首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 581 毫秒
1.
Callitrichid females are often described as energetically constrained. We examined the energy budgets of 10 female wild golden lion tamarins (GLTs, Leontopithecus rosalia) in an effort to understand how energy intake and expenditure might influence physical condition and therefore reproductive performance. We used focal animal sampling to record behavioral data and conducted energy analyses of foods consumed by GLTs to estimate intake and expenditure. We used two-tailed Wilcoxon signed-rank tests to compare intake in the reproductive vs. nonreproductive period and expenditure in the reproductive vs. nonreproductive period. Energy intake decreased during the reproductive period compared to the nonreproductive period. While total expenditure did not vary significantly across the two periods, females spent more time and therefore expended significantly more energy engaged in energetically inexpensive behaviors (i.e., sleeping or being stationary) during the reproductive period compared to the nonreproductive period. We suggest that reproductive female GLTs may adopt a reproductive strategy that includes high intake prior to pregnancy and lactation, and energy conservation during pregnancy and lactation.  相似文献   

2.
Reproduction, especially lactation, is associated with major metabolic adaptive changes. In this study, we investigated the metabolic changes and the roles of leptin during different periods of reproduction in primiparous Brandt's voles (Lasiopodomys brandtii). Energy intake, thermogenic capacity and serum leptin levels were examined in non-reproductive, mid pregnant, late pregnant, early lactating and peak lactating voles. Voles increased body mass by nearly 70% during late pregnancy compared to the non-breeding controls. The increase in body mass was mainly due to the increase in body fat mass which increased by 56%, and the growth of the reproductive tissues and digestive organs. Lactating voles decreased body fat by nearly 27% at peak lactation compared to the controls, and 53% compared to late pregnant voles. At the same time they increased food intake significantly. Uncoupling protein 1 (UCP1) content in brown adipose tissue (BAT) decreased significantly at peak lactation. Serum leptin increased significantly in the mid pregnancy, at a time when there was no increase in body fat, and remained at this high level in late pregnancy. Leptin levels decreased after parturition and reached a nadir at peak lactation. Serum leptin was negatively correlated with energy intake during lactation, but not during pregnancy. These data suggest that Brandt's voles adjust energy intake, thermogenic capacity and body reserves to match the high energy demands for reproduction. Hyperleptinemia, without decreased energy intake suggests a state of leptin resistance during pregnancy, and hypoleptinemia during lactation might act as a signal to stimulate energy intake.  相似文献   

3.
S. A. Munks  B. Green 《Oecologia》1995,101(1):94-104
This study examines the annual energetics of a small folivorous marsupial, Pseudocheirus peregrinus. Particular attention was given to the energy and time allocated to reproduction by the females. Daily energy expenditure was measured directly using the doubly labelled water technique. Energy transferred to the young via the milk was estimated from information on milk composition and production. There was no significant seasonal variation in the energy expenditure or water influx of males or females. The mean daily energy expenditure of a 1-kg non-lactating adult ringtail possum was 615 kJ day–1 or 2.2 times standard metabolic rate. Females showed significant changes in daily energy expenditure according to their reproductive status. Without the burden of lactation the total annual energy expenditure of an adult female was estimated as 212.4 MJ kg–1 year–1. The total annual energy expenditure of a female rearing two young was 247.5 MJ kg–1 year–1, with the late stage of lactation constituting the most energetically expensive period accounting for 30% of the total yearly energy expenditure during 24% of the time. Total metabolisable energy allocation during reproduction (22 MJ kg) was similar to estimates available for other herbivores, although, the peak metabolisable energy allocation during lactation (759 kJ day–1) was lower than values available for other herbivores. The total energy requirement for reproduction (metabolisable energy plus potential energy exported to young via milk) suggests that the ringtail possum also has a relatively low overall energy investment in reproduction. It is suggested that the lactational strategy of the ringtail possum has been selected in order to spread the energy demands of reproduction over time due to constraints on the rate of energy intake imposed by a leaf diet and/or to prolong the mother-young bond. The strategies a female ringtail possum may employ to achieve energy balance when faced with the energy demands of reproduction are discussed.  相似文献   

4.
Understanding the costs and regulation of reproduction in primates requires understanding the separate but linked effects of energy availability and total energy expenditure (TEE). We compared variation in TEE and energy intake (EI) between two periods, early lactation and after the resumption of sexual cycling, for eight females from two groups of normally reproducing colony-living baboons (Papio h. anubis). Total energy expenditure was assessed using the doubly labeled water method. TEE was correlated with maternal mass both during early lactation and after the resumption of cycling. TEE after the resumption of cycling was positively related to infant growth rates; mothers with rapidly growing infants had higher energy expenditure. TEE was however unrelated to maternal rank and only weakly associated with reproductive parameters such as delay to conception. EI in early lactation was related to infant mass and interbirth intervals, but unrelated to infant growth or reproductive parameters once cycling had resumed. Energy availability (EA; the difference between intake and expenditure) differed significantly between subordinate and dominant females during early lactation, was highly variable among individuals as a function of body composition, and is suggested to follow a nonlinear relationship as a complex function of social status, lactation stage, infant growth, and female fertility. Thus, as a consequence of reduced energy availability, subordinate females in this captive context may experience reproductive delays even though the total energy expenditure after the return of cycling was similar between high and low ranking females.  相似文献   

5.
Sow productivity improvements continue to increase metabolic demands during lactation. During the peripartum period, energy requirements increase by 60%, and amino acid needs increase by 150%. As litter size has increased, research on peripartum sows has focused on increasing birth weight, shortening farrowing duration to reduce stillbirths and improving colostrum composition and yield. Dietary fibre can provide short-chain fatty acids to serve as an energy source for the uterus prior to farrowing; however, fat and glucose appear to be the main energy sources used by the uterus during farrowing. Colostrum immunoglobulin G concentration can be improved by increasing energy and amino acid availability prior to farrowing; however, the influence of nutrient intake on colostrum yield is unequivocal. As sows transition to the lactation period, nutrient requirements increase with milk production demands to support large, fast-growing litters. The adoption of automated feed delivery systems has increased feed supply and intake of lactating sows; however, sows still cannot consume enough feed to meet energy and amino acid requirements during lactation. Thus, sows typically catabolise body fat and protein to meet the needs for milk production. The addition of energy sources to lactation diets increases energy intake and energy output in milk, leading to a reduction in BW loss and an improvement in litter growth rate. The supply of dietary amino acids and CP close to the requirements improves milk protein output and reduces muscle protein mobilisation. The amino acid requirements of lactating sows are variable as a consequence of the dynamic body tissue mobilisation during lactation; however, lysine (Lys) is consistently the first-limiting amino acid. A regression equation using published data on Lys requirement of lactating sows predicted a requirement of 27 g/day of digestible Lys intake for each 1 kg of litter growth, and 13 g/day of Lys mobilisation from body protein reserves. Increases in dietary amino acids reduce protein catabolism, which historically leads to improvements in subsequent reproductive performance. Although the connection between lactation catabolism and subsequent reproduction remains a dogma, recent literature with high-producing sows is not as clear on this response. Many practical aspects of meeting the nutrient requirements of lactating sows have not changed. Sows with large litters should approach farrowing without excess fat reserves (e.g. <18 mm backfat thickness), be fed ad libitum from farrowing to weaning, be housed in a thermoneutral environment and have their skin wetted to remove excess heat when exposed to high temperatures.  相似文献   

6.
Koalas are generally considered to be limited by their ability to acquire energy from their diet of Eucalyptus foliage and have the lowest mass-specific peak lactational energy output measured in any mammal to date. This study considered the energetics and sources of energy utilised for reproduction in free-ranging female koalas. Energy requirements and foliage intake were greater in both lactating and non-lactating females in winter than summer, presumably due to demands of thermoregulation. Koalas met the peak energy requirements of lactation primarily by a 36% increase in their intake of foliage. Metabolic energy expenditure (field metabolic rate, 1778 kJ.day–1 for a 6.25-kg female at the time of peak lactation) was not elevated during lactation. This was due to compensation for part of their lactational demands by reduction of another, non-reproductive, component of their energy budget. The observed energetic compensation was probably due primarily to substitution of the waste heat from the metabolic costs of milk production and increased heat increment of feeding for thermoregulatory energy expenditure. There may also have been energetic compensation by reduction of some aspect of maintenance metabolism. Such energetic compensation, together with the strategy of spreading lactation over a long period, minimises the magnitude of lactational energy demands on koalas, and thus the increase in daily food intake required during lactation. As the nutritional requirements of females at peak lactation are the highest of any members of the population, low reproductive requirements effectively increase the types and amount of habitat able to support koala populations.Abbreviations FMR field metabolic rate - HIF heat increment of feeding - RMR resting metabolic rate - O2 rate of oxygen consumptionCommunicated by I.D. Hume  相似文献   

7.
赵志军 《兽类学报》2012,32(1):33-41
为探讨繁殖经历与哺乳期最大持续能量收支的关系,对连续4 次繁殖的黑线仓鼠哺乳期的能量收支情况进行了测定。结果显示:1)不同繁殖组哺乳高峰期的摄食量、泌乳能量支出(MEO)、胎仔数和胎仔重差异不显著,静止代谢率(RMR)、非颤抖性产热(NST)、褐色脂肪组织(BAT)线粒体细胞色素c 氧化酶(COX)活性、血清甲状腺激素(T3 、T4 )和催乳素水平也无明显变化;2)摄食量与MEO、胎仔重和RMR 呈显著正相关。结果表明,不同繁殖经历的黑线仓鼠主要通过降低产热和增加能量摄入来满足哺乳高峰期的能量需求;哺乳期最大持续代谢率(SusMR)可能受乳腺组织泌乳能力的限制,与“外周限制假说” 的预测一致,不支持“中心限制假说”;SusMR 限制因素和哺乳期能量收支策略可能与繁殖经历无关。  相似文献   

8.
Postnatal growth, life span, and probability of reproduction in the adult state depended on the mother’s physical condition during pregnancy and lactation in water vole. The white fat weight in the female abdominal cavity was shown to significantly increase in pregnancy and to decrease in late lactation. As an indicators for nutritional state of females, their body weight difference after parturition (or in late lactation) and expected from the regression equation relating individual body weight at the beginning and the end of each reproductive stage were used (physical condition indexes in pregnancy or lactation). The correlation of the physical condition index in pregnancy with the storage fat weight was 0.67. The metabolic resources of the mother’s body proved to favor faster offspring development. The female offspring weight at the age of 3 and 10 weeks as well as adult ones positively correlated with the mother’s nutritional state in pregnancy, while the male offspring weight demonstrated a similar correlation at the age of 3 and 6 weeks. Increased negative energy balance during lactation proved to decrease the offspring weight in both sexes after separation from mother and at the age of 6 weeks. High nutritional state of mother in pregnancy favored both the probability of reproduction and life span of female offspring. The reproduction of male offspring did not depend on the mother’s physical condition. The life span peaked in male offspring of mothers in a nutritional state below average in pregnancy and above average in lactation. Thus, the physical condition of the mother’s body is an important sex-dependent factor of phenotypic variation in the offspring body weight, reproductive competence, and life span.  相似文献   

9.
Nazarova GG  Evsikov VI 《Ontogenez》2008,39(2):125-133
Postnatal growth, life span, and probability of reproduction in the adult state depended on the mother's physical condition during pregnancy and lactation in water vole. The white fat weight in the female abdominal cavity was shown to significantly increase in pregnancy and to decrease in late lactation. As an indicators for nutritional state of females, their body weight difference after parturition (or in late lactation) and expected from the regression equation relating individual body weight at the beginning and the end of each reproductive stage were used (physical condition indexes in pregnancy or lactation). The correlation of the physical condition index in pregnancy with the storage fat weight was 0.67. The metabolic resources of the mother's body proved to favor faster offspring development. The female offspring weight at the age of 3 and 10 weeks as well as adult ones positively correlated with the mother's nutritional state in pregnancy, while the male offspring weight demonstrated a similar correlation at the age of 3 and 6 weeks. Increased negative energy balance during lactation proved to decrease the offspring weight in both sexes after separation from mother and at the age of 6 weeks. High nutritional state of mother in pregnancy favored both the probability of reproduction and life span of female offspring. The reproduction of male offspring did not depend on the mother's physical condition. The life span peaked in male offspring of mothers in a nutritional state below average in pregnancy and above average in lactation. Thus, the physical condition of the mother's body is an important sex-dependent factor of phenotypic variation in the offspring body weight, reproductive competence, and life span.  相似文献   

10.
European hares selectively feed on plants with high fat and hence energy content. We hypothesized that these dietary requirements limit the ability of hares to adjust daily food intake during periods of high energy requirements, namely lactation. Our measurements in captive lactating females show that does kept on a low-fat diet increased food intake compared to does on a high-fat diet but assimilated significantly lower amounts of energy. Further, does fed a low-fat diet showed a prolonged rise of food intake during lactation, reduced milk energy content and lower milk mass production at large litter sizes. We hypothesize that impaired milk production under suboptimal fat supply is due to the inability of females to increase the capacity of nutrient-processing organs rapidly enough to meet the high energy demands of precocial juveniles with high metabolic costs. Thus, in hares, the production of precocial young may be viewed as a constraint, caused by their inability to dig thermally buffered burrows, rather than as an adaptive reproductive strategy. We suggest that the interaction of lactation energetics, dietary requirements, and reduced plant diversity in modern agricultural landscapes has facilitated the decline of hare populations across Europe over the last decades.  相似文献   

11.
以封闭式流体压力呼吸计测定KM小鼠(Mus musculus)的基础代谢率(BMR);采用残差分析和Pearson相关分析检验BMR与繁殖输出、内脏器官的相关性。哺乳末期BMR显著高于繁殖前,繁殖前BMR与繁殖输出不相关,但哺乳末期BMR与体重、摄食量、胎仔数和胎仔重、内脏器官和消化道显著正相关;与消化道器官的相关性高于其他内脏器官。研究结果支持"哺乳期较高的BMR有利于消化系统增强消化和吸收能力,以增加能量摄入用于繁殖输出"的假设。  相似文献   

12.
小型哺乳动物能量代谢和脂肪累积的适应性调节是其应对自然环境变化的主要能量学策略,但在不同的生活史阶段,脂肪组织适应性调节的特征和能量机理尚不清楚。为探讨不同繁殖阶段能量代谢和脂肪累积的变化及其内分泌机理,本文测定了黑线仓鼠哺乳期和断乳后摄食量、脂肪重量,以及血清瘦素水平、下丘脑瘦素受体(Ob-Rb)和相关神经肽的基因表达。结果显示,哺乳高峰期黑线仓鼠的脂肪重量几乎降低至零,断乳后显著增加;与非繁殖对照组相比,皮下脂肪、肾周脂肪与腹腔脂肪重量分别增长了1.5倍、37.1倍和1.9倍。断乳后摄食量、血清瘦素水平显著高于非繁殖对照组,Ob-Rb基因表达显著下调,而促食与抑食神经肽的基因表达均未发生显著变化。哺育不同胎仔数的黑线仓鼠在断乳后能量摄入、静止代谢率、身体组分未出现显著差异。研究表明,在不同的繁殖阶段脂肪累积呈现显 著的适应性调节,瘦素抵抗是断乳后脂肪累积补偿性增长的重要内分泌机制之一。这对迅速恢复脂肪累积,以应对将来的能量需求增加或者食物资源短缺的环境,进而提高自身的适合度具有重要意义。  相似文献   

13.
Leptin and metabolic control of reproduction   总被引:8,自引:0,他引:8  
Leptin treatment prevents the effects of fasting on reproductive processes in a variety of species. The mechanisms that underlie these effects have not been elucidated. Progress in this area of research might be facilitated by viewing reproductive processes in relation to mechanisms that maintain fuel homeostasis. Reproduction, food intake, and fuel partitioning can be viewed as homeostatic responses controlled by a sensory system that monitors metabolic signals. These signals are generated by changes in intracellular metabolic fuel availability and oxidation rather than by changes in the amount of body fat or by changes in any aspect of body composition. Leptin might be viewed as either a mediator or as a modulator of the intracellular metabolic signal. Consistent with its purported action as a mediator of the metabolic signal, leptin synthesis and secretion are influenced acutely by changes in metabolic fuel availability, and these changes might lead to changes in reproductive function. The effects of leptin treatment on reproduction are blocked by treatments that inhibit intracellular fuel oxidation. Metabolic signals that inhibit reproduction in leptin-treated animals might act via neural pathways that are independent of leptin's action. Alternatively, both leptin and metabolic inhibitors might interact at the level of intracellular fuel oxidation. In keeping with the possibility that leptin modulates the metabolic signal, leptin treatment increases fuel availability, uptake, and oxidation in particular tissues. Leptin might affect reproduction indirectly by altering fuel oxidation or other peripheral processes such as gastric emptying. Reproductive processes are among the most energetically expensive in the female repertoire. Because leptin increases energy expenditure while simultaneously inhibiting energy intake, it may have limited use as a long-term treatment for infertility.  相似文献   

14.
小型啮齿动物的繁殖能量代价   总被引:1,自引:1,他引:0  
繁殖是动物向后代传递和保持遗传信息的方式。因此繁殖的意义是显而易见的,但也需要付出代价。主要代价是能量需求增加。在对小家鼠繁殖能量需求的研究中发现,能量摄入在妊娠期只是稍微增加,而在哺乳期则急剧增加。尽管在妊娠期增加的幅度很小,但这可能反映了消化道和发育的胎儿之间在动物腹中的空间竞争,从而可能使能量摄入受到限制进而影响到繁殖过程。哺乳期间,能量摄入急剧增加,在哺乳后期达到高峰并趋于稳定。对野生鼠的研究也表明,野生鼠妊娠期和哺乳期的能量摄入模式与小家鼠是基本相同的,这样我们在小家鼠研究工作中的发现就具有更普遍的适应意义。对哺乳后期能量摄入的限制机制研究至少已经进行了15 年。能量摄入受消化道消化能力的限制(中心限制假说)或者受乳腺泌乳能力限制(外周限制假说) 的假说,都不能合理地解释一些现有的结果。我们提出了一个新的假说,即能量摄入可能受啮齿动物散热能力的限制(热耗散限制假说)。很久以来,一直认为散热能力是对大型哺乳动物哺乳的一个限制因素,但它在小型啮齿动物中的意义尚不清楚。传统观点认为,啮齿动物哺乳期对褐色脂肪组织产热水平的调节是为了重新分配能量以满足哺乳所需;但现在看来,实际上可能是动物为了避免体温过高而降低其基本的产热水平。我们在这个领域已经有了一些进展,但要利用这些知识来理解即使很简单的生活史权衡等问题也还有很多的工作需要做。  相似文献   

15.
Natural selection has linked the physiological controls of energy balance and fertility such that reproduction is deferred during lean times, particularly in female mammals. In this way, an energetically costly process is confined to periods when sufficient food is available to support pregnancy and lactation. Even in the face of abundance, nutritional infertility ensues if energy intake fails to keep pace with expenditure. A working hypothesis is proposed in which any activity or condition that limits the availability of oxidizable fuels (e.g., undereating, excessive energy expenditure, diabetes mellitus) can inhibit both gonadotropin-releasing hormone (GnRH)/luteinizing hormone secretion and female copulatory behaviors. Decreases in metabolic fuel availability appear to be detected by cells in the caudal hindbrain. Hindbrain neurons producing neuropeptide Y (NPY) and catecholamines (CA) then project to the forebrain where they contact GnRH neurons both directly and also indirectly via corticotropin-releasing hormone (CRH) neurons to inhibit GnRH secretion. In the case of estrous behavior, the best available evidence suggests that the inhibitory NPY/CA system acts primarily via CRH or urocortin projections to various forebrain loci that control sexual receptivity. Disruption of these signaling processes allows normal reproduction to proceed in the face of energetic deficits, indicating that the circuitry responds to energy deficits and that no signal is necessary to indicate that there is an adequate energy supply. While there is a large body of evidence to support this hypothesis, the data do not exclude nutritional inhibition of reproduction by other pathways and processes, and the full story will undoubtedly be more complex than this.  相似文献   

16.
A prediction of the seasonal investment hypothesis is that overall energy investment needs to be greater for young being produced at colder temperatures. Then, that energy cost is lower as temperature becomes warmer. To evaluate this assumption, I performed a series of measures of food intake and reproductive output throughout four successive bouts of lactation in striped hamsters (Cricetulus barabensis) exposed to a constant warm temperature (Warm, 21°C) or exposed to consecutive decreases in ambient temperatures from warm to cold (Warm-Cold, 30-0°C). Warm hamsters showed similar asymptotic food intake, litter size and mass over the course of four successive bouts of lactation. Warm-Cold females consumed more food, but raised lighter litters during the third bout than first bout of lactation. Ambient temperatures had significant effects on energy budget and reproductive output, by which resting metabolic rate, nonshivering thermogenesis and activity of cytochrome c oxidase (EC 1.9.3.1) of brown adipose tissue were increased, but reproductive output was decreased with declines of temperatures. These findings suggest that a trade-off occurs between different components of energy expenditure during the successive course of four bouts of lactation. Seasonal hamsters decrease their reproductive output, but increase the energy spent on thermogenesis as the ambient temperature becomes colder. It may also indicate that temperature has a direct effect on metabolism, leading to an increase in overall energy expenditure at lower temperatures.  相似文献   

17.
The physiological costs of reproduction in small mammals   总被引:1,自引:0,他引:1  
Life-history trade-offs between components of fitness arise because reproduction entails both gains and costs. Costs of reproduction can be divided into ecological and physiological costs. The latter have been rarely studied yet are probably a dominant component of the effect. A deeper understanding of life-history evolution will only come about once these physiological costs are better understood. Physiological costs may be direct or indirect. Direct costs include the energy and nutrient demands of the reproductive event, and the morphological changes that are necessary to facilitate achieving these demands. Indirect costs may be optional 'compensatory costs' whereby the animal chooses to reduce investment in some other aspect of its physiology to maximize the input of resource to reproduction. Such costs may be distinguished from consequential costs that are an inescapable consequence of the reproductive event. In small mammals, the direct costs of reproduction involve increased energy, protein and calcium demands during pregnancy, but most particularly during lactation. Organ remodelling is necessary to achieve the high demands of lactation and involves growth of the alimentary tract and associated organs such as the liver and pancreas. Compensatory indirect costs include reductions in thermogenesis, immune function and physical activity. Obligatory consequential costs include hyperthermia, bone loss, disruption of sleep patterns and oxidative stress. This is unlikely to be a complete list. Our knowledge of these physiological costs is currently at best described as rudimentary. For some, we do not even know whether they are compensatory or obligatory. For almost all of them, we have no idea of exact mechanisms or how these costs translate into fitness trade-offs.  相似文献   

18.
Summary We have analyzed seasonal shifts of energy and time allocation in a population of golden-mantled ground squirrels (Spermophilus saturatus) by directly measuring total daily energy expenditure (DEE) with an isotopic technique (doubly labeled water=dlw), and by estimating components of total DEE through an integration of field behavioral observations with laboratory-measured rates of energy expenditure (oxygen consumption) associated with major behavioral and physiological states. Hibernation laster about 7 1/2 months, and the 4 1/2-month activity season consisted of mating, a 28-d gestation of 3–5 young, 5 1/2 weeks of postnatal growth building to a peak in lactation just before the young emerged above ground, an additional 2–3-week period of maternal care before dispersal, and finally restoration of body mass preceding hibernation. Although the hibernation season comprised nearly two-thirds of the year, it involved only 13–17% of annual energy expenditure, leaving about 85% of energy expenditure for the active season. Ground squirrels were actually present on the surface for only about 11% of the year's time, and the foraging time required to obtain the total annual energy supply amounted to only about 2% of the year's time. The squirrels fed mainly on herbs in the early season and hypogeous fungi later; both were used extensively during peak lactation when female energy expenditure and demand were maximal. Average daily foraging time increased steadily throughout the season to a maximum of 28% of aboveground time as availability of greens diminished and fungus predominated in the diet; time availability did not limit foraging since the animals sat on average for 65% of the daily surface time of about 7 h. Timing of reproduction is apparently optimized such that peak reproductive energy demands are matched with maximal food availability and moderate thermal conditions that minimize energy demand. Despite the greater body mass of males, the greatest total DEE (measured by dlw) of any squirrels at any time of year was that of females during peak lactation. For production of young and lactation through above-ground emergence of an average litter of 2.7, females required a total energy increase of 24% above annual nonreproductive metabolism. Yearling females all bred and performed similarly to older females, yet some costs were greater because the yearlings began and ended hibernation at smaller mass, compensated by giving birth later, and finally showed a greater absolute increase in body mass over the active season than older females. Annual metabolic energy expenditure of breeding males was about 18% greater than that of females, due to greater male body mass. Yet the annual energy intake requirement for both sexes was essentially identical (about 42MJ) due to the greater reproductive export by females in the form of newborn and milk. During the mating season males showed wide-ranging exploratory behavior and social interactions, including aggression, that involved considerable locomotory energy expenditures. Although we did not directly account for the energetics of these specific reproductive behaviors, they are critical to male reproductive success and on a daily basis they probably involved much greater energy expenditure than sperm production. Some yearling males avoided these costs by foregoing testicular development, yet they allocated four times as much energy to growth as older males, thereby increasing somatic condition for the future.  相似文献   

19.
分别测定了随机限食和重喂食驯化的雌性KM小鼠的体重、摄食量、基础代谢率(BMR)、行为活动、身体脂肪和性腺重量.随机限食使摄食量增加、BMR和活动行为降低,生长发育迟缓,但对身体脂肪无显著影响.重喂食后上述指标均恢复到对照组水平,表现出显著的可塑性变化.结果表明,动物通过能量摄入和支出的权衡策略适应难以预测的食物资源变化,能量代谢和活动行为的可塑性调节在能量代谢的权衡策略中发挥重要作用.  相似文献   

20.
Otariids, like other wild mammals, contend with a wide variety of energetic demands across seasons. However, due to the cryptic behaviors of this marine group, few studies have been able to examine longitudinal energetic costs or the potential impact of these costs on seasonal or annual prey requirements. Here we evaluated the changes in energy demand and intake of female California sea lions (Zalophus californianus) during reproductive (n=2 sea lions) and nonreproductive (n=3) periods. Monthly measurements included resting metabolic rate, blood hormone levels, body condition (blubber thickness and body mass), and caloric intake for adult sea lions throughout molting, late pregnancy, lactation, and postweaning. We found that maintenance energy demands decreased from 32.0 to 23.1 MJ d(-1) before pupping, remaining stable at 19.4+/-0.6 MJ d(-1) during lactation and postweaning. Energy intake rates to meet these demands showed marked changes with activity level and the reproductive cycle, reaching a peak intake of 3.6 times baseline levels during lactation. Translating this into prey demands, we find that 20,000 reproductively active females on San Nicolas Island rookeries would maximally require 4,950 metric tons of Pacific whiting during a month of the breeding season. This localized impact is reduced significantly with postbreeding dispersal and demonstrates the importance of considering spatial and temporal factors driving the energetic requirements of predators when designing marine protected areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号