首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary This study reports for the first time the establishment of immortalized cell lines from normal adult rat parotid glands. The freshly prepared cellular clumps obtained from parotid glands of isoproterenol-treated rats were incubated in 0.2% trypsin solution without EDTA. These clumps were transfected with plasmid vectors pSV 3 neo and pSV 5 neo by electroporation and calcium phosphate-Co-DNA-precipitation techniques. The untransfected and transfected cellular clumps were plated in precoated dishes containing modified MCDB-153 medium. Epithelial cells grew from the clumps that were attached. All epithelial cells from untransfected culture died within 6 to 8 wk. Two cell lines which were isolated from transfected cultures subsequently grew on regular tissue culture dishes. One of them, which was isolated from pSV 5 neo transfected cultures, exhibited non-epithelial cell morphology, but at confluency, many cells mature to acinar-like cells containing numerous granules. The other cell line (2RS), which was isolated from pSV 3 neo transfected culture, contained cells of non-epithelial and epithelial morphology. During the initial phase of the growth, MCDB-153 medium was essential; however, at a later time, RPMI medium was better than MCDB-153 or F12 medium for maintaining morphology and growth of these cells. The immortalized cells grew in RPMI with a doubling time of about 25 h, synthesize T-antigen,α-amylase mRNAs of 1176 and 702 bp, andα-amylase and were non-tumorigenic. These amylase-producing cells can be a useful model to study the mechanisms of regulation of growth and differentiation in these cells.  相似文献   

2.
Summary This study reports the isolation and characterization of a rat nontumorigenic parotid acinar cell clone (2RSG), a human nontumorigenic parotid acinar cell clone (2HPC8), and a human tumorigenic acinar clone (2HP1G). The levels ofα-amylase mRNAs detected when usingα-amylase cDNA of 1176 and 702 bp for hybridization were higher in 2RSG and 2HPC8 cells than their respective whole parotid glands. The level of these mRNAs decreased in 2HP1G cells. In contrast toα-amylase mRNAs levels, theα-amylase activity in cultured acinar cells was extremely low in comparison to whole glands, irrespective of species or cell status. The levels of proline-rich protein (PRP) mRNA and parotid secretory protein (PSP) mRNA detected when using PRP cDNA of 600 bp and PSP cDNA of 805 bp for hybridization were higher in 2RSG cells than those in rat parotid glands; the reverse was observed in 2HPC8 cells and human parotid glands. The levels of PRP mRNA and PSP mRNA in 2HPC8 and 2HP1G acinar cells were similar. The level of mRNA was not detectable in murine neuroblastoma cells (NBP2) using the sameα-amylase cDNA, PRP cDNA and PSP cDNA for hybridization. The PSP level in rat parotid gland was lower than that found in 2RSG cells; the reverse was observed in 2HPC8 cells and human parotid glands. The level of PSP in 2HP1G cells was higher than that found in 2HPC8 cells. Isoproterenol increased the cAMP level in 2RSG, 2HPC8, and 2HP1G clones, being most effective in 2RSG cells, and least effective in 2HPG cells. Prostaglandin E1 (PGE1) also increased cAMP level, being most effective in 2HPC8 cells and ineffective in 2HP1G cells, suggesting that the PGE1 receptor-linked adenylate cyclase becomes inactive upon transformation. These results suggest that the three clonal acinar cells from rat and human parotid glands reported here can be useful in comparative studies on regulation of growth, differentiation, and transformation.  相似文献   

3.
The cloning of α-amylase gene ofS. occidentalis and the construction of starch digestible strain of yeast,S. cerevisiae AS. 2. 1364 with ethanol-tolerance and without auxotrophic markers used in fermentation industry were studied. The yeast/E.coli shuttle plasmid YCEp1 partial library ofS. occidentalis DNA was constructed and α-amylase gene was screened in S.cerevisiae by amylolytic activity. Several transformants with amylolysis were obtained and one of the fusion plasmids had an about 5.0 kb inserted DNA fragment, containing the upstream and downstream sequences of α-amylase gene fromS. occidentalis. It was further confirmed by PCR and sequence determination that this 5.0 kb DNA fragment contains the whole coding sequence of α-amylase. The amylolytic test showed that when this transformant was incubated on plate of YPDS medium containing 1 % glum and 1 % starch at 30°C for 48 h starch degradation zones could be visualized by staining with iodine vapour. α-amylase activity of the culture filtratate is 740–780 mU/mL and PAGE shows that the yeast harboring fusion plasmids efficiently secreted α-amylase into the medium, and the amount of the recombinant α-amylase is more than 12% of the total proteins in the culture filtrate. These results showed that α-amylase gene can be highly expressed and efficiently secreted inS. cerevisiae AS. 2.1364, and the promotor and the terminator of α-amylase gene fromS. occidentalis work well inS. cercvisiac AS. 2.1364.  相似文献   

4.
Morphologically normal and fertile transgenic plants of mungbean with two transgenes, bar and α-amylase inhibitor, have been developed for the first time. Cotyledonary node explants were transformed by cocultivation with Agrobacterium tumefaciens strain EHA105 harboring a binary vector pKSB that carried bialaphos resistance (bar) gene and Phaseolus vulgaris α-amylase inhibitor-1 (αAI-1) gene. Green transformed shoots were regenerated and rooted on medium containing phosphinothricin (PPT). Preculture and wounding of the explants, presence of acetosyringone and PPT-based selection of transformants played significant role in enhancing transformation frequency. Presence and expression of the bar gene in primary transformants was evidenced by PCR-Southern analysis and PPT leaf paint assay, respectively. Integration of the Phaseolus vulgaris α-amylase inhibitor gene was confirmed by Southern blot analysis. PCR analysis revealed inheritance of both the transgenes in most of the T1 lines. Tolerance to herbicide was evidenced from seed germination test and chlorophenol red assay in T1 plants. Transgenic plants could be recovered after 8–10 weeks of cocultivation with Agrobacterium. An overall transformation frequency of 1.51% was achieved.  相似文献   

5.
Pyrococcus woesei (DSM 3773) α-amylase gene was cloned into pET21d(+) and pYTB2 plasmids, and the pET21d(+)α-amyl and pYTB2α-amyl vectors obtained were used for expression of thermostable α-amylase or fusion of α-amylase and intein in Escherichia coli BL21(DE3) or BL21(DE3)pLysS cells, respectively. As compared with other expression systems, the synthesis of α-amylase in fusion with intein in E. coli BL21(DE3)pLysS strain led to a lower level of inclusion bodies formation—they exhibit only 35% of total cell activity—and high productivity of the soluble enzyme form (195,000 U/L of the growth medium). The thermostable α-amylase can be purified free of most of the bacterial protein and released from fusion with intein by heat treatment at about 75°C in the presence of thiol compounds. The recombinant enzyme has maximal activity at pH 5.6 and 95°C. The half-life of this preparation in 0.05 M acetate buffer (pH 5.6) at 90°C and 110°C was 11 h and 3.5 h, respectively, and retained 24% of residual activity following incubation for 2 h at 120°C. Maltose was the main end product of starch hydrolysis catalyzed by this α-amylase. However, small amounts of glucose and some residual unconverted oligosaccharides were also detected. Furthermore, this enzyme shows remarkable activity toward glycogen (49.9% of the value determined for starch hydrolysis) but not toward pullulan.  相似文献   

6.
Arsenic (As) is a potential contaminant of groundwater as well as soil in many parts of the world. The effects of increasing concentration of As (25 μm and 50 μm As2O3) in the medium on the content of starch and sugars and activity levels of enzymes involved in starch and sugar metabolism i.e. α-amylase, β-amylase, starch phosphorylase and acid invertase were studied in germinating seeds of two rice cvs. Malviya-36 and Pant-12 during 0–120 h period. As toxicity in situ led to a marked decline in the activities of α-amylase, β-amylase in endosperms as well as embryoaxes of germinating rice seeds. The activity of acid invertase increased in endosperms as well as embryoaxes whereas starch phosphorylase activity declined in endosperms but increased in embryoaxes under As treatment. In endosperms a decline in starch mobilization was observed under As toxicity, however under similar conditions the content of total soluble sugars increased in embryoaxes. The observed inhibition in activities of amylolytic enzymes might contribute to delayed mobilization of endospermic starch which could affect germination of seeds in As polluted environment, while the induced acid invertase activity and increased sugar accumulation in embryoaxes could serve as a possible component for adaptation mechanism of rice seedlings grown under As containing medium.  相似文献   

7.
An extracellular raw-starch-digesting α-amylase was isolated from Geobacillus thermodenitrificans HRO10. The culture conditions for the production of α-amylase by G. thermodenitrificans HRO10 was optimized in 1.2–l bioreactor using full 24 and 32 factorial designs. From the optimal reaction conditions, a model (Y = − 594.206 − 0.178T2 − 8.448pH2 + 6.020TpH − 0.005T2pH2) was predicted, which was then used for α-amylase production. In the bioreactor studies, the enzyme yield under optimized conditions (pH 7.1, 49°C) was 30.20 U/ml, a 51% improvement over the results (19.97 U/ml) obtained when the traditional one-factor-at-a-time method was employed. This α-amylase does not require extraneous calcium ions for activity, which may be a commercially important observation.  相似文献   

8.
The expression of the mouse α-amylase gene in the methylotrophic yeast,P. pastoris was investigated. The mouse α-amylase gene was inserted into the multi-cloning site of a Pichia expression vector, pPIC9, yielding a new expression vector pME624. The plasmid pME624 was digested withSalI orBglII, and was introduced intoP. pastoris strain GS115 by the PEG1000 method. Fifty-three transformants were obtained by the transplacement of pME624 digested withSalI orBglII into theHIS 4 locus (38 of Mut+ clone) or into theAOX1 locus (45 of Muts clone). Southern blot was carried out in 11 transformants, which showed that the mouse α-amylase gene was integrated into thePichia chromosome. When the second screening was performed in shaker culture, transformant G2 showed the highest α-amylase activity, 290 units/ml after 3-day culture, among 53 transformants. When this expression level of the mouse α-amylase gene is compared with that in recombinantSaccharomyces cerevisiae harboring a plasmid encoding the same mouse α-amylase gene, the specific enzyme activity is eight fold higher than that of the recombinantS. cerevisiae.  相似文献   

9.
Crude α-amylase preparations from seven Lepidoptera pests were susceptible to inhibition by salt-soluble proteins of bread wheat (Triticum aestivum L.) endosperm. Protein fractions that corresponded to tetrameric, dimeric, and monomeric wheat α-amylase inhibitors, were decreasingly effective against the insect α-amylase activity. To further confirm these results, purified inhibitors were tested against an α-amylase preparation fromEphestia kuehniella (Zeller). This preparation showed decreased activity when increasing amounts of an heterotetrameric inhibitor (reconstituted from its isolated subunits WTAI-CM2, -CM3 and -CM16) were assayed. Activity was only partially inhibited by homodimeric (WDAI-1, synonym 0.53; WDAI-2, synonym 0.19) and monomeric (WMAI-1, synonym 0.28) inhibitors.  相似文献   

10.
Ke T  Ma XD  Mao PH  Jin X  Chen SJ  Li Y  Ma LX  He GY 《Biotechnology letters》2007,29(1):117-122
A truncated mutant α-amylase, Xa-S2, was obtained from Xanthomonas campestris wild type α-amylases (Xa-WT) through random mutagenesis that contained 167 amino acid residues (approx 65% shorter than that of Xa-WT). Secondary structure prediction implied that Xa-S2, would be unable to form the whole (β/α)8-barrel catalytic domain and did not have the three conserved catalytic residues of wild type α-amylase, but it still displays the starch-hydrolyzing activity. Xa-S2 was prepared, characterized and compared to the recombinant wild-type enzymes. The K m for starch was 32 mg/ml; activity was optimal at pH 6.2 and 30°C. In contrast, the K m for starch of Xa-WT was 8 mg/ml and optimal enzyme activity was at pH 6.0–6.2 and 45–50°C. Our results suggested that Xa-S2 is a new amylase with a minimal catalytic domain for hydrolyzing substrates with of α-1,4-glucosidic bonds. T. Ke and X. D. Ma contributed equally to this work  相似文献   

11.
Summary The HeLa-S3 cell strain grown in Ham's F12 medium supplemented with insulin, transferrin, cortisol, epidermal growth factor, fibroblast growth factor, and trace elements, but containing no serum, continued to produce the common α-subunit of the glycoprotein hormones for the 10 d study. The amounts of α-subunit secreted into the medium during the first 4 d were indistinguishable from those in F12 medium supplemented with 10% fetal bovine serum. During the remainder of the experiment the amounts of α-subunit reached 50 to 80% those in the serum-supplemented medium.  相似文献   

12.
cDNAs of barley α-amylase andA. niger glucoamylase were cloned in oneE. coli-yeast shuttle plasmid resulting in the construction of expression secretion vector pMAG15. pMAG15 was transformed intoS. cerevisiae GRF18 by protoplast transformation. The barley α-amylase andA. niger glucoamylase were efficiently expressed under the control of promoter and terminator of yeast PGK gene and their own signal sequence. Over 99% of the enzyme activity expressed was secreted to the medium. The recombinant yeast strain, S.cerevisiae GRF18 (pMAG15), hydrolyzes 99% of the starch in YPS medium containing 15% starch in 47 h. The glucose produced can be used for the production of ethanol. Project supported by the Guangdong Natural Science Foundation.  相似文献   

13.
Summary The presence ofα 2-macroglobulin was detected with the avidin-biotin technique in more than 20-yr-old paraffin blocks from human sarcomas.α 2M was found mainly in the cytoplasm of the tumor cells, and almost all tumor cells were positive. This serum glycoprotein, which is a major plasma proteinase inhibitor with a wide specificity, was also shown to be synthesized and secreted by all three cell lines derived from primary sarcomas but was not detected in cultures of the autologous skin fibroblasts. For the detection ofα 2M in situ and in vitro an antiserum to tumor-associatedα 2-macroglobulin was used. Our work was supported by grant no. 55-B86-21XB, from the Swedish Cancer Society.  相似文献   

14.
Heng C  Chen Z  Du L  Lu F 《Biotechnology letters》2005,27(21):1731-1737
Alpha amylase gene from Bacillus licheniformis was mutated by site-directed mutagenesis to improve its acid stability. The mutant gene was expression in Bacillus subtilis under the control of the promoter of sacB gene which was followed by either the α-amylase leader peptide of Bacillus licheniformis or the signal peptide sequence of sacB gene of Bacillus subtilis. Both peptides efficiently directed the secretion of α-amylase from the recombinant B. subtilis cells. The extracellular α-amylase activities in two recombinants were 1001 and 2012 U ml−1, respectively. The purity of the recombinant product was confirmed by SDS-PAGE.  相似文献   

15.
Summary Human non-autocrine neuroblastoma cells SK-N-SH and LF require serum for proliferation in vitro. We wished to determine the role of serum-borne insulin-like growth factor I (IGF-I) as mitogen for these cells. Introduction of the monoclonal antibodyα-IR3 against human IGF-I receptor reduced proliferation in the presence of fetal bovine serum (FBS). IGF-I (5 nM) was as effective as FBS (10%) in stimulating proliferation. Porcine insulin mimicked the effects of IGF-I, but at a 1000-fold higher concentration. The antibodyα-IR3 reduced growth stimulated by IGF-I more effectively than growth stimulated by insulin. Thus, proliferation of human non-autocrine neuroblastoma cells can be effectively manipulated by exogenous IGF-I.  相似文献   

16.
The gene encoding thermostable α-amylase from Bacillus licheniformis consisting of 483 amino acid residues (mature protein) was cloned and expressed in Escherichia coli under the control of T7 promoter. The analysis of the soluble and insoluble fractions after lyzing the host cells revealed that recombinant α-amylase was produced in insoluble aggregates. Despite being produced in the insoluble aggregates the recombinant enzyme was highly active with a specific activity of 408 U/mg.  相似文献   

17.
The effects of GA3 and/or ABA on the α-amylase activity and the ultrastructure of aleurone cells in halves of seeds without embryos (embryo-less half seeds) of oats (Avena sativa L.) were studied. α-Amylase activity was detected by the starch-agar gel method in the aleurone layers of embryo-less half seeds soaked in 1 μM GA3 solution or 100 μM GA3+10 μM ABA solution but not in those of seeds soaked in distilled water, 10 μM ABA solution, or 1 μM GA3+10 μM ABA solution. Ultrastructural examinations of aleurone cells with α-amylase activity showed a decrease in the number of sphaerosomes, the appearance of flattened saccules pressed to the surface of aleurone grains, and the development and transformations of the rER from a slender form to the one with wide inner spaces. In the aleurone cells in which the enzyme activity was not detected, components of the rER showed only slender profiles. The number of sphaerosomes did not decrease, and no flattened saccules appeared in the aleurone cells treated with 10 μM ABA or 1 μM GA3+10 μM ABA.  相似文献   

18.
α-Amylase (EC 3.2.1.1) expression was found in calli of French bean (Phaseolus vulgaris L. cv Goldstar). We examined enzyme activity in the calli to investigate influence of gibberellin and sugars on enzyme expression. After subculture of the calli, α-amylase activity decreased, and then increased at a stationary phase of callus growth. Exogenous application of gibberellin and an inhibitor of gibberellin synthesis, uniconazole, did not have any significant effects on the enzyme expression. Sugar starvation increased the activity, while addition of metabolizable sugars, such as sucrose, glucose and maltose, to the medium repressed expression. Addition of 6% mannitol, a non-metabolizable sugar, to the medium induced higher α-amylase expression as compared to addition of 3% mannitol. This result suggests that osmotic stress enhances α-amylase activity in the calli. Furthermore, high concentrations of agar in the medium increased α-amylase activity in the calli. It is probable that high concentrations of agar prevented incorporation of nutrient into the calli and induced the α-amylase activity in the calli.  相似文献   

19.
Chickpea is the world’s third most important pulse crop and India produces 75% of the world’s supply. Chickpea seeds are attacked byCallosobruchus maculatus andC. chinensis which cause extensive damage. The α-amylase inhibitor gene isolated fromPhaseolus vulgaris seeds was introduced into chickpea cultivar K850 throughAgrobacterium- mediated transformation. A total of 288 kanamycin resistant plants were regenerated. Only 0.3% of these were true transformants. Polymerase chain reaction (PCR) analysis and Southern hybridization confirmed the presence of 4.9 kb α-amylase inhibitor gene in the transformed plants. Western blot confirmed the presence of α-amylase inhibitor protein. The results of bioassay study revealed a significant reduction in the survival rate of bruchid weevilC. maculatus reared on transgenic chickpea seeds. All the transgenic plants exhibited a segregation ratio of 3:1.  相似文献   

20.
Bacillus sp. GRE1 isolated from an Ethiopian hyperthermal spring produced raw-starch digesting, Ca2+-independent thermostable α-amylase. Enzyme production in shake flask experiments using optimum nutrient supplements and environmental conditions was 2,360 U l−1. Gel filtration chromatography yielded a purification factor of 33.6-fold and a recovery of 46.5%. The apparent molecular weight of the enzyme was 55 kDa as determined by SDS-PAGE. Presence or absence of Ca2+ produced similar temperature optima of 65–70°C. The optimum pH was in the range of 5.5–6.0. The enzyme maintained 50% of its original activity after 45 min of incubation at 80°C and was stable at a pH range of 5.0–9.0. The V max and K m values for soluble starch were 42 mg reducing sugar min−1 and 4.98 mg starch ml−1, respectively. Strong inhibitors of enzyme activity included Cu2+, Zn2+ and Fe2+. The enzyme coding gene and the deduced protein translation revealed a characteristic but markedly atypical homology to Bacillus species α-amylase sequences. The enzyme hydrolyzed wheat, corn and tapioca starch granules efficiently below their gelatinization temperatures. Rather than the higher oligosaccharides normally produced by Bacillus α-amylases operating at high temperatures, maltose was the major hydrolysis product with the present enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号