatic modelling technique (CLIMEX) fitted against distribution and abundance data in the Americas. The effect of uncertainty in model parameter estimates on predictions in Australia was tested. Alternative data sources were used when model predictions were sensitive to uncertainty in parameter estimates. The resulting best-fit model was run under two climate change scenarios.
Results Of the 19 parameters used, 9 could not be fitted using data from the native range. However, only parameters that lowered temperature or increased moisture requirements for growth noticeably altered the model prediction in Australia. Differences in predictions were dramatic, and reflect climates in Australia that were not represented in the Americas (novel climates). However, these poorly fitted parameters could be fitted post hoc using alternative data sources prior to predicting responses to climate change.
Conclusions Novel climates prevented the development of a predictive model which relied only on native-range distribution and abundance data because certain parameters could not be fitted. In fact, predictions were more sensitive to parameter uncertainty than to climate change scenarios. Where uncertainty in parameter estimates affected predictions, it could be addressed through the inclusion of alternative data sources. However, this may not always be possible, for example in the absence of post-invasion data. 相似文献
7.
Philip K Thornton Polly J Ericksen Mario Herrero Andrew J Challinor 《Global Change Biology》2014,20(11):3313-3328
The focus of the great majority of climate change impact studies is on changes in mean climate. In terms of climate model output, these changes are more robust than changes in climate variability. By concentrating on changes in climate means, the full impacts of climate change on biological and human systems are probably being seriously underestimated. Here, we briefly review the possible impacts of changes in climate variability and the frequency of extreme events on biological and food systems, with a focus on the developing world. We present new analysis that tentatively links increases in climate variability with increasing food insecurity in the future. We consider the ways in which people deal with climate variability and extremes and how they may adapt in the future. Key knowledge and data gaps are highlighted. These include the timing and interactions of different climatic stresses on plant growth and development, particularly at higher temperatures, and the impacts on crops, livestock and farming systems of changes in climate variability and extreme events on pest‐weed‐disease complexes. We highlight the need to reframe research questions in such a way that they can provide decision makers throughout the food system with actionable answers, and the need for investment in climate and environmental monitoring. Improved understanding of the full range of impacts of climate change on biological and food systems is a critical step in being able to address effectively the effects of climate variability and extreme events on human vulnerability and food security, particularly in agriculturally based developing countries facing the challenge of having to feed rapidly growing populations in the coming decades. 相似文献
8.
9.
Modelling both dominance and species distribution provides a more complete picture of changes to mangrove ecosystems under climate change 下载免费PDF全文
Beth Crase Peter A. Vesk Adam Liedloff Brendan A. Wintle 《Global Change Biology》2015,21(8):3005-3020
Dominant species influence the composition and abundance of other species present in ecosystems. However, forecasts of distributional change under future climates have predominantly focused on changes in species distribution and ignored possible changes in spatial and temporal patterns of dominance. We develop forecasts of spatial changes for the distribution of species dominance, defined in terms of basal area, and for species occurrence, in response to sea level rise for three tree taxa within an extensive mangrove ecosystem in northern Australia. Three new metrics are provided, indicating the area expected to be suitable under future conditions (Eoccupied), the instability of suitable area (Einstability) and the overlap between the current and future spatial distribution (Eoverlap). The current dominance and occurrence were modelled in relation to a set of environmental variables using boosted regression tree (BRT) models, under two scenarios of seedling establishment: unrestricted and highly restricted. While forecasts of spatial change were qualitatively similar for species occurrence and dominance, the models of species dominance exhibited higher metrics of model fit and predictive performance, and the spatial pattern of future dominance was less similar to the current pattern than was the case for the distributions of species occurrence. This highlights the possibility of greater changes in the spatial patterning of mangrove tree species dominance under future sea level rise. Under the restricted seedling establishment scenario, the area occupied by or dominated by a species declined between 42.1% and 93.8%, while for unrestricted seedling establishment, the area suitable for dominance or occurrence of each species varied from a decline of 68.4% to an expansion of 99.5%. As changes in the spatial patterning of dominance are likely to cause a cascade of effects throughout the ecosystem, forecasting spatial changes in dominance provides new and complementary information in addition to that provided by forecasts of species occurrence. 相似文献
10.
Diversity and assemblage structure of phytophagous Hemiptera along a latitudinal gradient: predicting the potential impacts of climate change 总被引:3,自引:0,他引:3
Aims The aims were (1) to assess the species richness and structure of phytophagous Hemiptera communities along a latitudinal gradient, (2) to identify the importance of rare species in structuring these patterns, and (3) to hypothesize about how phytophagous Hemiptera communities may respond to future climate change. Location East coast of Australia. Methods Four latitudes within the 1150 km coastal distribution of Acacia falcata were selected. The insect assemblage on the host plant Acacia falcata was sampled seasonally over two years. Congeneric plant species were also sampled at the sites. Results Ninety‐eight species of phytophagous Hemiptera were collected from A. falcata. Total species richness was significantly lower at the most temperate latitude compared to the three more tropical latitudes. We classified species into four climate change response groups depending on their latitudinal range and apparent host specificity. Pairwise comparisons between groups showed that the cosmopolitan, generalist feeders and specialists had a similar community structure to each other, but the climate generalists had a significantly different structure. Fifty‐seven species were identified as rare. Most of these rare species were phloem hoppers and their removal from the dataset led to changes in the proportional representation of all guilds in two groups: the specialist and generalist feeders. Main conclusions We found no directional increase in phytophagous Hemiptera species richness. This indicates that, at least in the short term, species richness patterns of these communities may be similar to that found today. As the climate continues to change, however, we might expect some increases in species richness at the more temperate latitudes as species migrate in response to shifting climate zones. In the longer term, more substantial changes in community composition will be expected because the rare species, which comprise a large fraction of these communities, will be vulnerable to both direct climatic changes, and indirect effects via changes to their host's distribution. 相似文献
11.
Timothy C. Bonebrake Carol L. Boggs Jeannie A. Stamberger Curtis A. Deutsch Paul R. Ehrlich 《Proceedings. Biological sciences / The Royal Society》2014,281(1793)
Difficulty in characterizing the relationship between climatic variability and climate change vulnerability arises when we consider the multiple scales at which this variation occurs, be it temporal (from minute to annual) or spatial (from centimetres to kilometres). We studied populations of a single widely distributed butterfly species, Chlosyne lacinia, to examine the physiological, morphological, thermoregulatory and biophysical underpinnings of adaptation to tropical and temperate climates. Microclimatic and morphological data along with a biophysical model documented the importance of solar radiation in predicting butterfly body temperature. We also integrated the biophysics with a physiologically based insect fitness model to quantify the influence of solar radiation, morphology and behaviour on warming impact projections. While warming is projected to have some detrimental impacts on tropical ectotherms, fitness impacts in this study are not as negative as models that assume body and air temperature equivalence would suggest. We additionally show that behavioural thermoregulation can diminish direct warming impacts, though indirect thermoregulatory consequences could further complicate predictions. With these results, at multiple spatial and temporal scales, we show the importance of biophysics and behaviour for studying biodiversity consequences of global climate change, and stress that tropical climate change impacts are likely to be context-dependent. 相似文献
12.
Abstract. 1. Assemblages of phytophagous beetles on Acacia were examined along a 1150 km latitudinal gradient in eastern Australia to investigate the potential effects of climate change on insect communities. The latitudinal gradient was used as a surrogate for differences in temperature. Several possible confounding variables were held constant by selecting comparable sites and emphasising a single host-plant species.
2. Total species richness increased towards the tropics, but there were no significant differences among latitudes for average species density, species richness, Fisher's α , or average Chao-1 index.
3. Beetles sampled along the gradient were classified into four climate change response groups, depending on their latitudinal range and apparent host specificity: cosmopolitan species, generalist feeders , climate generalists , and specialists . These four groups might respond differently to shifting climate zones. Cosmopolitan species (22% of community, found at more than one latitude and on more than one host plant) may be resilient to climate change. Generalist feeders (16%, found only at one latitude but found on more than one Acacia species) may well feed on several species but will have to move with their climatic envelope. Climate generalists (6%, found only on Acacia falcata but found at more than one latitude) may be constrained by the host species' ability to either cope with the changing climate or move with it. Finally, specialists (55%, found only on A. falcata and at only one latitude) may be forced to move poleward concurrently with their host species, or go extinct.
4. The analyses indicate that community structure may be fairly resilient to temperature change. The displacement or local extinction of species, especially the species that are found at only one latitude and on only one host plant, however, may lead to significant changes in community composition. 相似文献
2. Total species richness increased towards the tropics, but there were no significant differences among latitudes for average species density, species richness, Fisher's α , or average Chao-1 index.
3. Beetles sampled along the gradient were classified into four climate change response groups, depending on their latitudinal range and apparent host specificity: cosmopolitan species, generalist feeders , climate generalists , and specialists . These four groups might respond differently to shifting climate zones. Cosmopolitan species (22% of community, found at more than one latitude and on more than one host plant) may be resilient to climate change. Generalist feeders (16%, found only at one latitude but found on more than one Acacia species) may well feed on several species but will have to move with their climatic envelope. Climate generalists (6%, found only on Acacia falcata but found at more than one latitude) may be constrained by the host species' ability to either cope with the changing climate or move with it. Finally, specialists (55%, found only on A. falcata and at only one latitude) may be forced to move poleward concurrently with their host species, or go extinct.
4. The analyses indicate that community structure may be fairly resilient to temperature change. The displacement or local extinction of species, especially the species that are found at only one latitude and on only one host plant, however, may lead to significant changes in community composition. 相似文献
13.
Predicted climate change in the Andes will require plant species to migrate upslope to avoid extinction. Central to predictions of species responses to climate change is an understanding of species distributions along environmental gradients. Environmental gradients are frequently modelled as abiotic, but biotic interactions can play important roles in setting species distributions, abundances, and life history traits. Biotic interactions also have the potential to influence species responses to climate change, yet they remain mostly unquantified. An important interaction long studied in tropical forests is postdispersal seed predation which has been shown to affect the population dynamics, community structure, and diversity of plant species in time and space. This paper presents a comparative seed predation study of 24 species of tropical trees across a 2.5 km elevation gradient in the Peruvian Andes and quantifies seed predation variation across the elevational gradient. We then use demographic modelling to assess effects of the observed variation in seed predation on population growth rates in response to observed increasing temperatures in the area. We found marked variation among species in total seed predation depending on the major seed predator of the species and consistent changes in seed predation across the gradient. There was a significant increase in seed survival with increasing elevation, a trend that appears to be driven by regulation of seed predators via top–down forces in the lowlands giving way to bottom–up (productivity) regulation at mid‐ to high elevations, resulting in a ninefold increase in effective fecundity for trees at high elevations. This potential increase in seed crop size strongly affects modelled plant population growth and seed dispersal distances, increasing population migration potential in the face of climate change. These results also indicate that species interactions can have effects on par with climate in species responses to global change. 相似文献
14.
REBECCA MORAN IAN HARVEY BRIAN MOSS HEIDRUN FEUCHTMAYR KEITH HATTON TOM HEYES DAVID ATKINSON 《Freshwater Biology》2010,55(2):315-325
1. Shallow lakes and their ectothermic inhabitants are particularly vulnerable to the effects of climatic warming. These impacts are likely to depend on nutrient loading, especially if the combination of warming and eutrophication leads to severe hypoxia. 2. To investigate effects of realistic warming and nutrient loading on a fish species with high tolerance of warming and hypoxia, we observed population changes and timing of reproduction of three‐spined sticklebacks in 24 outdoor shallow freshwater ecosystems with combinations of temperature (ambient and ambient +4 °C) and three nutrient treatments over 16 months. 3. Warming reduced stickleback population biomass by 60% (population size by 76%) and nutrient‐addition reduced biomass by about 80% (population size 95%). Nutrients and warming together resulted in extinction of the stickleback populations. These losses were mainly attributed to the increased likelihood of severe hypoxia in heated and nutrient‐addition mesocosms. 4. Warming of nutrient‐rich waters can thus have dire consequences for freshwater ectotherm populations. The loss even of a hardy fish suggests a precarious future for many less tolerant species in such eutrophic systems under current climate change predictions. 相似文献
15.
Michal Šorf Thomas A. Davidson Sandra Brucet Rosemberg F. Menezes Martin Søndergaard Torben L. Lauridsen Frank Landkildehus Lone Liboriussen Erik Jeppesen 《Hydrobiologia》2015,742(1):185-203
Zooplankton community response to the combined effects of nutrients and fish (hereafter N + F) at contrasting temperatures was studied in a long-term experiment conducted in 24 shallow lake mesocosms with low and high nutrient levels. We found a positive effect of N + F on zooplankton biomass, chlorophyll-a and turbidity. In contrast, zooplankton species and size diversity decreased with added N + F, as did submerged macrophyte plant volume inhabited (PVI). The community composition of zooplankton in high N + F mesocosms was related to chlorophyll-a and turbidity and to macrophyte PVI in the low N + F mesocosms. Macrophytes can protect zooplankton from fish predation. Compared to N + F effects, temperature appeared to have little effect on the zooplankton community. Yet analysis of community heterogeneity among treatments indicated a significant temperature effect at high N + F levels. The results indicate an indirect temperature effect at high N + F levels that can be attributed to temperature-dependent variation in fish density and/or chlorophyll-a concentration. 相似文献
16.
Gouttenoire L Fiorelli JL Trommenschlager JM Coquil X Cournut S 《Animal : an international journal of animal bioscience》2010,4(6):827-841
Reproductive performance has recently been a growing concern in cattle dairy systems, but few research methodologies are available to address it as a complex problem in a livestock farming system. The aim of this paper is to propose a methodology that combines both systemic and analytical approaches in order to better understand and improve reproductive performance in a cattle dairy system. The first phase of our methodology consists in a systemic approach to build the terms of the problem. It results in formalising a set of potential risk factors relevant for the particular system under consideration. The second phase is based on an analytical approach that involves both analysing the shapes of the individual lactation curves and carrying out logistic regression procedures to study the links between reproductive performance and the previously identified potential risk factors. It makes it possible to formulate hypotheses about the biotechnical phenomena underpinning reproductive performance. The last phase is another systemic approach that aims at suggesting new practices to improve the situation. It pays particular attention to the consistency of those suggestions with the farmer's general objectives. This methodology was applied to a French system experiment based on an organic low-input grazing system. It finally suggested to slightly modify the dates of the breeding period so as to improve reproductive performance. The formulated hypotheses leading to this suggestion involved both the breed (Holstein or Montbéliarde cows), the parity, the year and the calving date with regard to the turnout date as the identified risk factors of impaired performance. Possible use of such a methodology in any commercial farm encountering a biotechnical problem is discussed. 相似文献
17.
Sexually antagonistic coevolution in a mating system: combining experimental and comparative approaches to address evolutionary processes 总被引:3,自引:0,他引:3
We combined experimental and comparative techniques to study the evolution of mating behaviors within in a clade of 15 water striders (Gerris spp.). Superfluous multiple mating is costly to females in this group, and consequently there is overt conflict between the sexes over mating. Two alternative hypotheses that could generate interspecific variation in mating behaviors are tested: interspecific variation in optimal female mating rate versus sexually antagonistic coevolution of persistence and resistance traits. These potentially coevolving traits include male grasping and female antigrasping structures that further the interests of one sex over the other during premating struggles. Both processes are known to play a role in observed behavioral variation within species. We used two large sets of experiments to quantify behavioral differences among species, as well as their response to an environmentally (sex-ratio) induced change in optimal female mating rate. Our analysis revealed a large degree of continuous interspecific variation in all 20 quantified behavioral variables. Nevertheless, species shared the same set of behaviors, and each responded in a qualitatively similar fashion to sex-ratio alterations. A remarkably large proportion (> 50%) of all interspecific variation in the magnitude of behaviors, including their response to sex ratio, could be captured by a single multivariate axis. These data suggest tight coevolution of behaviors within a shared mating system. The pattern of correlated evolution was best accounted for by antagonistic coevolution in the relative abilities of each sex to control the outcome of premating struggles. In species where males have a relative advantage, mating activity is high, and the opposite is found in species where females have gained a relative advantage. Our analyses also suggested that evolution has been unconstrained by history, with no consistent evolutionary tendency toward or away from male or female relative advantage. 相似文献
18.
19.
Resilience of Mediterranean shrubland to a severe drought episode: the role of seed bank and seedling emergence 总被引:2,自引:0,他引:2
Extreme climate events, such as severe drought episodes, may induce changes in vegetation if they induce species‐specific adult mortality and changes in the seedling recruitment pattern. In 2005 a severe drought occurred in Doñana National Park (south Spain) causing extensive shrubland mortality. Over the following years we monitored the soil seed bank and seedling emergence via a gradient of canopy dieback induced by the drought episode. The canopy dieback corresponded to an increase in emergence of seedlings of woody species in 2007, probably because of the reduced competition induced by canopy loss. The soil seed bank of woody species sampled in 2008 was less abundant on plots with a higher proportion of dead vegetation, probably because of depletion of the seed bank as a result of the increased germination in the previous year and also as a result of a reduction in seed supply in these sites. Accordingly, in 2009 we detected reduced emergence of woody species on plots that had suffered the greatest shrub mortality. We failed to find any significant changes in patterns of the soil seed bank and seedling emergence of short‐lived herbaceous species, indicating greater resilience in these types of species. This study highlights the resilience of Mediterranean shrublands to climate fluctuations at one extreme of the variability characteristic of these ecosystems. An increase in the frequency of severe drought episodes – increasingly probable under the new climate conditions – does have the potential, however, to induce changes in vegetation, especially in woody communities that need more time to replenish their seed banks. 相似文献
20.
STEVEN O. LINK JEFFREY L. SMITH† JONATHAN J. HALVORSON‡ HARVEY BOLTON JR § 《Global Change Biology》2003,9(7):1097-1105
We investigated the effect of climate change on Poa secunda Presl. and soils in a shrub‐steppe ecosystem in south‐eastern Washington. Intact soil cores containing P. secunda were reciprocally transplanted between two elevations. Plants and soils were examined, respectively, 4.5 and 5 years later. The lower elevation (310 m) site is warmer (28.5 °C air average monthly maximum) and drier (224 mm yr?1) than the upper elevation (844 m) site (23.5 °C air average monthly maximum, 272 mm yr?1). Observations were also made on undisturbed plants at both sites. There was no effect of climate change on plant density, shoot biomass, or carbon isotope discrimination in either transplanted plant population. The cooler, wetter environment significantly reduced percent cover and leaf length, while the warmer, drier environment had no effect. Warming and drying reduced percent shoot nitrogen, while the cooler, wetter environment had no effect. Culm density was zero for the lower elevation plants transplanted to the upper site and was 10.3 culms m?2 at the lower site. There was no effect of warming and drying on the culm density of the upper elevation plants. Culm density of in situ lower elevation plants was greater than that of the in situ upper elevation plants. Warming and drying reduced total soil carbon 32% and total soil nitrogen 40%. The cooler, wetter environment had no effect on total soil C or N. Of the C and N that was lost over time, 64% of both came from the particulate organic matter fraction (POM, > 53 µ m). There was no effect of warming and drying on the upper population of P. secunda while exposing the lower population to the cooler, wetter environment reduced reproductive effort and percent cover. With the warmer and drier conditions that may develop with climate change, total C and N of semiarid soils may decrease with the active fraction of soil C also rapidly decreasing, which may alter ecosystem diversity and function. 相似文献