首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The enzyme-soluble guanylate cyclase (sGC), which converts GTP to cGMP, is a receptor for the signaling agent nitric oxide (NO). YC-1, a synthetic benzylindazole derivative, has been shown to activate sGC in an NO-independent fashion. In the presence of carbon monoxide (CO), which by itself activates sGC approximately 5-fold, YC-1 activates sGC to a level comparable to stimulation by NO alone. We have used kinetic analyses and resonance Raman spectroscopy (RR) to investigate the interaction of YC-1 and CO with guanylate cyclase. In the presence of CO and 200 microM YC-1, the V(max)/K(m GTP) increases 226-fold. While YC-1 does not perturb the RR spectrum of the ferrous form of baculovirus/Sf9 cell expressed sGC, it induces a shift in the Fe-CO stretching frequency for the CO-bound form from 474 to 492 cm(-1). Similarly, YC-1 has no effect on the RR spectrum of ferrous beta1(1-385), the isolated sGC heme-binding domain, but shifts the nu(Fe-CO) of CO-beta1(1-385) from 478 to 491 cm(-1), indicating that YC-1 binds in heme-binding region of sGC. In addition, the CO-bound forms of sGC and beta1(1-385) in the presence of YC-1 lie on the nu(Fe-CO) vs nu(C-O) correlation curve for proximal ligands with imidazole character, which suggests that histidine remains the heme proximal ligand in the presence of YC-1. Interestingly, YC-1 does not shift nu(Fe-CO) for the CO-bound form of H105G(Im), the imidazole-rescued heme ligand mutant of beta1(1-385). The data are consistent with binding of CO and YC-1 to the sGC heme-binding domain leading to conformational changes that give rise to an increase in catalytic turnover and a change in the electrostatic environment of the heme pocket.  相似文献   

2.
Soluble guanylate cyclase (sGC), a physiological nitric oxide (NO) receptor, is a heme-containing protein and catalyzes the conversion of GTP to cyclic GMP. We found that 200 mM imidazole moderately activated sGC in the coexistence with 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1), although imidazole or YC-1 alone had little effect for activation. GTP facilitated this process. Resonance Raman spectra of imidazole complex of native sGC and CO-bound sGC (CO-sGC) have demonstrated that a simple heme adduct with imidazole at the sixth coordination position is not present for both sGC and CO-sGC below 200 mM of the imidazole concentration and that the Fe-CO stretching band (nuFe-CO)) appears at 492 cm(-1) in the presence of imidazole compared with 473 cm(-1) in its absence. Both frequencies fall on the line of His-coordinated heme proteins in the nuFe-CO vs nuC-O plot. However, it is stressed that the CO-heme of sGC becomes apparently photo-inert in a spinning cell in the presence of imidazole, suggesting the formation of five-coordinate CO-heme or of six-coordinate heme with a very weak trans ligand. These observations suggest that imidazole alters not only the polarity of heme pocket but also the coordination structure at the fifth coordination side presumably by perturbing the heme-protein interactions at propionic side chains. Despite the fact that the isolated sGC stays in the reduced state and is not oxidized by O(2), sGC under the high concentration of imidazole (1.2 M) yielded nu4 at 1373 cm(-1) even after its removal by gel-filtration, but addition of dithionite gave the strong nu4 band at 1360 cm(-1). This indicated that imidazole caused autoxidation of sGC.  相似文献   

3.
Soluble guanylate cyclase (sGC, EC 4.6.1.2) acts as a sensor for nitric oxide (NO), but is also activated by carbon monoxide in the presence of an allosteric modulator. Resonance Raman studies on the structure-function relations of sGC are reviewed with a focus on the CO-adduct in the presence and absence of allosteric modulator, YC-1, and substrate analogues. It is demonstrated that the sGC isolated from bovine lung contains one species with a five-coordinate (5c) ferrous high-spin heme with the Fe-His stretching mode at 204 cm(-1), but its CO adduct yields two species with different conformations about the heme pocket with the Fe-CO stretching (nuFe-CO) mode at 473 and 489 cm(-1), both of which are His- and CO-coordinated 6c ferrous adducts. Addition of YC-1 to it changes their population and further addition of GTP yields one kind of 6c (nuFe-CO=489 cm(-1)) in addition to 5c CO-adduct (nuFe-CO=521 cm(-1)). Under this condition the enzymatic activity becomes nearly the same level as that of NO adduct. Addition of gamma-S-GTP yields the same effect as GTP does but cGMP and GDP gives much less effects. Unexpectedly, ATP cancels the effects of GTP. The structural meaning of these spectroscopic observations is discussed in detail.  相似文献   

4.
Lou BS  Snyder JK  Marshall P  Wang JS  Wu G  Kulmacz RJ  Tsai AL  Wang J 《Biochemistry》2000,39(40):12424-12434
Prostaglandin H synthase isoforms 1 and 2 (PGHS-1 and -2) catalyze the first two steps in the biosynthesis of prostaglandins. Resonance Raman spectroscopy was used to characterize the PGHS heme active site and its immediate environment. Ferric PGHS-1 has a predominant six-coordinate high-spin heme at room temperature, with water as the sixth ligand. The proximal histidine ligand (or the distal water ligand) of this hexacoordinate high-spin heme species was reversibly photolabile, leading to a pentacoordinate high-spin ferric heme iron. Ferrous PGHS-1 has a single species of five-coordinate high-spin heme, as evident from nu(2) at 1558 cm(-1) and nu(3) at 1471 cm(-1). nu(4) at 1359 cm(-1) indicates that histidine is the proximal ligand. A weak band at 226-228 cm(-1) was tentatively assigned as the Fe-His stretching vibration. Cyanoferric PGHS-1 exhibited a nu(Fe)(-)(CN) line at 446 cm(-1) and delta(Fe)(-)(C)(-)(N) at 410 cm(-1), indicating a "linear" Fe-C-N binding conformation with the proximal histidine. This linkage agrees well with the open distal heme pocket in PGHS-1. The ferrous PGHS-1 CO complex exhibited three important marker lines: nu(Fe)(-)(CO) (531 cm(-1)), delta(Fe)(-)(C)(-)(O) (567 cm(-1)), and nu(C)(-)(O) (1954 cm(-1)). No hydrogen bonding was detected for the heme-bound CO in PGHS-1. These frequencies markedly deviated from the nu(Fe)(-)(CO)/nu(C)(-)(O) correlation curve for heme proteins and porphyrins with a proximal histidine or imidazolate, suggesting an extremely weak bond between the heme iron and the proximal histidine in PGHS-1. At alkaline pH, PGHS-1 is converted to a second CO binding conformation (nu(Fe)(-)(CO): 496 cm(-1)) where disruption of the hydrogen bonding interactions to the proximal histidine may occur.  相似文献   

5.
Soluble guanylate cyclase (sGC), a hemoprotein, is the primary nitric oxide (NO) receptor in higher eukaryotes. The binding of NO to sGC leads to the formation of a five-coordinate ferrous-nitrosyl complex and a several hundred-fold increase in cGMP synthesis. NO activation of sGC is influenced by GTP and the allosteric activators YC-1 and BAY 41-2272. Electron paramagnetic resonance (EPR) spectroscopy shows that the spectrum of the sGC ferrous-nitrosyl complex shifts in the presence of YC-1, BAY 41-2272, or GTP in the presence of excess NO relative to the heme. These molecules shift the EPR signal from one characterized by g 1 = 2.083, g 2 = 2.036, and g 3 = 2.012 to a signal characterized by g 1 = 2.106, g 2 = 2.029, and g 3 = 2.010. The truncated heme domain constructs beta1(1-194) and beta2(1-217) were compared to the full-length enzyme. The EPR spectrum of the beta2(1-217)-NO complex is characterized by g 1 = 2.106, g 2 = 2.025, and g 3 = 2.010, indicating the protein is a good model for the sGC-NO complex in the presence of the activators, while the spectrum of the beta1(1-194)-NO complex resembles the EPR spectrum of sGC in the absence of the activators. Low-temperature resonance Raman spectra of the beta1(1-194)-NO and beta2(1-217)-NO complexes show that the Fe-NO stretching vibration of the beta2(1-217)-NO complex (535 cm (-1)) is significantly different from that of the beta1(1-194)-NO complex (527 cm (-1)). This shows that sGC can adopt different five-coordinate ferrous nitrosyl conformations and suggests that the Fe-NO conformation characterized by this unique EPR signal and Fe-NO stretching vibration represents a highly active sGC state.  相似文献   

6.
The benzylindazole compound YC-1 has been shown to activate soluble guanylate cyclase by increasing the sensitivity toward NO and CO. Here we report the action of YC-1 on the coordination of CO- and NO-hemes in the enzyme and correlate the events with the activation of enzyme catalysis. A single YC-1-binding site on the heterodimeric enzyme was identified by equilibrium dialysis. To explore the affect of YC-1 on the NO-heme coordination, the six-coordinate NO complex of the enzyme was stabilized by dibromodeuteroheme substitution. Using the dibromodeuteroheme enzyme, YC-1 converted the six-coordinate NO-heme to a five-coordinate NO-heme with a characteristic EPR signal that differed from that in the absence of YC-1. These results revealed that YC-1 facilitated cleavage of the proximal His-iron bond and caused geometrical distortion of the five-coordinate NO-heme. Resonance Raman studies demonstrated the presence of two iron-CO stretch modes at 488 and 521 cm(-1) specific to the YC-1-bound CO complex of the native enzyme. Together with the infrared C-O stretching measurements, we assigned the 488-cm(-1) band to the iron-CO stretch of a six-coordinate CO-heme and the 521-cm(-1) band to the iron-CO stretch of a five-coordinate CO-heme. These results indicate that YC-1 stimulates enzyme activity by weakening or cleaving the proximal His-iron bond in the CO complex as well as the NO complex.  相似文献   

7.
Specific substrate-induced structural changes in the heme pocket are proposed for human cytochrome P450 aromatase (P450arom) which undergoes three consecutive oxygen activation steps. We have experimentally investigated this heme environment by resonance Raman spectra of both substrate-free and substrate-bound forms of the purified enzyme. The Fe-CO stretching mode (nu(Fe)(-)(CO)) of the CO complex and Fe(3+)-S stretching mode (nu(Fe)(-)(S)) of the oxidized form were monitored as a structural marker of the distal and proximal sides of the heme, respectively. The nu(Fe)(-)(CO) mode was upshifted from 477 to 485 and to 490 cm(-)(1) by the binding of androstenedione and 19-aldehyde-androstenedione, substrates for the first and third steps, respectively, whereas nu(Fe)(-)(CO) was not observed for P450arom with 19-hydroxyandrostenedione, a substrate for the second step, indicating that the heme distal site is very flexible and changes its structure depending on the substrate. The 19-aldehyde-androstenedione binding could reduce the electron donation from the axial thiolate, which was evident from the low-frequency shift of nu(Fe)(-)(S) by 5 cm(-)(1) compared to that of androstenedione-bound P450arom. Changes in the environment in the heme distal site and the reduced electron donation from the axial thiolate upon 19-aldehyde-androstenedione binding might stabilize the ferric peroxo species, an active intermediate for the third step, with the suppression of the formation of compound I (Fe(4+)=O porphyrin(+)(*)) that is the active species for the first and second steps. We, therefore, propose that the substrates can regulate the formation of alternative reaction intermediates by modulating the structure on both the heme distal and proximal sites in P450arom.  相似文献   

8.
Soluble guanylate cyclase (sGC) is the primary receptor for the signaling agent nitric oxide (NO). Electronic absorption and resonance Raman spectroscopy were used to show that nitrosoalkanes bind to the heme of sGC to form six-coordinate, low-spin complexes. In the sGC-nitrosopentane complex, a band assigned to an Fe-N stretching vibration is observed at 543 cm(-)(1) which is similar to values reported for other six-coordinate NO-bound hemoproteins. Nitrosoalkanes activate sGC 2-6-fold and synergize with YC-1, a synthetic benzylindazole derivative, to activate the enzyme 11-47-fold. In addition, the observed off-rates of nitrosoalkanes from sGC were found to be dependent on the alkyl chain length. A linear correlation was found between the observed off-rates and the alkyl chain length which suggests that the sGC heme has a large hydrophobic distal ligand-binding pocket. Together, these data show that nitrosoalkanes are a novel class of heme-based sGC activators and suggest that heme ligation is a general requirement for YC-1 synergism.  相似文献   

9.
Soluble guanylate cyclase (sGC) is a heterodimeric, nitric oxide (NO)-sensing hemoprotein composed of two subunits, alpha1 and beta1. NO binds to the heme cofactor in the beta1 subunit, forming a five-coordinate NO complex that activates the enzyme several hundred-fold. In this paper, the heme domain has been localized to the N-terminal 194 residues of the beta1 subunit. This fragment represents the smallest construct of the beta1 subunit that retains the ligand-binding characteristics of the native enzyme, namely, tight affinity for NO and no observable binding of O(2). A functional heme domain from the rat beta2 subunit has been localized to the first 217 amino acids beta2(1-217). These proteins are approximately 40% identical to the rat beta1 heme domain and form five-coordinate, low-spin NO complexes and six-coordinate, low-spin CO complexes. Similar to sGC, these constructs have a weak Fe-His stretch [208 and 207 cm(-)(1) for beta1(1-194) and beta2(1-217), respectively]. beta2(1-217) forms a CO complex that is very similar to sGC and has a high nu(CO) stretching frequency at 1994 cm(-)(1). The autoxidation rate of beta1(1-194) was 0.073/min, while the beta2(1-217) was substantially more stable in the ferrous form with an autoxidation rate of 0.003/min at 37 degrees C. This paper has identified and characterized the minimum functional ligand-binding heme domain derived from sGC, providing key details toward a comprehensive characterization.  相似文献   

10.
Bacterial NO synthase (NOS)-like proteins such as that from Bacillus subtilis (bsNOS) share a high degree of structural homology with the oxygenase domain of mammalian NOSs (mNOSs), but biochemical studies have yet failed to establish that they are specifically capable of producing NO. To better understand the actual function and role of bacterial NOSs, the structure and environment of bsNOS heme were examined with resonance Raman (RR) and ATR-FTIR spectroscopies. We analyzed the structural effects of l-arginine (Arg) and tetrahydrobiopterin (H(4)B) binding on several key complexes (ferric, ferrous, ferrous-CO, and ferric-NO) and characterized the bonding properties of the proximal cysteine ligand. While our study fully confirms the similarity between bsNOS and mNOS heme pocket structures, our results also highlight important differences. (i) Contrary to other NOSs, resting native ferric bsNOS exhibits an exclusive five-coordinate high-spin iron status. (ii) The nu(Fe)(-)(CO) and nu(CO) mode frequencies of the bsNOS Fe(II)CO complexes indicate a weaker electrostatic interaction between Arg and CO. (iii) bsNOS is characterized by a stronger Fe-S bond (nu(Fe)(-)(S) = 342 cm(-)(1)), a lower nu(4) frequency, and a negative shift in the nu(Fe)(-)(CO)/nu(CO) correlation. (iv) The effects of H(4)B on bsNOS heme structure are minor compared to the ones reported on mNOS. These results suggest distinct distal heme environments between mNOS and bsNOS, greater electron-donation properties of bsNOS cysteine proximal ligand, and the absence of a significant influence of H(4)B on bsNOS heme properties. These subtle structural differences may reflect changes in the chemistry and physiological role of bacterial NOSs.  相似文献   

11.
The heme environments of Met(95) and His(77) mutants of the isolated heme-bound PAS domain (Escherichia coli DOS PAS) of a direct oxygen sensing protein from E. coli (E. coli DOS) were investigated with resonance Raman (RR) spectroscopy and compared with the wild type (WT) enzyme. The RR spectra of both the reduced and oxidized WT enzyme were characteristic of six-coordinate low spin heme complexes from pH 4 to 10. The time-resolved RR spectra of the photodissociated CO-WT complex had an iron-His stretching band (nu(Fe-His)) at 214 cm(-1), and the nu(Fe-CO) versus nu(CO) plot of CO-WT E. coli DOS PAS fell on the line of His-coordinated heme proteins. The photodissociated CO-H77A mutant complex did not yield the nu(Fe-His) band but gave a nu(Fe-Im) band in the presence of imidazole. The RR spectrum of the oxidized M95A mutant was that of a six-coordinate low spin complex (i.e. the same as that of the WT enzyme), whereas the reduced mutant appeared to contain a five-coordinate heme complex. Taken together, we suggest that the heme of the reduced WT enzyme is coordinated by His(77) and Met(95), and that Met(95) is displaced by CO and O(2). Presumably, the protein conformational change that occurs upon exchange of an unknown ligand for Met(95) following heme reduction may lead to activation of the phosphodiesterase domain of E. coli DOS.  相似文献   

12.
Two-subunit SoxB-type cytochrome c oxidase in Bacillus stearothermophilus was over-produced, purified, and examined for its active site structures by electron paramagnetic resonance (EPR) and resonance Raman (RR) spectroscopies. This is cytochrome bo3 oxidase containing heme B at the low-spin heme site and heme O at the high-spin heme site of the binuclear center. EPR spectra of the enzyme in the oxidized form indicated that structures of the high-spin heme O and the low-spin heme B were similar to those of SoxM-type oxidases based on the signals at g=6.1, and g=3.04. However, the EPR signals from the CuA center and the integer spin system at the binuclear center showed slight differences. RR spectra of the oxidized form showed that heme O was in a 6-coordinated high-spin (nu3 = 1472 cm(-1)), and heme B was in a 6-coordinated low-spin (nu3 = 1500 cm(-1)) state. The Fe2+-His stretching mode was observed at 211 cm(-1), indicating that the Fe2+-His bond strength is not so much different from those of SoxM-type oxidases. On the contrary, both the Fe2+-CO stretching and Fe2+-C-O bending modes differed distinctly from those of SoxM-type enzymes, suggesting some differences in the coordination geometry and the protein structure in the proximity of bound CO in cytochrome bo3 from those of SoxM-type enzymes.  相似文献   

13.
Soluble guanylyl cyclase (sGC) is a heterodimeric enzyme formed by an alpha subunit and a beta subunit, the latter containing the heme where nitric oxide (NO) binds. When NO binds, the basal activity of sGC is increased several hundred fold. sGC activity is also increased by YC-1, a benzylindazole allosteric activator. In the presence of NO, YC-1 synergistically increases the catalytic activity of sGC by enhancing the affinity of NO for the heme. The site of interaction of YC-1 with sGC is unknown. We conducted a mutational analysis to identify the binding site and to determine what residues were involved in the propagation of NO and/or YC-1 activation. Because guanylyl cyclases (GCs) and adenylyl cyclases (ACs) are homologous, we used the three-dimensional structure of AC to guide the mutagenesis. Biochemical analysis of purified mutants revealed that YC-1 increases the catalytic activity not only by increasing the NO affinity but also by increasing the efficacy of NO. Effects of YC-1 on NO affinity and efficacy were dissociated by single-point mutations implying that YC-1 has, at least, two types of interaction with sGC. A structural model predicts that YC-1 may adopt two configurations in one site that is pseudosymmetric with the GTP binding site and equivalent to the forskolin site in AC.  相似文献   

14.
Soluble guanylyl/guanylate cyclase (sGC), the primary biological receptor for nitric oxide, is required for proper development and health in all animals. We have expressed heterodimeric full-length and N-terminal fragments of Manduca sexta sGC in Escherichia coli, the first time this has been accomplished for any sGC, and have performed the first functional analyses of an insect sGC. Manduca sGC behaves much like its mammalian counterparts, displaying a 170-fold stimulation by NO and sensitivity to compound YC-1. YC-1 reduces the NO and CO off-rates for the approximately 100-kDa N-terminal heterodimeric fragment and increases the CO affinity by approximately 50-fold to 1.7 microm. Binding of NO leads to a transient six-coordinate intermediate, followed by release of the proximal histidine to yield a five-coordinate nitrosyl complex (k(6-5) = 12.8 s(-1)). The conversion rate is insensitive to nucleotides, YC-1, and changes in NO concentration up to approximately 30 microm. NO release is biphasic in the absence of YC-1 (k(off1) = 0.10 s(-1) and k(off2) = 0.0015 s(-1)); binding of YC-1 eliminates the fast phase but has little effect on the slower phase. Our data are consistent with a model for allosteric activation in which sGC undergoes a simple switch between two conformations, with an open or a closed heme pocket, integrating the influence of numerous effectors to give the final catalytic rate. Importantly, YC-1 binding occurs in the N-terminal two-thirds of the protein. Homology modeling and mutagenesis experiments suggest the presence of an H-NOX domain in the alpha subunit with importance for heme binding.  相似文献   

15.
The hypothesis that endogenous carbon monoxide (CO), produced during the oxidation of heme catalyzed by heme oxygenase (HO), plays a role similar to that of nitric oxide (NO) in the regulation of cardiovascular tone has been criticized because of the low potency of CO compared with NO in relaxing blood vessels and stimulating soluble guanylyl cyclase (sGC). This criticism has been muted by the demonstration that, in the presence of YC-1 [3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole], CO has similar potency to NO in stimulating sGC activity. In this study, we determined that YC-1 potentiated CO-induced relaxation of rat aortic strips (RtAS) by approximately ten-fold. Furthermore, CO-induced relaxation of RtAS was shown to be mediated through stimulation of sGC because vasorelaxation was inhibited by ODQ (1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one), a selective sGC inhibitor, in the absence and presence of YC-1. A gas chromatographic-headspace method was used to measure CO concentration in Krebs' solution following the addition of CO-saturated saline solution to the tissue bath, in order to provide an accurate determination of RtAS exposure to CO. The tissue bath concentration of CO was shown to be approximately one-half of that calculated to be present. We conclude that should an endogenous compound exist with properties similar to that of YC-1, then the potency of CO as a vasorelaxant in the presence of this factor would be increased. As a consequence, CO could play a role in the regulation of cardiovascular tone, comparable to that of NO.  相似文献   

16.
Amino acid residues in the ligand binding pocket of human neuroglobin have been identified by site-directed mutagenesis and their properties investigated by resonance Raman and flash photolysis methods. Wild-type neuroglobin has been shown to have six-coordinate heme in both ferric and ferrous states. Substitution of His96 by alanine leads to complete loss of heme, indicating that His96 is the proximal ligand. The resonance Raman spectra of M69L and K67T mutants were similar to those of wild-type (WT) neuroglobin in both ferric and ferrous states. By contrast, H64V was six-coordinate high-spin and five-coordinate high-spin in the ferric and ferrous states, respectively, at acidic pH. The spectra were pH-dependent and six-coordinate with the low-spin component dominating at alkaline pH. In a double mutant H64V/K67T, the high-spin component alone was detected in the both ferric and the ferrous states. This implies that His64 is the endogenous ligand and that Lys67 is situated nearby in the distal pocket. In the ferrous H64V and H64V/K67T mutants, the nu(Fe-His) stretching frequency appears at 221 cm(-1), which is similar to that of deoxymyoglobin. In the ferrous CO-bound state, the nu(Fe-CO) stretching frequency was detected at 521 and 494 cm(-1) in WT, M69L, and K67T, while only the 494 cm(-1) component was detected in the H64V and H64V/K67T mutants. Thus, the 521 cm(-1) component is attributed to the presence of polar His64. The CO binding kinetics were biphasic for WT, H64V, and K67T and monophasic for H64V/K67T. Thus, His64 and Lys67 comprise a unique distal heme pocket in neuroglobin.  相似文献   

17.
Nagai M  Aki M  Li R  Jin Y  Sakai H  Nagatomo S  Kitagawa T 《Biochemistry》2000,39(43):13093-13105
Heme structures of a natural mutant hemoglobin (Hb), Hb M Iwate [alpha87(F8)His-->Tyr], and protonation of its F8-Tyr were examined with the 244-nm excited UV resonance Raman (UVRR) and the 406.7- and 441.6-nm excited visible resonance Raman (RR) spectroscopy. It was clarified from the UVRR bands at 1605 and 1166 cm(-)(1) characteristic of tyrosinate that the tyrosine (F8) of the abnormal subunit in Hb M Iwate adopts a deprotonated form. UV Raman bands of other Tyr residues indicated that the protein takes the T-quaternary structure even in the met form. Although both hemes of alpha and beta subunits in metHb A take a six-coordinate (6c) high-spin structure, the 406.7-nm excited RR spectrum of metHb M Iwate indicated that the abnormal alpha subunit adopts a 5c high-spin structure. The present results and our previous observation of the nu(Fe)(-)(O(tyrosine)) Raman band [Nagai et al. (1989) Biochemistry 28, 2418-2422] have proved that F8-tyrosinate is covalently bound to Fe(III) heme in the alpha subunit of Hb M Iwate. As a result, peripheral groups of porphyrin ring, especially the vinyl and the propionate side chains, were so strongly influenced that the RR spectrum in the low-frequency region excited at 406.7 nm is distinctly changed from the normal pattern. When Hb M Iwate was fully reduced, the characteristic UVRR bands of tyrosinate disappeared and the Raman bands of tyrosine at 1620 (Y8a), 1207 (Y7a), and 1177 cm(-)(1) (Y9a) increased in intensity. Coordination of distal His(E7) to the Fe(II) heme in the reduced alpha subunit of Hb M Iwate was proved by the observation of the nu(Fe)(-)(His) RR band in the 441.6-nm excited RR spectrum at the same frequency as that of its isolated alpha chain. The effects of the distal-His coordination on the heme appeared as a distortion of the peripheral groups of heme. A possible mechanism for the formation of a Fe(III)-tyrosinate bond in Hb M Iwate is discussed.  相似文献   

18.
Soluble guanylate cyclase (sGC) is a receptor for endogenous and exogenous nitric oxide (NO) and is activated many fold upon its binding, making it a core enzyme in the nitric oxide signal transduction pathway. Much effort has been made to understand the link between binding of NO at the sGC heme and activation of the cyclase activity. We report here the first direct evidence for the role of conformational changes in transmitting the signal between the heme and cyclase domains. Using both circular dichroism (CD) and fluorescence spectroscopies, we have probed the effect that the sGC activators NO and 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl-indazole (YC-1) and the inhibitor 1H-[1,2,4]-oxadiazolo-[4,3-a]-quinoxalin-1-one (ODQ) have on the structure of the protein. Surprisingly, binding of either ODQ or YC-1 to NO-bound sGC cause virtually identical changes in the far-UV CD spectra of sGC, reflecting a perturbation in the secondary structure of the enzyme. This change is absent upon binding of NO, YC-1 or ODQ alone. Using this and previous data, we propose a working model for the mechanism of activation of sGC by NO and YC-1 and inhibition by ODQ.  相似文献   

19.
Kapetanaki S  Varotsis C 《FEBS letters》2000,474(2-3):238-241
Fourier transform infrared (FTIR) and resonance Raman (RR) spectroscopies have been employed to investigate the reductive cleavage of the O-O bond of the endoperoxide moiety of the antimalarial drug artemisinin and its analog trioxane alcohol by hemin dimer. We have recorded FTIR spectra in the nu(O-O) and nu(as)(Fe-O-Fe) regions of artemisinin and of the hemin dimer that show the cleavage of the endoperoxide and that of the hemin dimer, respectively. We observed similar results in the trioxane alcohol/hemin dimer reaction. The RR spectrum of the artemisinin/hemin dimer reaction displays a vibrational mode at 850 cm(-1) that shifts to 818 cm(-1) when the experiment is repeated with (18)O-O(18) endoperoxide enriched trioxane alcohol. The frequency of this vibration and the magnitude of the (18)O-O(18) isotopic shift led us to assign the 850 cm(-1) mode to the Fe(IV) = O stretching vibration of a ferryl-xoxo heme intermediate that occurs in the artemisinin/hemin dimer and trioxane alcohol/hemin reactions. These results provide the first direct characterization of the antimalarial mode of action of artemisinin and its trioxane analog, and suggest that artemisinin appears to react with heme molecules that have been incorporated into hemozoin and subsequently the heme performs cytochrome P450-type chemistry.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号