首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Correlation between genotype and phenotype in Gaucher disease is limited. It is known that the most common mutation N370S is protective of neurological involvement, but for the V394L mutation, described as the fifth most common among Ashkenazi Jews, little data are available. This study reports all known patients from a large referral clinic and from the international registry with Gaucher disease who are documented to have the N370S/V394L genotype. Of 476 patients in the Gaucher Clinic, 7 patients (2.0%) had the N370S/V394L genotype; of 2,836 patients in the registry, there were 14 patients (0.8%) with this genotype. There was an overlap of 3 patients, making a total of 18 patients, reflecting the rarity of this genotype among the studied cohorts. Most of these patients had mild disease; only 8 patients required specific enzyme therapy, none was splenectomized. Only 3 patients had skeletal involvement, but other baseline parameters were very diverse. Although genotype-phenotype correlation in this case may be difficult, because the V394L mutation when seen in a compound heterozygote with a null allele results in neuronopathic disease, one cannot conclude that this mutation is protective of neuronopathic disease and hence this is important for counseling of at-risk populations.  相似文献   

2.
A patient with type 3 Gaucher disease is described with a novel genotype, D399N/R463C, established by DNA sequencing. This patient was previously reported as having genotype N370S/R463C. This communication now establishes that no patients reported with mutation N370S have the neuronopathic forms of Gaucher disease and has important implications for genetic counseling.  相似文献   

3.
Gaucher disease results from the inherited deficiency of the enzyme glucocerebrosidase (EC 3.2.1.45). Although >100 mutations in the gene for human glucocerebrosidase have been described, most genotype-phenotype studies have focused upon screening for a few common mutations. In this study, we used several approaches-including direct sequencing, Southern blotting, long-template PCR, restriction digestions, and the amplification refraction mutation system (ARMS)-to genotype 128 patients with type 1 Gaucher disease (64 of Ashkenazi Jewish ancestry and 64 of non-Jewish extraction) and 24 patients with type 3 Gaucher disease. More than 97% of the mutant alleles were identified. Fourteen novel mutations (A90T, N117D, T134I, Y135X, R170C, W184R, A190T, Y304X, A341T, D399Y, c.153-154insTACAGC, c.203-204insC, c.222-224delTAC, and c.1122-1123insTG) and many rare mutations were detected. Recombinant alleles were found in 19% of the patients. Although 93% of the mutant alleles in our Ashkenazi Jewish type 1 patients were N370S, c.84-85insG, IVS2+1G-->A or L444P, these four mutations accounted for only 49% of mutant alleles in the non-Jewish type 1 patients. Genotype-phenotype correlations were attempted. Homozygosity or heterozygosity for N370S resulted in type 1 Gaucher disease, whereas homozygosity for L444P was associated with type 3. Genotype L444P/recombinant allele resulted in type 2 Gaucher disease, and homozygosity for a recombinant allele was associated with perinatal lethal disease. The phenotypic consequences of other mutations, particularly R463C, were more inconsistent. Our results demonstrate a high rate of mutation detection, a large number of novel and rare mutations, and an accurate assessment of the prevalence of recombinant alleles. Although some genotype-phenotype correlations do exist, other genetic and environmental factors must also contribute to the phenotypes encountered, and we caution against relying solely upon genotype for prognostic or therapeutic judgements.  相似文献   

4.
The N370S mutation at the GBA locus on human chromosome 1q21, which causes Gaucher disease (GD), has a high frequency in the Ashkenazim and is the second-most-widespread GD mutation in the European non-Jewish population. A common ancient origin for the N370S mutation in the Ashkenazi Jewish and Spanish populations has been proposed on the basis of both a similar haplotype for associated markers and an age estimate that suggests that this mutation appeared several thousand years ago. However, a reappraisal of haplotype data, using the Risch formula properly along with a Luria-Delbrück setting of the genetic clock, allows identification of the likely origin of the N370S mutation in Ashkenazi Jews between the 11th and 13th centuries. This result is consistent with the estimated ages of other mutations that are frequent among Ashkenazim, with the exception of type II (Glu117Stop) factor XI deficiency, which is deemed to be >3000 years old, predating the separation of the Ashkenazi and Iraqi Jews. The present finding supports the hypothesis of a more recent origin for the N370S mutation and is consistent with both a founder chromosome transfer from Ashkenazim who assimilated in some European populations and a non-Jewish origin of the European N370S-bearing chromosomes.  相似文献   

5.
The molecular diagnostics of 27 from 26 Ukrainian families has been performed. The common mutations in GBA gene (N370S, L444P and 84GG) accounted for up to 58% of all cases: mutation N370S was detected in 42.3% alleles, mutation L444P was observed in 15.4% alleles and mutation 84GG was not found at all. The other mutations were: P178S, W184R and Rec Nci I (in compounds with N370S) in the patients with nonneuronopathic form of Gaucher disease, and the genotypes G377S/c 999G --> A and D409H/R120W/G202R were detected in patients with chronic neuronopathic form of Gaucher disease. The data analysis of the genotype and disease progression in the patients allows confirming the known genotype-phenotype correlation.  相似文献   

6.
Type 1 Gaucher disease (GD), a non-neuronopathic lysosomal storage disorder, results from the deficient activity of acid beta-glucosidase (GBA). Type 1 disease is panethnic but is more prevalent in individuals of Ashkenazi Jewish (AJ) descent. Of the causative GBA mutations, N370S is particularly frequent in the AJ population, (q approximately .03), whereas the 84GG insertion (q approximately .003) occurs exclusively in the Ashkenazim. To investigate the genetic history of these mutations in the AJ population, short tandem repeat (STR) markers were used to map a 9.3-cM region containing the GBA locus and to genotype 261 AJ N370S chromosomes, 60 European non-Jewish N370S chromosomes, and 62 AJ 84GG chromosomes. A highly conserved haplotype at four markers flanking GBA (PKLR, D1S1595, D1S2721, and D1S2777) was observed on both the AJ chromosomes and the non-Jewish N370S chromosomes, suggesting the occurrence of a founder common to both populations. Of note, the presence of different divergent haplotypes suggested the occurrence of de novo, recurrent N370S mutations. In contrast, a different conserved haplotype at these markers was identified on the 84GG chromosomes, which was unique to the AJ population. On the basis of the linkage disequilibrium (LD) delta values, the non-Jewish European N370S chromosomes had greater haplotype diversity and less LD at the markers flanking the conserved haplotype than did the AJ N370S chromosomes. This finding is consistent with the presence of the N370S mutation in the non-Jewish European population prior to the founding of the AJ population. Coalescence analyses for the N370S and 84GG mutations estimated similar coalescence times, of 48 and 55.5 generations ago, respectively. The results of these studies are consistent with a significant bottleneck occurring in the AJ population during the first millennium, when the population became established in Europe.  相似文献   

7.
Gaucher disease is the most frequent lysosomal storage disease and the most prevalent Jewish genetic disease. About 30 identified missense mutations are causal to the defective activity of acid beta-glucosidase in this disease. cDNAs were characterized from a moderately affected 9-year-old Ashkenazi Jewish Gaucher disease type 1 patient whose 80-year-old, enzyme-deficient, 1226G (Asn370----Ser [N370S]) homozygous grandfather was nearly asymptomatic. Sequence analyses revealed four populations of cDNAs with either the 1226G mutation, an exact exon 2 (delta EX2) deletion, a deletion of exon 2 and the first 115 bp of exon 3 (delta EX2-3), or a completely normal sequence. About 50% of the cDNAs were the delta EX2, the delta EX2-3, and the normal cDNAs, in a ratio of 6:3:1. Specific amplification and characterization of exon 2 and 5' and 3' intronic flanking sequences from the structural gene demonstrated clones with either the normal sequence or with a G+1----A+1 transition at the exon 2/intron 2 boundary. This mutation destroyed the splice donor consensus site (U1 binding site) for mRNA processing. This transition also was present at the corresponding exon/intron boundary of the highly homologous pseudogene. This new mutation, termed "IVS2 G+1----A+1," is the first splicing mutation described in Gaucher disease and accounted for about 3.4% of the Gaucher disease alleles in the Ashkenazi Jewish population. The occurrence of this "pseudogene"-type mutation in the structural gene indicates the role of acid beta-glucosidase pseudogene and structural gene rearrangements in the pathogenesis of this disease.  相似文献   

8.
Gaucher disease, the inherited deficiency of lysosomal glucocerebrosidase, is characterized by the presence of glucosylcer‐amide macrophages, the accumulation of glucosylceramide in lysosomes and the secretion of inflammatory cytokines. However, the connection between this lysosomal storage and inflammation is not clear. Studying macrophages derived from peripheral monocytes from patients with type 1 Gaucher disease with genotype N370S/N370S, we confirmed an increased secretion of interleukins IL‐1β and IL‐6. In addition, we found that activation of the inflammasome, a multiprotein complex that activates caspase‐1, led to the maturation of IL‐1β in Gaucher macrophages. We show that inflammasome activation in these cells is the result of impaired autophagy. Treatment with the small‐molecule glucocerebrosidase chaperone NCGC758 reversed these defects, inducing autophagy and reducing IL‐1β secretion, confirming the role of the deficiency of lysosomal glucocerebrosidase in these processes. We found that in Gaucher macrophages elevated levels of the autophagic adaptor p62 prevented the delivery of inflammasomes to autophagosomes. This increase in p62 led to activation of p65‐NF‐kB in the nucleus, promoting the expression of inflammatory cytokines and the secretion of IL‐1β. This newly elucidated mechanism ties lysosomal dysfunction to inflammasome activation, and may contribute to the massive organomegaly, bone involvement and increased susceptibility to certain malignancies seen in Gaucher disease. Moreover, this link between lysosomal storage, impaired autophagy, and inflammation may have implications relevant to both Parkinson disease and the aging process. Defects in these basic cellular processes may also provide new therapeutic targets.  相似文献   

9.
Clinical signs and symptoms of Gaucher disease are more severe in Japanese than in Jewish and other non-Japanese patients. A higher percentage of bone crises and splenectomy was demonstrated by Japanese patients, and there were five fatalities among patients with type 1 Gaucher disease. Additionally, neonatal Gaucher disease, clinically characterized by hydrops foetalis, was observed. Japanese patients with type 2 and type 3 disease also demonstrate clinical heterogeneity. About 100 alleles of patients with Japanese Gaucher disease were examined for genotype determination with the PCR and SSCP methods. About 18 different mutations, including several novel mutations in Japanese patients, were identified. The most common mutations in Japanese patients were 1448C(L444P), accounting for 41 (41%) of alleles. The second most prevalent mutation was 754A(F2131), accounting for 14 (14%) of alleles. Other alleles identified included the 1324C, IVS2 and other mutations. Unidentified alleles comprised 16% of the total number of alleles studied. To date, neither the 1226G (N370S) nor the 84GG mutation has been identified in the Japanese population, although these mutations account for about 70% and 10% of the mutations in Jewish and other non-Japanese populations, respectively. The phenotype-genotype correlation in Japanese patients is more complex compared with that of the Jewish population. In Japanese patients, the 1448C mutation, in either heteroallelic or homoallelic forms, exhibits both neurological and non-neurological phenotypes. Japanese patients with the 754A mutation also exhibit both neuronopathic and non-neuronopathic disease. On the other hand, patients with the D409H mutation show only type 3 neurological disease, and those with the 1447–1466 del 20 ins TG mutation have the severe, neonatal neurological form of Gaucher disease. The 1503T allele was present only in patients with type 1 non-neurological disease. However, since this correlation was observed only in young patients, we do not as yet know the final phenotypic outcome of this mutation. Probably, Japanese patients with Gaucher disease have few mutations that exhibit non-neurological signs and symptoms.  相似文献   

10.
Gaucher disease, the most common lysosomal storage disorder, is caused by β-glucocerebrosidase deficiency. Bone complications are the major cause of morbidity in patients with type 1 Gaucher disease (GD1). Genetic components strongly influence bone remodelling. In addition, chronic inflammation produced by Gaucher cells induces the production of several cytokines, which leads to direct changes in the bone remodelling process and can also affect the process indirectly through other immune cells. In this study, we analysed the association between bone mineral density (BMD), bone marrow burden score, and relevant genetic polymorphisms related to bone metabolism, as well as profiles of proinflammatory cytokines in a GD1 cohort. This study included 83 patients distributed according to bone status. BMD was measured with DXA and broadband ultrasound attenuation; bone marrow involvement was evaluated using MRI. We also analysed 26 SNPs located in 14 genes related to bone metabolism. To assess proinflammatory status, we analysed IL-4, IL-6, IL-7, IL-10, IL-13, MIP-1α, MIP-1β, and TNFα in plasma samples from 71 control participants and GD1 patients. SNP genotype proportions and BMD differed significantly between ESRI c.453-397T>C and VDR c.1024+283G>A variants. We also observed significant associations between GD1 genotypes and bone affectation. When patients were stratified by spleen status, we observed significant correlations between non-/splenectomized groups and Spanish MRI (S-MRI) score. Across genotype proportions of non-/splenectomized patients and S-MRI, we observed significant differences in ESRI c.453-397T>C, VDR c.-83-25988G>A, and TNFRSF11B c.9C>G polymorphisms. We observed different significant proinflammatory profiles between control participants, treatment-naïve patients, and patients on enzyme replacement therapy (ERT); between non-/splenectomized patients (between untreated and ERT-treated patients) and among those with differing GBA genotypes. The data suggest that patients with GD1 have increased susceptibility to developing bone disease owing to the coexistence of genetic variants, and that genetic background in GD1 is fundamental to regulate the impact of proinflammatory status on the development of bone disease.  相似文献   

11.
Gaucher disease: gene frequencies in the Ashkenazi Jewish population.   总被引:7,自引:1,他引:6  
DNA from over 2,000 Ashkenazi Jewish subjects has been examined for the four most common Jewish Gaucher disease mutations, which collectively account for about 96% of the disease-producing alleles in Jewish patients. This population survey has made possible the estimation of gene frequencies for these alleles. Eighty-seven of 1,528 individuals were heterozygous for the 1226G (N370S) mutation, and four presumably well persons were homozygous for this mutation. The gene frequency for the 1226G allele was calculated to be .0311, and when these data were pooled with those obtained previously from another 593 Jewish subjects, a gene frequency of .032 with a standard error of .004 was found. Among 2,305 normal subjects, 10 were found to be heterozygous for the 84GG allele, giving a gene frequency of .00217 with a standard error of .00096. No examples of the IVS2(+1) mutation were found among 1,256 samples screened, and no 1448C (L444P) mutations were found among 1,528 samples examined. Examination of the distribution of Gaucher disease gene frequencies in the general population shows that the ratio of 1226G mutations to 84GG mutations is higher than that in the patient population. This is presumed to be due to the fact that homozygotes for the 1226G mutation often have late-onset disease or no significant clinical manifestations at all. To bring the gene frequency in the patient population into conformity with the gene frequency in the general population, nearly two-thirds of persons with a Gaucher disease genotype would be missing from the patient population, presumably because their clinical manifestations were very mild.  相似文献   

12.
The most common lysosomal storage disorder, Gaucher disease, is caused by inefficient folding and trafficking of certain variants of lysosomal beta-glucosidase (beta-Glu, also known as beta-glucocerebrosidase). Recently, Sawker et al. reported that the addition of subinhibitory concentrations (10 microM) of the pharmacological chaperone N-nonyl-1-deoxynojirimycin (NN-DNJ) (10) to Gaucher patient-derived cells leads to a 2-fold increase in activity of mutant (N370S) enzyme [Proc. Natl. Acad. Sci. U.S.A.2002, 99, 15428]. However, we found that the addition of NN-DNJ at 10 microM lowered the lysosomal alpha-glucosidase (alpha-Glu) activity by 50% throughout the assay period in spite of the excellent chaperoning activity in N370S fibroblasts. Hence, we prepared a series of DNJ derivatives with an alkyl chain at the C-1alpha position and evaluated their in vitro inhibitory activity and potential as pharmacological chaperones for Gaucher cell lines. Among them, alpha-1-C-octyl-DNJ (CO-DNJ) (15) showed 460-fold stronger in vitro inhibitory activity than DNJ toward beta-Glu, while NN-DNJ enhanced in vitro inhibitory activity by 360-fold. Treatment with CO-DNJ (20 microM) for 4 days maximally increased intracellular beta-Glu activity by 1.7-fold in Gaucher N370 cell line (GM0037) and by 2.0-fold in another N370 cell line (GM00852). The addition of 20 microM CO-DNJ to the N370S (GM00372) culture medium for 10 days led to 1.9-fold increase in the beta-Glu activity without affecting the intracellular alpha-Glu activity for 10 days. Only CO-DNJ showed a weak beta-Glu chaperoning activity in the L444P type 2 variant, with 1.2-fold increase at 5-20 microM, and furthermore maximally increased the alpha-Glu activity by 1.3-fold at 20 microM. These experimental results suggest that CO-DNJ is a significant pharmacological chaperone for N370S Gaucher variants, minimizing the potential for undesirable side effects such as alpha-Glu inhibition.  相似文献   

13.
Reliable estimates of the frequency of Gaucher disease-producing mutations are not available. The high frequency of Gaucher disease in the Ashkenazi Jewish population is due to the occurrence of a mutation at nucleotide (nt) 1226. We have screened 593 DNA samples from normal Ashkenazi Jews, as well as 62 DNA samples from all our Ashkenazi Jewish patients with Gaucher disease, for the presence of the 1226 mutation. In the 593 presumed normal Ashkenazi Jewish individuals the 1226 mutation was identified in the heterozygous state in 37 and in the homozygous state in two, giving a gene frequency of .035 for the mutation. This 1226 mutation represented 73% of the 124 Gaucher disease alleles in Jewish Gaucher disease patients. Accordingly we estimate that the gene frequency for Gaucher disease among the Ashkenazi Jewish population is .047, which is equivalent to a carrier frequency of 8.9% and a birth incidence of 1:450.  相似文献   

14.
Gaucher disease is caused by mutations in the enzyme acid β-glucosidase (GCase), the most common of which is the substitution of serine for asparagine at residue 370 (N370S). To characterize the nature of this mutation, we expressed human N370S GCase in insect cells and compared the x-ray structure and biochemical properties of the purified protein with that of the recombinant human GCase (imiglucerase, Cerezyme®). The x-ray structure of N370S mutant acid β-glucosidase at acidic and neutral pH values indicates that the overall folding of the N370S mutant is identical to that of recombinant GCase. Subtle differences were observed in the conformation of a flexible loop at the active site and in the hydrogen bonding ability of aromatic residues on this loop with residue 370 and the catalytic residues Glu-235 and Glu-340. Circular dichroism spectroscopy showed a pH-dependent change in the environment of tryptophan residues in imiglucerase that is absent in N370S GCase. The mutant protein was catalytically deficient with reduced Vmax and increased Km values for the substrate p-nitrophenyl-β-d-glucopyranoside and reduced sensitivity to competitive inhibitors. N370S GCase was more stable to thermal denaturation and had an increased lysosomal half-life compared with imiglucerase following uptake into macrophages. The competitive inhibitor N-(n-nonyl)deoxynojirimycin increased lysosomal levels of both N370S and imiglucerase 2–3-fold by reducing lysosomal degradation. Overall, these data indicate that the N370S mutation results in a normally folded but less flexible protein with reduced catalytic activity compared with imiglucerase.  相似文献   

15.
Analyses of catalytic properties and inhibitor binding were conducted to investigate the molecular basis of active site function of human acid beta-glucosidases (EC 3.2.1.45) expressed from normal and Gaucher disease Type 1 alleles. Comparative studies were conducted with enzymes expressed from natural (spleen and fibroblasts) alleles or from mutagenized cDNAs in Spodoptera frugiperda (Sf9) cells using the baculovirus expression system. Mutant cDNAs containing Thr43 to Lys43 (beta-GlcThr43----Lys) and Asp358 to Glu358 (beta-GlcAsp358----Glu) substitutions and two cDNAs containing Ashkenazi Jewish Gaucher disease Type 1 mutations, Arg120 to Gln120 (beta-GlcArg120----Gln) and Asn370 to Ser370 (beta-GlcAsn370----Ser) were expressed and the gene products characterized by enzymatic, immunologic, and inhibitor studies. Genotypes at the acid beta-glucosidase locus in selected Gaucher disease Type 1 patients were determined by allele-specific oligonucleotide hybridization of amplified genomic DNA. Compared with normal, recombinant or natural enzymes expressed from beta-GlcAsn370----Ser alleles had about 2-5-fold decreased specific activity based on CRIM (cross-reacting immunologic material). The beta-GlcArg120----Gln cDNA expressed catalytically inactive CRIM in Sf9; consistent with the 9-fold decreased CRIM-specific activity of the natural enzyme from a beta-GlcArg120----Gln/beta-GlcAsn370----Ser genetic compound. The beta-GlcAsp358----Glu cDNA expressed catalytically inactive CRIM in Sf9 cells. The presence of natural or recombinant enzyme expressed from beta-GlcAsn370----Ser alleles was sufficient to confer 3-5-fold increased IC50 values for deoxynojirimycin, glucosylsphingosine, and N-alkyl-glucosylamine derivatives. Progress curves for inhibition by the slow-tight binding N-alkyl-glucosylamines indicated that the beta-Glc-Asn370----Ser mutation did not alter a conformational change induced by these reaction intermediate analogues. These results provide evidence that the beta-GlcArg120----Gln and beta-GlcAsn370----Ser mutations found in Gaucher disease Type 1 patient genomes are the molecular bases of the enzymatic dysfunction. In addition, the region including Arg120 and that encompassing Asp358 and Asn370 contain residues critical to active site formation or participation in the catalytic mechanism.  相似文献   

16.
A molecular-genetics investigation is conducted on 27 patients from 26 families. Common mutations in the GBA gene (N370S, L444P, and 84GG) are studied. The overall frequency of the common mutations is nearly 58%, with the percentage of alleles that carry the N370S mutation close to 42.3% and the proportion that carry the L444P mutation, 15.4%. No allele containing the 84GG mutation was found. Besides other mutations, the rare mutations P178S, W184R, and Rec Nci I (together with N370S) were also found in the GBA gene in patients with the nonneuronopathic form of the disease, along with the genotypes G377S/c 999GA and D409H/R 120W/G202R in patients with the chronic neuronopathic form. An analysis of the correlation between the genotype and the course of the disease in the patients showed that the genotype-phenotype correlations were close to that described for European populations.  相似文献   

17.
TNF-alpha levels and TNF-alpha gene polymorphism in type I Gaucher disease   总被引:2,自引:0,他引:2  
The objective of this pilot study was to determine the levels of Tumor Necrosis Factor (TNF)-alpha and TNF-alpha gene polymorphism as a marker of inflammation among patients with type I Gaucher disease as well as to ascertain the relationship between this cytokine and parameters of disease severity and other measures of inflammation. Levels of TNF-alpha and genotyping for the -308 G-->A polymorphism in the promoter of the TNF-alpha gene were performed in 17 patients with type I Gaucher disease. TNF-alpha levels were compared with the promoter gene polymorphism, and with hematological and other clinical parameters of Gaucher disease. Eight patients (47.1%) were homozygotes (A/A) for the TNF-alpha polymorphism, six patients (35.3%) had the wild type (G/G), and three patients (17.6%) were heterozygotes (G/A). A significant correlation was found between serum TNF-alpha levels and TNF-alpha genotypes for homozygotes versus heterozygotes patients (p = 0.02), with patients homozygous for the polymorphism having the lower levels of serum TNF-alpha relative to heterozygotes with the highest levels. No correlation was found between TNF-alpha genotypes and chitotriosidase levels, a putative biochemical marker for Gaucher disease severity. Because a significant correlation was found between homozygosity for a common promoter polymorphism of TNF-alpha and milder expression i.e. non-neuronopathic form, of Gaucher disease (versus the neuronopathic forms), this may be suggestive of an association between genetic variability in TNF-alpha and phenotypic expression in Gaucher disease. Larger studies will be required.  相似文献   

18.
Gaucher disease (GD) is one of the most prevalent lysosomal storage disorders and one of the rare genetic diseases now accessible to therapy. Outside the Ashkenazi Jewish community, a high molecular diversity is observed, leaving approximately 30% of alleles undetected. Nevertheless, very few exhaustive methods have been developed for extensive gene screening of a large series of patients. Our approach for a complete search of mutations was the association of fluorescent chemical cleavage of mismatches with a universal strand-specific labeling system. The glucocerebrosidase (GBA) gene was scanned by use of a set of six amplicons, comprising 11 exons, all exon/intron boundaries, and the promoter region. By use of this screening strategy, the difficulties due to the existence of a highly homologous pseudogene were easily overcome, and both GD mutant alleles were identified in all 25 patients studied, thus attesting to a sensitivity that approaches 100%. A total of 18 different mutations and a new glucocerebrosidase haplotype were detected. The mutational spectrum included eight novel acid beta-glucosidase mutations: IVS2 G(+1)-->T, I119T, R170P, N188K, S237P, K303I, L324P, and A446P. These data further indicate the genetic heterogeneity of the lesions causing GD. Established genotype/phenotype correlations generally were confirmed, but notable disparities were disclosed in several cases, thus underlining the limitation in the prognostic value of genotyping. The observed influence of multifactorial control on this monogenic disease is discussed.  相似文献   

19.
Gaucher disease is caused by the defective activity of the lysosomal hydrolase, glucosylceramidase. Although the x-ray structure of wild type glucosylceramidase has been resolved, little is known about the structural features of any of the >200 mutations. Various treatments for Gaucher disease are available, including enzyme replacement and chaperone therapies. The latter involves binding of competitive inhibitors at the active site to enable correct folding and transport of the mutant enzyme to the lysosome. We now use molecular dynamics, a set of structural analysis tools, and several statistical methods to determine the flexible behavior of the N370S Gaucher mutant at various pH values, with and without binding the chaperone, N-butyl-deoxynojirimycin. We focus on the effect of the chaperone on the whole protein, on the active site, and on three important structural loops, and we demonstrate how the chaperone modifies the behavior of N370S in such a way that it becomes more active at lysosomal pH. Our results suggest a mechanism whereby the binding of N-butyl-deoxynojirimycin helps target correctly folded glucosylceramidase to the lysosome, contributes to binding with saposin C, and explains the initiation of the substrate-enzyme complex. Such analysis provides a new framework for determination of the structure of other Gaucher disease mutants and suggests new approaches for rational drug design.  相似文献   

20.
The presynaptic protein α-synuclein (α-syn), particularly in its amyloid form, is widely recognized for its involvement in Parkinson disease (PD). Recent genetic studies reveal that mutations in the gene GBA are the most widespread genetic risk factor for parkinsonism identified to date. GBA encodes for glucocerebrosidase (GCase), the enzyme deficient in the lysosomal storage disorder, Gaucher disease (GD). In this work, we investigated the possibility of a physical linkage between α-syn and GCase, examining both wild type and the GD-related N370S mutant enzyme. Using fluorescence and nuclear magnetic resonance spectroscopy, we determined that α-syn and GCase interact selectively under lysosomal solution conditions (pH 5.5) and mapped the interaction site to the α-syn C-terminal residues, 118-137. This α-syn-GCase complex does not form at pH 7.4 and is stabilized by electrostatics, with dissociation constants ranging from 1.2 to 22 μm in the presence of 25 to 100 mm NaCl. Intriguingly, the N370S mutant form of GCase has a reduced affinity for α-syn, as does the inhibitor conduritol-β-epoxide-bound enzyme. Immunoprecipitation and immunofluorescence studies verified this interaction in human tissue and neuronal cell culture, respectively. Although our data do not preclude protein-protein interactions in other cellular milieux, we suggest that the α-syn-GCase association is favored in the lysosome, and that this noncovalent interaction provides the groundwork to explore molecular mechanisms linking PD with mutant GBA alleles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号