首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
培养基组分及pH值对梨花粉萌发和花粉管生长的影响   总被引:54,自引:7,他引:54  
采用花粉液体培养法研究不同培养基组分和pH值对梨花粉萌发和花粉管生长影响.结果表明:培养基内硼酸、氯化钙、PEG-4000、蔗糖、葡萄糖、麦芽糖、山梨醇、果糖在一定浓度范围内,对花粉萌发及花粉管生长起促进作用,但超过一定浓度时起抑制作用;最适的培养基组分为:30mmol/LMES、0.01%硼酸、0.03%CaCl2·2H2O、15%PEG-4000、5%果糖 或5%山梨醇、10%蔗糖 ,最适的pH值为6.5.在该培养基内梨花粉萌发率约为59.2%,花粉管生长长度为966.3μm.  相似文献   

2.
采用液体培养法研究不同培养基组分和培养条件对蜡梅花粉萌发和花粉管生长的影响。结果表明:(1)PEG-4000是蜡梅花粉离体培养所必需的培养基成分,当培养基中无PEG-4000时,花粉不能正常萌发。(2)培养基内低浓度蔗糖对花粉萌发和花粉管的生长无显著影响,但随着蔗糖浓度的升高,则对花粉萌发和花粉管生长表现出强烈的抑制作用,且浓度越高,抑制效应越强。(3)培养基内其它组分分别在一定浓度范围(0~250g/L PEG-4000、0~50mg/L硼酸、0~30mg/L硝酸钙)内对花粉萌发及花粉管生长有促进作用,但超过上述高限值时则起抑制作用。(4)培养基内镁和钾的浓度对花粉萌发及花粉管生长影响不显著。研究表明,蜡梅最适花粉液体培养基组分为250g/L PEG-4000+50mg/L H3BO3+30mg/L Ca(NO3)2.4H2O,且在pH 5.5、温度15℃和600lx的光照培养条件下蜡梅花粉萌发和花粉管生长最佳。  相似文献   

3.
在三维结构上对百合花粉母细胞actin的免疫定位   总被引:2,自引:0,他引:2  
传统的切片仅仅能够显示样品的平面结构,不能用于细胞中三维网络结构的研究。笔者在DGD(diethylene glycol distearate)包埋去包埋的基础上,结合电镜免疫胶体金技术对大卫百合花粉母细胞胞间及胞内细胞的骨架系统进行了研究,观察到高反差细胞微梁结构的三维网络,actin这一细胞骨架的主要成员被定位在该微梁结构纤维上。三维结构上的研究表明,actin不但是植物细胞核及细胞质骨架的成员,而且也存在于胞间连接结构(胞质桥和胞间连丝)中,推测它可能与细胞融合有关。实验结果同时表明,三维结构免疫胶体金技术对于细胞骨架和核基质的结构蛋白研究是行之有效的。  相似文献   

4.
兰州百合(Lilium davidiiDach.)花粉在PEG-400 中萌发,用高度灵敏和特异的t-ZR-IgG和iPA-IgG 免疫亲和层析分离纯化萌发花粉和萌发液中细胞分裂素,并用酶检疫连锁鉴定法(ELISA)测定N6-异戊烯腺嘌呤核苷(t-ZR)和异戊烯基腺苷(iPA)含量。结果表明每克鲜重花粉含有39 ng t-ZR和48 ng iPA。花粉水合后t-ZR 含量略有下降,而iPA 含量明显增高,细胞分裂素总量几乎不变。水合过程中有细胞分裂素的消长,这种变化与花粉管的启动有关。在萌发的前3 小时,花粉管生长速度最快,t-ZR和iPA 在花粉管和萌发液中的含量也随着增加,其增长趋势和花粉管生长速度同步  相似文献   

5.
桃花粉离体萌发和花粉管生长特性研究   总被引:3,自引:0,他引:3  
采用花粉离体萌发法研究不同培养基组分和培养条件对桃花粉萌发和花粉管生长的影响,同时对不同贮藏温度下的桃花粉寿命进行研究.结果表明:固体培养基与液体培养基对桃的花粉萌发率和花粉管长度影响差异不显著;10%蔗糖是大多数桃品种花粉的最适萌发条件;硼能提高桃花粉的萌发率,但对花粉管的生长没有促进作用;桃花粉在20℃~25℃的培养温度下萌发率最高,花粉管最长;桃花粉萌发率和花粉管长度在培养前3 h内上升最快,3~5 h上升趋势减弱,5 h后基本停止;随着贮藏温度的升高和贮藏时间的延长,花粉生活力呈降低的趋势.  相似文献   

6.
基于Box-Behnken设计(Box-Behnken design, BBD)的响应面法, 对绒毛白蜡(Fraxinus velutina)、新疆小叶白蜡(F. sogdiana)和美国白蜡(F. americana)3个树种花粉的离体萌发培养基成分进行了研究。以花粉萌发率为响应指标, 建立了3种培养基成分(蔗糖、CaCl2和H3BO3)与花粉萌发率间的响应关系模型。在此基础上, 通过无约束优化设计得到了3个树种花粉的最佳萌发条件。 结果表明, 蔗糖是影响花粉萌发的最主要因素, 当蔗糖浓度一定时, CaCl2和H3BO3之间交互作用明显。同时还对响应面建模优化后得到的最佳萌发培养基进行了验证, 结果表明: 上述3种花粉的实际萌发率依次为58.33%、69.71%和59.42%, 均与优化得到的理论响应值相吻合, 同时也验证了基于BBD响应面模型进行花粉离体萌发条件优化方法的有效性。  相似文献   

7.
基于Box-Behnken设计(Box-Behnken design,BBD)的响应面法,对绒毛白蜡(Fraxinus velutina)、新疆小叶白蜡(F.sogdiana)和美国白蜡(F.americana)3个树种花粉的离体萌发培养基成分进行了研究。以花粉萌发率为响应指标,建立了3种培养基成分(蔗糖、CaCl2和H3BO3)与花粉萌发率间的响应关系模型。在此基础上,通过无约束优化设计得到了3个树种花粉的最佳萌发条件。结果表明,蔗糖是影响花粉萌发的最主要因素,当蔗糖浓度一定时,CaCl2和H3BO3之间交互作用明显。同时还对响应面建模优化后得到的最佳萌发培养基进行了验证,结果表明:上述3种花粉的实际萌发率依次为58.33%、69.71%和59.42%,均与优化得到的理论响应值相吻合,同时也验证了基于BBD响应面模型进行花粉离体萌发条件优化方法的有效性。  相似文献   

8.
用B_5培养基酶解分离出百合花粉原生质体。原生质体经松胞素(5μg/ml)分别处理5、10、15、30、60 min,再用荧光标记的鬼笔碱染色,共焦激光扫描镜观察,跟踪了原生质体内的肌动蛋白微丝从一个组织复杂严密的网络转变为无数颗粒体的过程。松胞素处理过的原生质体移回至不含松胞素的培养基中后继续培养15 min,肌动蛋白颗粒快速地再延伸出微丝,重组成新的网络。存在于花粉原生质体中生殖细胞的微丝网络,在经松胞素处理后同样都形成为颗粒体。之后,如果原生质体再放入不含松胞素的培养基内继续培养,生殖细胞内的颗粒体同样会再延伸出微丝,重新组成网络。从原生质体胞质以及生殖细胞内所见到的微丝和颗粒相互转化的情况,可以断定,颗粒体不但具有凝聚微丝的功能,同时也具有重组微丝的功能。  相似文献   

9.
百合是世界著名的观赏花卉之一,既能观赏又能食用、药用,其科研和经济价值越来越受到人们的重视。东方百合属于百合园艺品种中的重要品系。近年来,东方百合的组织培养发展较为迅速,本文就东方百合的组织培养研究现状及影响东方百合快速繁殖的主要因素做一简要综述。  相似文献   

10.
果梅花粉离体萌发及花粉管生长特性研究   总被引:15,自引:3,他引:15  
研究了果梅(Prunus mumeSieb.1et Zucc.)花粉在不同培养基组分、花粉不同培养密度和不同温度及培养时间的离体萌发和花粉管生长特性.结果表明:细叶青花粉萌发及花粉管生长最适宜的液体培养基为30mmol/L MES(pH 6.5)缓冲液中含20%蔗糖,0.01%硼酸,20%PEG-4000,0.03?(NO3)2?4H2O,0.02%Mg-SO4?7H2O;萌发率达45.03%,花粉管长度达597.2μm.适宜于果梅花粉萌发和花粉管生长的花粉粒密度为20~80粒/μL.培养温度过高或过低都不利于果梅花粉的萌发和生长,25℃时花粉萌发和花粉管生长最好.细叶青"、月世界"、莺宿"3个品种的平均萌发率为48.6%,平均花粉管长度为762.3μm.果梅花粉在不同培养温度下,萌发及生长不同,在25℃条件下花粉管生长速度最快,集中在0~12 h内,3个品种花粉管平均生长速度为58.5μm/h.  相似文献   

11.
米粒在培养基上的发芽率与米粒的浸泡时间、消毒时间以及储存时间密切相关,在室温25℃和10℃时,浸泡时间分别为2h与4h为佳。消毒适宜时间5min,米粒随着储存时间越长,发芽率越低。因此,使用当天脱皮的米粒最好。  相似文献   

12.
板栗花粉发芽的影响因子及发芽动态的研究   总被引:11,自引:0,他引:11  
本试验以25年生实生板栗为试材,研究了蔗糖、硼、温度及琼脂等因子对板栗花粉发芽的影响,并对发芽动态作了仔细观察。结果表明:板栗花粉在34-36℃条件下,以5-7.5%的蔗糖,700-1100 ppm的硼酸水溶液培养最好;普通蔗糖水溶液亦可使花粉达到一定的发芽率和花粉管生长到一定的长度,但加硼可使其提前发芽。  相似文献   

13.
蝴蝶兰的组织培养和快速繁殖   总被引:45,自引:1,他引:45  
蝴蝶兰 ( Phalaenopsis)属热带气生兰 ,多产于热带亚州 ,其株型美观、色彩艳丽、花期持久 ,在热带兰中有“兰花皇后”之美称 ,是兰科植物中栽培最广泛、最普及的种类之一。它的原生种只有 2 0多种 ,观赏性较差。商业上用于大规模生产的品种多为杂交种 ,其品种繁多 ,易栽培 ,深受人们的喜爱。但由于蝴蝶兰是单茎性气生兰 ,很难进行分株繁殖 ,常规情况下种子发育不完全 ,极难萌发 ,因此世界上多采用组织培养来繁殖种苗。台湾及东南亚一些国家利用组织培养技术对蝴蝶兰进行了工厂化生产 ,并出口欧美获得了较大的经济效益〔1〕。近年来我国从国…  相似文献   

14.
石刁柏花粉离体培养及再生植株的研究   总被引:4,自引:0,他引:4  
对石刁柏花粉粒进行离体培养,用MS基本培养基,激素NAA0.5ppm/L,花粉粒开始启动,形成细胞团,产生了愈伤组织,经去分化而形成单倍体植株(n=10)。同时对花药壁,植物激素在花粉粒发育中的作用及再生植物染色体倍性问题进行研究。本文为选育超雄株在理论与实践方面均进行了探讨。  相似文献   

15.
粳稻花药培养基优化试验研究   总被引:1,自引:0,他引:1  
培养基的筛选研究,是提高花药培养率的关键问题之一。国内外不少研究人员进行了大量工作,取得了一定的进展。我们自1986年开始以 N_6培养基为基础,对培养基的各个组分进行全面的变量分析和主次因子的研究。我们已报道1987、1988年二个试验周期的结果。本文报道1989、1990年第三、四周期的试验结果。  相似文献   

16.
灰树花深层发酵培养基的研究   总被引:30,自引:2,他引:28  
灰树花具有较宽广的碳源谱和氮源谱,其最佳碳源为马铃薯汁加葡萄糖,最佳氮源为麸皮。在有生长促进剂一板栗壳煮汁作用下,菌丝的增产率达140%。培养基的氮源种类和生长促进剂对菌丝生长具显著的影响,两者交互作用明显。培养基中碳源浓度过高不利于菌丝的生长。灰树花深层发酵的较佳培养基为QF培养基:葡萄糖609,KHPO lg,MgSO 0.5g,CaCl 0.1g板栗壳煮汁 150g,水1L。  相似文献   

17.
花粉内的多胺和外源多胺对花粉萌发和花粉管生长的影响   总被引:3,自引:0,他引:3  
测定了不同生理状态下的油松花粉内的多胺含量,并研究了腐胺和精胺对十种不同植物花粉的萌发和花粉管生长的影响。三种多胺(腐胺、亚精胺和精胺)总量贮藏花粉中高于新鲜花粉,萌发花粉内相对不变。三种生理状态不同的花粉内,亚精胺含量均高于腐胺和精胺。腐胺对花粉荫发和花粉管生长的作用不明显,精胺一般表现为抑制作用,并随浓度而加强,还与植物品种、花粉成熟度、花粉萌发速度、花粉管生长速度和培养基中硼酸的有无有关。一般,容易萌发、成熟较充分,或正在迅速生长的花粉,以及培养基中有硼时受抑制轻。  相似文献   

18.
金针菇菌丝生长的营养需求及液体发酵研究   总被引:8,自引:0,他引:8  
金针菇菌丝体液体培养表明,淀粉、玉米粉是适宜的碳源,黄豆粉、酵母粉、蛋白陈是适宜的氮源。采用正交设计考察了培养基的营养成分及其最适浓度。除碳、氮源外,Vb1及K、P、Mg、S等元素也是金针菇菌丝体生长所必需的营养因子。适宜的碳氮比(C/N.)为21~24:1。本研究建立的有实用价值的液体发酵培养基配方是(%):玉米粉4.0、葡萄粉1.0~2.0、黄豆粉15、KH2PO40.1~0.15、MgSO4·7H2O0.05  相似文献   

19.
葫芦科蔬菜花粉萌发特性的研究   总被引:10,自引:2,他引:10  
试验采用花粉离体萌发技术,对葫芦科7属8种蔬菜花粉生活力进行了较为深入的研究,结果表明:葫芦科蔬菜花粉属于“嗜硼、好气、喜温、较耐储藏”的类型。适量的蔗糖可以提高萌发率,并明显有利于花粉管生长。此外,试验中还发现不同种作物花粉萌发力的差异与花粉萌发孔或沟的特征有明显关系联系。  相似文献   

20.
培养基成分对口腔福赛类杆菌生长影响的研究   总被引:1,自引:0,他引:1  
目的比较不同培养基成分对福赛类杆菌ATCC43037生长的影响,寻找一种有效促进福赛类杆菌生长的培养基.方法将福赛类杆菌ATCC430 37 接种到5种不同培养基(包括琼脂板和液体培养基)中,在厌氧培养箱内37℃厌氧培养7 d,观察平板上菌落生长情况,在λ=550 nm处每24 h测定液体培养菌液A值.细菌通过革兰染色和PCR法鉴定.结果1.生长在血平板上的福赛类杆菌ATCC43037菌落形态呈粉红色或白色小斑点状,在以BHI 为基础培养基中添加氯化血红素、维生素K3、N-乙酰胞壁酸的No2血琼脂培养基生长最好,而在无氯化血红素、维生素K3及血的No4琼脂板上不生长.2.福赛类杆菌ATCC43037在以TSB 为基础培养基中添加酵母提取物、植物蛋白胨、氯化血红素、维生素K3、N-乙酰胞壁酸和D TT的No1液体培养基生长最好,培养7 d后A值>0.8,在缺乏N-乙酰胞壁酸的No5液体培养基中几乎不生长.3.菌落细菌革兰染色为G 梭状杆菌,PCR法鉴定为福赛类杆菌.结论福赛类杆菌在血平板和液体培养基中存在不同的生长特性,N-乙酰胞壁酸是福赛类杆菌在液体培养基中生长最重要的成分,DTT有益于细菌生长.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号