首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Calcium-dependent phospholipid binding and phospholipase A2 inhibitory proteins were isolated from human mononuclear cells. Lipocortins I and II were present whereas lipocortin IV (endonexin I) was not. The other proteins were purified to homogeneity and shown to have molecular masses of 35, 36, 32 and 73 kDa. The 36-kDa and 73-kDa proteins are related, the smaller appears to be part of the larger. The 73-kDa protein is related to the 67-kDa calelectrin and to lipocortin VI; the 32-kDa protein is different from endonexin I but related to chromobindin 7 and to lipocortin V. The 35-kDa protein has been identified by tryptic peptide sequencing as lipocortin III. All these proteins inhibit phospholipase A2 activity in vitro and the three smaller ones inhibit the [3H]arachidonic acid release from prelabelled monocytes induced by the calcium ionophore A23187 in a dose-dependent manner.  相似文献   

2.
Calcimedin is a group of proteins which has a binding ability to several hydrophobic matrices or cellular membrane fractions in the presence of Ca2+. Although the molecular properties were partially clarified, the physiological functions of calcimedins have not been clearly defined. In this study, we describe the isolation and characterization of 32-kDa calcimedin from chicken gizzard. Both structural and functional studies establish that 32-kDa calcimedin is a member of the calpactin/lipocortin family. The 32-kDa calcimedin displays phospholipase A2 inhibitory activity, Ca2(+)-dependent F-actin binding activity, and phospholipid binding activity similar to those of calpactins/lipocortins. Antiendonexin II antibody recognized 32-kDa calcimedin. However, antibodies against calpactin I (lipocortin II), calpactin II (lipocortin I), 35-kDa calcimedin, and 67-kDa calcimedin did not cross-react with 32-kDa calcimedin. One-dimensional peptide maps of the 32-kDa calcimedin and the 35-kDa calcimedin are different, confirming that they are distinct proteins. By comparing the sequence of 32-kDa calcimedin with the predicted sequence of endonexin II, we concluded that the primary structure of the 32-kDa protein is highly conserved. In particular, the sequences AMKGMGTDDEXEIXL, GMGTDEEEIL, VLTEILASR, and ILTSR conform to the endonexin consensus sequence, which is characteristic of the calpactin/lipocortin family.  相似文献   

3.
Two monomeric 32-kDa proteins, termed 32K-I (pI 5.8) and 32K-II (pI 5.1), were isolated from human placenta, which was solubilized by a Ca2+-chelator. Only 32K-I was associated with PLA2-inhibitory activity. CNBr peptide mapping indicated that 32K-I was distinct from 32K-II and two 36-kDa proteins, called calpactin I and II or lipocortin II and I, which have been shown to possess PLA2-inhibitory activity. 32K-I bound to PS in a Ca2+-dependent manner. 32K-I was detected in many tissues except brain, cardiac and skeletal muscle.  相似文献   

4.
We have identified two major proteins in human neutrophils that are phosphorylated in vitro by protein kinase C (PKC) as lipocortins III and a fragment of a lipocortin-like 68-kDa protein. In electroporated cells, the 68-kDa protein was phosphorylated during stimulation of the cells with either FMLP or PMA. Lipocortins are of interest because of their Ca2(+)- and phospholipid-dependent actin binding properties and ability to inhibit phospholipase A2. Two crude fractions of enzymes and proteins exposed to [gamma-32]PATP in the presence of Ca2+, Mg2+, phosphatidylserine and 1,2-oleoyl-acetyl-rac-glycerol were analyzed by gel electrophoresis and autoradiography. A number of proteins in a detergent-free fraction, including proteins at 36 and 32 kDa, were phosphorylated in the presence of these cofactors. In contrast, only two major proteins (35 and 32 kDa) were phosphorylated in a detergent-extracted fraction. Phosphorylation of the 36, 35, and 32 kDa proteins required the presence of Ca2+, Mg2+, and phosphatidylserine in our soluble fraction and detergent extract, indicating PKC-dependent phosphorylation. The 32-kDa protein phosphorylated in both the soluble fraction and detergent extract was identified as lipocortin III by immunoprecipitation with a cross-reactive antibody that recognized lipocortin I and comparison of cyanogen bromide (CNBr) cleavage patterns of this protein with a lipocortin III standard. The 68-kDa protein was identified as a lipocortin VI-like protein by immunoprecipitation with anti-calelectrin. Additionally, the CNBr cleavage pattern of the 68-kDa protein was similar to that of the 36-kDa protein phosphorylated in our soluble fraction. Autoradiograms of the 68- and 36-kDa fragments immunoprecipitated from our soluble fraction with anticalelectrin and cleaved with CNBr showed that both of these proteins were phosphorylated in this sample. Because phosphorylation is known to change the functional characteristics of the lipocortins, the potential exists to link PKC and lipocortins in neutrophils to regulation of granulemembrane interactions or mediation of inflammation.  相似文献   

5.
A 32 kDa phospholipase A2 inhibitory protein was isolated from pig thyroid gland after calcium precipitation and fast protein liquid anion-exchange chromatography. SDS-polyacrylamide gel electrophoresis revealed the purity of the protein. The protein activity was assessed by the inhibition of pancreatic phospholipase A2 on [3H]oleic acid-labelled Escherichia coli membranes as substrate and on the prostaglandin E2 production of cultured thyroid cells. The amino acid composition and the isoelectric point were quite similar to those of endonexin previously described in other tissues or cells. The cross-reactivity of a polyclonal antibody against a 32 kDa lipocortin from human peripheral blood mononuclear cells with our thyroidal 32 kDa protein confirmed its lipocortin nature. Before the purification by fast protein liquid chromatography, the Ca2+ pellet contained lipocortin I (35 kDa and its core protein 33 kDa) identified by its cross-reactivity with a polyclonal antibody.  相似文献   

6.
Reversible calcium-dependent association with a particulate fraction from human placenta was used as the first step in the purification of substrates for the epidermal growth factor-stimulated protein kinase. A protein with apparent Mr of 35,000 was purified to homogeneity, and the sequence was determined for approximately one-fourth of the protein. These residues could be aligned exactly with the previously published sequence of lipocortin I derived from the cDNA from a human lymphoma. Two other proteins that appear to be formed by proteolytic removal of 12 or 26 of the amino acids from the NH2 terminus of the protein also were isolated. Placental lipocortin I was phosphorylated in Tyr-21 in an epidermal growth factor-dependent manner by the kinase activity in a particulate fraction from A431 cells; half-maximal phosphorylation occurred at 50 nM lipocortin I. Lipocortin I phosphorylated on Tyr-21 was approximately 10-fold more sensitive to tryptic cleavage at Lys-26 than was the native protein. Placental lipocortin I and its two truncated forms were potent inhibitors of pancreatic phospholipase A2 activity. Another 33-kDa protein that was not related immunologically to lipocortin I or lipocortin II (calpactin I) also was purified from the EGTA extract of placenta. The unidentified protein inhibited phospholipase A2 but was not a substrate for the epidermal growth factor-stimulated kinase. The mechanism by which these proteins inhibit phospholipase A2 activity was investigated. Attempts to detect direct interaction between these proteins and the enzyme were unsuccessful. However, both the unidentified protein, lipocortin I, and 32P-labeled lipocortin I bound in a Ca2+-dependent manner to the [3H]oleic acid-labeled Escherichia coli membranes used as substrate in the phospholipase A2 assay. Heparin, which is known to block lipocortin I inhibition of phospholipase A2, also blocked binding of lipocortin I to E. coli membranes. The results of these and other experiments raise the possibility that placental lipocortin I inhibits phospholipase A2 activity in this assay by coating the phospholipid and thereby blocking interaction of enzyme and substrate.  相似文献   

7.
Two calcium-independent phospholipases isolated from guinea pig pancreas (lipase Ia, 37 kDa) and from guinea pig intestine (phospholipase B, 97 kDa) have been used to probe the mechanism of phospholipase inhibition by lipocortin. In the presence of calcium, both enzymes were inhibited by lipocortin I in a manner very similar to the inhibition of pig pancreas phospholipase A2. By using phospholipases that lack a requirement for calcium, we have for the first time been able to dissociate enzymatic activity from the role of calcium in the inhibitory process. It was found that lipocortin was without effect against phospholipase A1 and phospholipase B in the absence of calcium, under which conditions the inhibitory protein is unable to interact with anionic phospholipid surfaces. The same behavior toward phospholipase A1 was observed with two other related proteins, endonexin II or lipocortin V, and p68/67-kDa calelectrin or lipocortin VI. Together with the observation that lipocortins are active only in the presence of limited amounts of substrate, these data give further support to the "surface depletion model" of lipocortin inhibition, rather than to a mechanism involving a direct interaction between enzyme and inhibitor.  相似文献   

8.
9.
We have purified two 35 kd phospholipase A2 inhibitors from human placenta, which we refer to as lipocortin I and II. Both proteins exhibit similar biochemical properties and occur in placenta at about 0.2% of the total protein. By peptide mapping, sequence, and immunological analyses, we show that lipocortin I and the 35 kd substrate for the EGF-receptor/kinase from A431 cells are the same protein. By similar criteria, we determine that lipocortin II is the human analogue of pp36, a major substrate for pp60src, which has been characterized in chicken embryo fibroblasts and in bovine brush border preparations. The amino acid sequences of lipocortin I and II that we deduced from cDNA clones share 50% homology, indicating that they probably evolved from a common gene.  相似文献   

10.
Okumura K  Inoue S  Ikeda K  Hayashi K 《IUBMB life》2003,55(9):539-545
From a liver cDNA library prepared from a nonvenomous striated snake, Elaphe quadrivirgata, we isolated a cDNA encoding a novel protein, PLIalpha-like protein (PLIalpha-LP), having approximately 70% sequence identities with the alpha-type phospholipase A2 (PLA2) inhibitors (PLIalpha(s)) previously purified from the venomous snakes Agkistrodon blomhoffii siniticus and Trimeresurus flavoviridis. Since the PLI-LP with a highly conserved C-type lectin-like domain (CTLD) would be predicted to function as a PLA2 inhibitor, we purified this protein from E. quadrivirgata serum by sequential chromatography on Hi-trap Blue, Mono Q, and Superdex 200 columns. The purified 51-kDa protein with PLIalpha-like immunoreactivity was found to be a trimer of 18-kDa PLIalpha-LP, which was comparable to the trimeric structure of PLIalpha. But, unexpectedly, this protein did not show any inhibitory activity against various snake venom PLA2s. Furthermore, it did not inhibit the endogenous PLA2 activities in various tissue homogenates prepared from this snake. Lack of the inhibitory activity in PLIalpha-LP may provide important information concerning the structure-function relationships of PLIalpha.  相似文献   

11.
Aspirin inhibits phospholipase C   总被引:1,自引:0,他引:1  
We have shown previously that aspirin (ASA) ingestion by normal human volunteers inhibits peripheral blood monocyte phospholipase C (PLC) activities ex vivo. In order to explore further the mechanism of action of ASA, normal human monocytes and differentiated human U937 cells were treated with ASA and other salicylates. Cells preincubated with ASA were found to have decreased PLC activities. Phospholipase A2 activities were not affected by salicylates. Sodium salicylate and salicylic acid, nonacetylated relatives of ASA also inhibited PLC activity. This effect was dose and time dependent and addition of cycloheximide or actinomycin D to the preincubation mixture abrogated the inhibitory effect of salicylates on PLC. This PLC inhibitory protein induced by ASA appears distinct from lipocortin, a phospholipase A2 inhibitory protein inducible by corticosteroids.  相似文献   

12.
Calcimedin is a group of proteins, originally isolated from chicken gizzard, which are able to bind to several hydrophobic matrices in the presence of Ca2+. Although the molecular properties have been partially discovered, the physiological functions of calcimedins have not yet been clearly defined. In this study, we describe the isolation and characterization of 67-kDa calcimedin and its 34-kDa fragment from chicken gizzard. Both structural and functional studies establish that 67-kDa calcimedin is a member of the calpactin/lipocortin family: it displays phospholipase A2 inhibitory activity, Ca2(+)-dependent F-actin binding and phospholipid binding activity similar to those of calpactins (lipocortins). By comparing the sequence of 67-kDa calcimedin with the predicted sequence of 67-kDa calelectrin, we concluded that the primary structure of these 67-kDa proteins is highly conserved. In particular, the sequences GLGTDEGAIIXVLTQR and EGAGTDESTLIEIMATR conform with the annexin consensus sequence which is characteristic of the calpactin/lipocortin family. A 34-kDa fragment of 67-kDa calcimedin was also purified and their relatedness has been confirmed by antibody cross-reactivity. The sequence data further support that the 34-kDa fragment is derived from the C-terminal portion of 67-kDa calcimedin by limited proteolysis. The 34-kDa fragment, which contains the annexin consensus sequence, preserves the phospholipase A2 inhibitory activity, and binds F-actin and phospholipids.  相似文献   

13.
Lipocortins (LC) are a family of proteins that were initially described to be induced by glucocorticosteroids and to inhibit phospholipase A2 (PLA2). Using oligodeoxynucleotide probes corresponding to partial amino acid (aa) sequences of rat lipocortin I (LCI), we have isolated a cDNA clone for rat LCI from a cDNA library prepared from poly(A)+RNA of peritoneal cells of dexamethasone-treated rat. The cDNA insert (1355 bp) had an open reading frame of 1038 bp that encoded a 346-aa polypeptide (Mr 38,784). The nucleotide sequence and the amino acid sequence deduced from it showed high homology with the reported sequences of human LCI. A plasmid containing the trc promoter and cDNA sequence for 346 aa residues of the rat LCI was constructed and expressed in Escherichia coli. Antibody to human LCI crossreacted with the recombinant rat LCI, and the recombinant protein had characteristics of natural rat LCI including PLA2 inhibitory activity in vitro.  相似文献   

14.
33 kDa protein of neutrophil is a lipocortin-like protein, as proposed from its biochemical properties, amino acid composition, and the homology of its amino acid sequence to human lipocortin I. The localization and translocation of 33 kDa protein (p33) in blood cells of guinea pig were studied by immunoblotting (Western blotting) and immunocytochemical fluorescence methods using polyclonal and monoclonal mouse anti-p33 antibodies. The protein was determined to be present only in the cytoplasm of neutrophils, but not in cells such as the monocyte, lymphocyte, platelet, and other bone marrow cells. The translocation of the protein from cytoplasm to cell membrane was coupled with the increase in intracellular calcium ion and in superoxide generation induced by a chemotactic factor. These findings suggest that p33 may have an important role not only in the regulatory mechanism of phospholipase A2 (PLA2) activity but also in other transmembrane signaling.  相似文献   

15.
This work focused on three themes. First, evidence was obtained for the presence of proteins of 34, 35, 32, and 69 kDa immunologically related to lipocortins I, II, V, and VI, respectively, in human umbilical vein endothelial (HUVE) cells. The 69-kDa protein (p69), but not proteins related to lipocortins I, II, and V, exhibited an increased phosphorylation after exposure of cells to basic fibroblast growth factor (bFGF) and phorbol ester PMA. Second, treatment of HUVE cell particulate fractions with EGTA and hydrophobic affinity chromatography in combination with conventional techniques provided extracts rich in p69 and purified p69. p69 from control cells and extracts from control, bFGF-treated, and PMA-treated cells were found to possess anti-phospholipase A2 (PLA2) activity of lipocortin. In contrast, a striking reverse effect occurred when extracts were obtained from cells exposed to bFGF plus PMA. Third, the combination of bFGF and PMA induced a stimulated PLA2-catalyzed release of arachidonic acid in HUVE cells. This arachidonate production was shown to be involved in the decision of cells to enter into DNA synthesis. Taken together, the present results suggest that phosphorylation of p69 is causally involved in the control of commitment to growth in HUVE cells by acting as a coupling mechanism between surface stimuli and arachidonate pathways.  相似文献   

16.
Glucocorticoids have been shown to decrease prostaglandin I2 synthesis in human endothelial cells, suggesting the possible involvement of lipocortin in the inhibition of arachidonic acid liberation achieved by phospholipase A2 (De Caterina, R., and Weksler, B. B. (1986) Thromb. Haemostasis 55, 369-374). To test this hypothesis, human endothelial cells labeled with [14C]arachidonic acid were stimulated with thrombin (2 units/ml, 10 min), resulting in the secretion of free arachidonic acid together with various 14C-labeled metabolites, mainly 6-keto-prostaglandin F1 alpha, the stable derivative of prostaglandin I2. Under conditions where prior incubation of cells with dexamethasone reduced by 51% 6-keto-prostaglandin F1 alpha production, phospholipid hydrolysis induced by thrombin remained unaffected. Using three rabbit polyclonal antibodies directed against endonexin I, lipocortin I, and lipocortin II, evidence was obtained for the presence in human endothelial cells of equivalent amounts of lipocortin I and an immunologically unrelated 33-kDa protein, together with lower quantities of 67-kDa calelectrin/calcimedin. These Ca2+- and phospholipid-binding proteins were selectively extracted with [ethylene-bis(oxyethylene-nitrilo)]tetraacetic acid (EGTA) from cell membranes precipitated in the presence of Ca2+, and they displayed an inhibitory activity against pig pancreas phospholipase A2. However, the amounts of the three proteins were not changed by cell treatment with 2.5 microM dexamethasone, as detected upon polyacrylamide gel electrophoresis by silver staining, immunoblotting, or autoradiography following [35S]methionine in vivo labeling. Since the antiphospholipase A2 activity of EGTA extracts was hardly modified, it was concluded that an increased synthesis of lipocortin cannot account for the inhibition of prostaglandin synthesis brought about by dexamethasone, suggesting other biological functions for these proteins.  相似文献   

17.
Human lipocortin I is a 38.5-kDa phospholipase A2 inhibitor that has been produced in Escherichia coli in large quantities by recombinant DNA technology (Wallner, B.P., Mattaliano, R.J., Hession, C., Cate, R. L., Tizard, R., Sinclair, L.K., Foeller, C., Chow, E.P., Browning, J.L., Ramachandran, K.L., and Pepinsky, R.B. (1986) Nature 320, 77-80). To localize the region within the protein responsible for its inhibitory activity, we generated a series of fragments of the recombinant product by limited proteolysis with elastase and characterized their structure by sequencing and peptide mapping. Five active fragments have been analyzed in detail. The smallest is an 18-kDa fragment derived from the amino-terminal half of lipocortin. Three of the larger fragments contain this region. The fifth fragment is missing 83 amino acids from the amino terminus. A region common to all the active fragments (amino acid residues 97-178) is 70% homologous with the corresponding region from a second member of the lipocortin family which recently was cloned (Huang, K-S., Wallner, B.P., Mattaliano, R.J., Tizard, R., Burne, C., Frey, A., Hession, C., McGray, P., Sinclair, L.K., Chow, E.P., Browning, J.L., Ramachandran, K.L., Tang, J., Smart, J.E., and Pepinsky, R.B. (1986) Cell 46, 191-199) and thus presumably is important for activity. In addition to inhibitory fragments, we have isolated a 3-kDa proteolytic fragment from the amino terminus of lipocortin I that contains the known phosphorylation site for protein-tyrosine kinases. Because of sequence homology of the 3-kDa fragment with biologically active synthetic peptides from pp60v-src and middle T antigen, its release by proteases may represent an important part of the activity of lipocortin.  相似文献   

18.
Different lipocortins, purified from pig lung and from cultured bone marrow-derived macrophages showed a high degree of specificity for distinct phospholipids, when assayed for anti-phospholipase A2 activity. The 34-kDa fraction from lung inhibited pancreas phospholipase A2 only if phosphatidylethanolamine was used as substrate, whereas the 68-kDa lung fraction was inhibitory only when phosphatidylcholine was the substrate. A comparison of phospholipases A2 from different sources (pancreas and macrophages) revealed different inhibitory properties of lipocortins when assayed with the same substrate. Using phosphatidylcholine as substrate, the 68-kDa lung fraction only inhibited the pancreas enzyme. On the other hand with phosphatidylethanolamine as substrate, the 34-kDa macrophage lipocortin exerted inhibition on phospholipase A2, purified from macrophages, but did not affect the pancreas enzyme. These data suggest a complex interaction consisting of specific binding of individual lipocortins to distinct phospholipids but also suggest that lipocortins interact with the enzyme as well.  相似文献   

19.
A 32 kDa protein isolated from human mononuclear cells is a member of the lipocortin family, a new group of Ca2+-dependent lipid-binding proteins thought to be involved in the regulation of phospholipase A2, in exocytosis and in membrane-cytoskeleton interactions. Purification of this protein was based on its ability to associate with membrane phospholipids in a Ca2+-dependent manner and its capacity to inhibit purified phospholipase A2 from pig pancreas. Using immunological detection, we show that it is present in various cells involved in the inflammatory and coagulation processes. We present extensive amino acid data that strongly suggest that this protein is identical with a recently described inhibitor of blood coagulation, with endonexin II and with lipocortin V. Sequence alignment with other known proteins show a significant degree of homology with lipocortins I and II, the substrates of the epidermal-growth-factor receptor tyrosine kinase and the oncogene pp60src tyrosine kinase respectively, and with protein II. The possible physiological role of this 32 kDa lipocortin is discussed.  相似文献   

20.
The human squamous cell carcinoma SqCC/Y1 undergoes spontaneous terminal differentiation in the confluent state. The degree of maturation was markedly increased by glucocorticoids and by both human recombinant and placental lipocortin I. Western analyses demonstrated cellular secretion of lipocortin into the medium. Glucocorticoid-induced maturation was antagonized by a lipocortin I-specific monoclonal antibody, by phospholipase A2 (PLA2), and by arachidonic acid. Induction of the differentiation of SqCC/Y1 cells by lipocortin I was prevented by arachidonic acid. The PLA2 inhibitor, dibromoacetophenone, caused an increase in envelope-competent cells indicating that inhibition of PLA2 results in induction of differentiation. Epidermal growth factor prevented the induction of differentiation by both lipocortin I and by glucocorticoids. The nonsteroidal lipoxygenase/cyclo-oxygenase inhibitor, phenidone, also increased SqCC/Y1 differentiation, suggesting that leukotrienes, thromboxanes, and/or prostaglandins may be involved in lipocortin-mediated regulation of SqCC/Y1 maturation. The findings support a role for lipocortin I in mediating the effects of glucocorticoids on epidermal cell differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号