首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the oxygen-evolving photosystem-II (PSII) of higher plantchioroplasts and green algae, most of the light-harvesting functionis performed by the chlorophyll (Chl) a-b-protein complex (LHC-II).On the average, the LHC-II contains about 210 Chl (a+b) moleculesper PSII reaction center. The polypeptide composition, copynumber and organization of assembly in the LHC-II complex arenot fully understood at present. This work utilized the chlorinaf2 mutant of barley (lacking Chl b and having a LHC-II antennaof only 13 Chl a molecules) to determine the organization andstability of assembly of proteins in the LHC-II. High-resolutionSDS-PAGE and immunoblot analysis showed the presence of fourmain constitutive polypeptides in the wild-type LHC-II (termedhere subunits a, b, c and d) with molecular masses in the range30–25 kDa. Of those, only subunit d (a 25 kDa polypeptide)was found to occur at an equal copy number per PSII reactioncenter in both wild-type and in the Chl b-less chlorina f2 mutant.All other subunits were either absent or existed in much loweramounts in the mutant. Subunit d is a polypeptide constituentof the major Chl-protein subcomplex (CPII) of the LHC-II. Itis stably incorporated in the thylakoid membrane in the absenceof Chl b and probably binds the 13 Chl a molecules in the residualLHC-II antenna of the chlorina f2 mutant. We propose that, ofall LHC-II polypeptides, subunit d is most proximal to the PSIIcore and may serve as a linker in the process of excitationenergy transfer from the bulk LHC-II to the PSII reaction centerin chloroplasts. (Received February 25, 1992; Accepted May 12, 1992)  相似文献   

2.
Webb MR  Melis A 《Plant physiology》1995,107(3):885-893
The chloroplast response in the green alga Dunaliella salina to irradiance stress was investigated. Cells were grown under low light (LL) at 100 [mu]mol photons m-2 s-1 or high light (HL) at 2000 [mu]mol photons m-2 s-1 incident intensity. LL-grown cells had a low chlorophyll (Chl) a/b ratio, an abundance of light-harvesting complex II proteins (LHC-II), and a large Chl antenna size. HL-grown cells had a higher Chl a/b ratio, relatively fewer LHC-II, and a small Chl antenna size. The more abundant higher molecular mass subunits of the LHC-II (approximately 31 kD) were selectively depleted from the thylakoid membrane of HL-grown cells. Light-shift experiments defined the kinetics of change in the subunit composition of the LHC-II and suggested distinct mechanisms in the acclimation of thylakoids to HL or LL conditions. The results showed that irradiance exerts a differential regulation on the expression of various Lhcb genes. The specific polyclonal antibodies used in this work, raised against the purified LHC-II, cross-reacted with a polypeptide of approximately 20 kD in HL-grown samples. In this work we examined the dynamics of induction of this novel protein and discuss its function in terms of a chloroplast response to the level of irradiance.  相似文献   

3.
The trimeric main light-harvesting complex (LHC-II) is the only antenna complex of higher plants of which a high-resolution 3D structure has been obtained (Kühlbrandt, W., Wang, D., and Fujiyoshi, Y. (1994) Nature 367, 614-621) and which can be refolded in vitro from its components. Four different recombinant forms of LHC-II, each with a specific chlorophyll (Chl) binding site removed by site-directed mutagenesis, were refolded from heterologously overexpressed apoprotein, purified pigments, and lipid. Absorption spectra of mutant LHC-II were measured in the temperature range from 4 to 300 K and compared to likewise refolded wild-type complex and to native LHC-II isolated from pea chloroplasts. Chls at different binding sites have characteristic, well-defined absorption sub-bands. Mixed occupation of binding sites with Chls a and b is not observed. Temperature-dependent changes of the mutant absorption spectra reveal a consistent shift of the major difference bands but an irregular behavior of minor bands. A model of the spectral substructure of LHC-II is proposed which accounts for the different absorption properties of the 12 individual Chls in the complex, thus establishing a first consistent correlation between the 3D structure of LHC-II and its spectral properties. The spectral substructure is valid for recombinant and native LHC-II, indicating that both have the same spatial arrangement of Chls and that the refolded complex is fully functional.  相似文献   

4.
The chlorophyll-protein complexes of the thylakoid membrane from Prochlorothrix hollandica were identified following electrophoresis under nondenaturing conditions. Five complexes, CP1-CP5, were resolved and these green bands were analyzed by spectroscopic and immunological methods. CP1 contains the photosystem I (PSI) reaction center, as this complex quenched fluorescence at room temperature, and had a 77 K fluorescence emission peak at 717 nm. CP4 contains the major chlorophyll-a-binding proteins of the photosystem II (PSII) core, because this complex contained polypeptides which cross-reacted to antibodies raised against Chlamydomonas PSII proteins 5 and 6. Furthermore, fluorescence excitation studies at 77 K indicated that only a Chl a is bound to CP4. Complexes CP2, CP3 and CP5 contained functionally bound Chl a and b as judged by absorption spectroscopy at 20 degrees C and fluorescence excitation spectra at 77 K. CP2, CP3 and CP5 all contain polypeptides of 30-33 kDa which are immunologically distinct from the LHC-II complex of higher plant thylakoids.  相似文献   

5.
Etiolated pea (Pisum sativum [L.] cv Progress 9) and barley (Hordeum vulgare [L.] cv Boone) seedlings greened under either low (40 microeinsteins per square meter per second) or high (550 microeinsteins per square meter per second) intensity light were analyzed for chlorophyll (Chl) content and the levels of mRNA and protein for the major light-harvesting chlorophyll (Chl)-protein of photosystem II (LHC-II). Low intensity plants accumulated Chl more rapidly than high intensity plants. Both single radial immunodiffusion analysis and mild sodium dodecyl sulfate-polyacrylamide gel electrophoresis green gels showed that low intensity plants also accumulated LHC-II protein more rapidly than high intensity plants, following a kinetic pattern similar to the total Chl data. In contrast, LHC-II mRNA levels appeared to be independent of LHC-II protein levels although pea and barley LHC-II mRNA exhibited different light intensity responses. The absence of coordination between LHC-II mRNA and protein levels suggested that the biosynthesis of LHC-II in greening seedlings is not limited by mRNA. A correlation (better than the 0.01 significance level) between LHC-II protein accumulation and Chl accumulation was found for both pea and barley. The accumulation of LHC-II protein was not linked to the development of photosynthetic electron transport. These results and the similar effect of light intensity on Chl content and LHC-II protein levels suggested that the availability of Chl may limit LHC-II protein accumulation in greening seedlings.  相似文献   

6.
7.
Because light is not required for catalytic turnover of the cytochrome b 6 f complex, the role of the single chlorophyll a in the structure and function of the complex is enigmatic. Photodamage from this pigment is minimized by its short singlet excited-state lifetime ( approximately 200 ps), which has been attributed to quenching by nearby aromatic residues ( Dashdorj et al., 2005). The crystal structure of the complex shows that the fifth ligand of the chlorophyll a contains two water molecules. On the basis of this structure, the properties of the bound chlorophyll and the complex were studied in the cyanobacterium, Synechococcus sp. PCC 7002, through site-directed mutagenesis of aromatic amino acids in the binding niche of the chlorophyll. The b 6 f complex was purified from three mutant strains, a double mutant Phe133Leu/Phe135Leu in subunit IV and single mutants Tyr112Phe and Trp125Leu in the cytochrome b 6 subunit. The purified b 6 f complex from Tyr112Phe or Phe133Leu/Phe135Leu mutants was characterized by (i) a loss of bound Chl and b heme, (ii) a shift in the absorbance peak and increase in bandwidth, (iii) multiple lifetime components, including one of 1.35 ns, and (iv) relatively small time-resolved absorbance anisotropy values of the Chl Q y band. A change in these properties was minimal in the Trp125Leu mutant. In vivo, no decrease in electron-transport efficiency was detected in any of the mutants. It was concluded that (a) perturbation of its aromatic residue niche influences the stability of the Chl a and one or both b hemes in the monomer of the b 6 f complex, and (b) Phe residues (Phe133/Phe135) of subunit IV are important in maintaining the short lifetime of the Chl a singlet excited state, thereby decreasing the probability of singlet oxygen formation.  相似文献   

8.
Manifestation and extent of excitonic interactions in the red Chl-absorption region (Q(y) band) of trimeric LHC-II were investigated using two complementary nonlinear laser-spectroscopic techniques. Nonlinear absorption of 120-fs pulses indicates an increased absorption cross section in the red wing of the Q(y) band as compared to monomeric Chl a in organic solution. Additionally, the dependence of a nonlinear polarization response on the pump-field intensity was investigated. This approach reveals that one emitting spectral form, characterized by a 2.3(+/-0.8)-fold larger dipole strength than monomeric Chl a, dominates the fluorescence spectrum of LHC-II. Considering available structural and spectroscopic data, these results can be consistently explained assuming the existence of an excitonically coupled dimer located at Chl-bindings sites a2 and b2 (referring to the original notation of W. Nühlbrandt, D.N. Wang, and Y. Fujiyoshi, Nature, 1994, 367:614-621), which must not necessarily correspond to Chls a and b). This fluorescent dimer, terminating the excitation energy-transfer chain of the LHC-II monomeric subunit, is discussed with respect to its relevance for intra- and inter-antenna excitation energy transfer.  相似文献   

9.
We present an optically detected magnetic resonance (ODMR) and electron paramagnetic resonance (EPR) spectroscopic study on the quenching of photo-induced chlorophyll triplet states by carotenoids, in the intrinsic light-harvesting complex (LHC) from the dinoflagellate Amphidinium carterae.Two carotenoid triplet states, differing in terms of optical and magnetic spectroscopic properties, have been identified and assigned to peridinins located in different protein environment. The results reveal a parallelism with the triplet-triplet energy transfer (TTET) process involving chlorophyll a and luteins observed in the LHC-II complex of higher plants. Starting from the hypothesis of a conserved alignment of the amino acid sequences at the cores of the LHC and LHC-II proteins, the spin-polarized time-resolved EPR spectra of the carotenoid triplet states of LHC have been calculated by a method which exploits the conservation of the spin momentum during the TTET process. The analysis of the spectra shows that the data are compatible with a structural model of the core of LHC which assigns the photo-protective function to two central carotenoids surrounded by the majority of Chl a molecules present in the protein, as found in LHC-II. However, the lack of structural data, and the uncertainty in the pigment composition of LHC, leaves open the possibility that this complex posses a different arrangement of the pigments with specific centers of Chl triplet quenching.  相似文献   

10.
A collection of chlorophyll (Chl)-deficient mutants of sweetclover (Melilotus alba) with defects in eight nuclear loci were grown at 17 or 26° C. Plants grown at either temperature were examined for Chl content, Chla/b ratio, expression of the light-harvesting complex II (LHC-II) apoproteins, and protochlorophyllide (Pchlide) biosynthetic capacity. Except for thech4 mutant, the parental strain and all mutants accumulate more Chl when grown at 26° C than at 17° C. Thech5 mutants, lacking Chl b under any growth condition, and thech12 mutant showed little temperature-dependent phenotypic plasticity, whereas this was a marked phenomenon in the other mutants. Thech10 andch11 mutants demonstrated extreme temperature sensitivity with regard to the production of Chlb and the Chlb-binding LHC-II apoproteins. When excised trifoliolates were supplemented with exogenously supplied -aminolevulinic acid, only thech4 mutant was markedly impaired in the ability to produce Pchlide. These data indicate that temperature-sensitive phenotypic plasticity is a common phenomenon of chlorophyll-deficient mutants and substantiate that only a minority of Chl-deficient mutants is impaired in the biosynthesis of Chl.This research was supported by Grants GM84-CRCR-1-1479 (J.C.O.) and 89-00641 (J.M.) of the United States Department of Agriculture and by National Science Foundation Grant DMB87-03100 (J.M.). This is paper No. 8971, Nebraska Agricultural Research Division.  相似文献   

11.
Differential scanning calorimetry was employed to investigate the structure of spinach (Spinacia oleracea) chloroplast membranes. In a low ionic strength Hepes-buffered medium, major calorimetric transitions were resolved at 42.5°C. (A), 60.6°C (B), 64.9°C (C1), 69.6°C (C2), 75.8°C (D), 84.3°C (E), and 88.9°C (F). A lipid melting transition was also commonly seen at 17°C in scans starting at lower temperatures. The D transition was demonstrated by four independent methods to derive from denaturation of the light harvesting complex associated with photosystem II (LHC-II). Evidence for this conclusion was as follows: (a) the endotherm of the isolated LHC-II (74.0°C) was very similar to that of D (75.8°C); (b) the denaturation temperature of the 27 kilodalton LHC-II polypeptide determined in intact chloroplast membranes by thermal gel analysis was identical to the temperature of the D transition at pH 7.6 and after destabilization by shifting the pH to 6.6 or by addition of Mg2+; (c) analysis of the stability of the LHC-II complex by electrophoresis in native gels demonstrated that the complex dissociates during the D transition, both at pH 7.6 and 6.6; and (d) the 77 Kelvin fluorescence maximum of LHC-II in chloroplasts was seen to shift to lower wavelengths (indicating gross denaturation of LHC-II), at the temperature of the D transition when examined at either of the above pHs. With this identification, five of the eight major endotherms of the chloroplast membrane have now been assigned.  相似文献   

12.
Spectroscopic and polarization properties of single light-harvesting complexes of higher plants (LHC-II) were studied at both room temperature and T < 5 K. Monomeric complexes emit roughly linearly polarized fluorescence light thus indicating the existence of only one emitting state. Most probably this observation is explained by efficient triplet quenching restricted to one chlorophyll a (Chl a) molecule or by rather irreversible energy transfer within the pool of Chl a molecules. LHC-II complexes in the trimeric (native) arrangement bleach in a number of steps, suggesting localization of excitations within the monomeric subunits. Interpretation of the fluorescence polarization properties of trimers requires the assumption of transition dipole moments tilted out of the symmetry plane of the complex. Low-temperature fluorescence emission of trimers is characterized by several narrow spectral lines. Even at lowest excitation intensities, we observed considerable spectral diffusion most probably due to low temperature protein dynamics. These results also indicate weak interaction between Chls belonging to different monomeric subunits within the trimer thus leading to a localization of excitations within the monomer. The experimental results demonstrate the feasibility of polarization sensitive studies on single LHC-II complexes and suggest an application for determination of the Chl transition-dipole moment orientations, a key issue in understanding the structure-function relationships.  相似文献   

13.
A collection of 17 monoclonal antibodies elicited against the light-harvesting chlorophyll a/b protein complex which serves photosystem II (LHC-II) of Pisum sativum shows six classes of binding specificity. Antibodies of two of the classes recognize a single polypeptide (the 28- or the 26- kD polypeptides), thereby suggesting that the two proteins are not derived from a common precursor. Other classes of antibodies cross-react with several polypeptides of LHC-II or with polypeptides of both LHC-II and the light-harvesting chlorophyll a/b polypeptides of photosystem I (LHC-I), indicating that there are structural similarities among the polypeptides of LHC-II and LHC-I. The evidence for protein processing by which the 26-, 25.5-, and 24.5-kD polypeptides are derived from a common precursor polypeptide is discussed. Binding studies using antibodies specific for individual LHC-II polypeptides were used to quantify the number of antigenic polypeptides in the thylakoid membrane. 27 copies of the 26-kD polypeptide and two copies of the 28-kD polypeptide were found per 400 chlorophylls. In the chlorina f2 mutant of barley, and in intermittent light-treated barley seedlings, the amount of the 26-kD polypeptide in the thylakoid membranes was greatly reduced, while the amount of 28-kD polypeptide was apparently not affected. We propose that stable insertion and assembly of the 28-kD polypeptide, unlike the 26-kD polypeptide, is not regulated by the presence of chlorophyll b.  相似文献   

14.
The plant light-harvesting complex of photosystem II (LHC-II) collects and transmits solar energy for photosynthesis in chloroplast membranes and has essential roles in regulation of photosynthesis and in photoprotection. The 2.5 A structure of pea LHC-II determined by X-ray crystallography of stacked two-dimensional crystals shows how membranes interact to form chloroplast grana, and reveals the mutual arrangement of 42 chlorophylls a and b, 12 carotenoids and six lipids in the LHC-II trimer. Spectral assignment of individual chlorophylls indicates the flow of energy in the complex and the mechanism of photoprotection in two close chlorophyll a-lutein pairs. We propose a simple mechanism for the xanthophyll-related, slow component of nonphotochemical quenching in LHC-II, by which excess energy is transferred to a zeaxanthin replacing violaxanthin in its binding site, and dissipated as heat. Our structure shows the complex in a quenched state, which may be relevant for the rapid, pH-induced component of nonphotochemical quenching.  相似文献   

15.
A number of new nuclear mutants have been isolated from maize by selection for high chlorophyll (Chl) fluorescence. These mutants show reduced rates of photosynthesis and/or are deficient in Chl. Electrophoretic examination of wild type thylakoid membranes revealed five Chl-protein complexes, two containing only Chl a and three containing Chl a and Chl b. A class of nonviable, photosystem I-deficient mutants was found to be lacking one (A-1) of the two Chl a-protein complexes. A second class of nonviable, photosystem I-lacking mutants was found to be missing not only this A-1 complex but also one or more of the three Chl a and b-containing, light-harvesting Chl-protein complexes. Viable mutants were obtained which appeared to have lost just one of the Chl b-containing complexes, whereas a second class of viable mutants was missing all three of the Chl b-complexes. The results confirm that the A-1 band is associated with the P700-Chl a-protein complex characterized previously. The data also indicate the existence of structurally different forms of the light-harvesting Chl a- and b-containing complexes. The results also show a lower molecular weight band (A-2) containing primarily Chl a and which appears to be required for viability.  相似文献   

16.
Conditions were developed to isolate the light-harvesting chlorophyll-protein complex serving photosystem II (LHC-II) using a dialyzable detergent, octylpolyoxyethylene. This LHC-II was successfully reconstituted into partially developed chloroplast thylakoids of Hordeum vulgare var Morex (barley) seedlings which were deficient in LHC-II. Functional association of LHC-II with the photosystem II (PSII) core complex was measured by two independent functional assays of PSII sensitization by LHC-II. A 3-fold excess of reconstituted LHC-II was required to equal the activity of LHC developing in vivo. We suggest that a linker component may be absent in the partially developed membranes which is required for specific association of the PSII core complex and LHC-II.  相似文献   

17.
The influence of various colors of soil cover (mulch) on the farred/red (FR/R) ratio in upwardly reflected light and on concentrations of chlorophyll (Chl) and light-harvesting Chl protein (LHC-II) were measured under field conditions. The FR/R ratios above green surfaces were higher than over white surfaces. Even though plants (Gossyplum hirsutum L. cv PD-1) were grown in full sunlight, those that received higher FR/R ratios in upwardly reflected light were taller and had thinner leaves with higher concentrations of Chl and LHC-II. A controlled environment experiment showed FR/R control of Chl and LHC-II concentrations. The results illustrate the importance of spectral distribution of reflected light on plant growth and a potential means of altering the chemistry of leaf crops under field conditions.  相似文献   

18.
A material containing only photosystem I (PSI) and the chlorophyll-a/b-binding light-harvesting complex of PSII (LHC-II) has been isolated from the chloroplast thylakoid membrane by solubilization with Triton X-100. Fluorescence spectroscopy shows that, within the material, LHC-II is coupled to PSI for excitation-energy transfer and that this coupling is decreased by the presence of Mg2+, which also decreased PSI electron transport specifically at limiting light intensity. Inclusion of phosphorylated LHC-II within the material did not alter its structure, but gave decreased energy transfer to PSI and inhibition of electron transport which was independent of light intensity, implying effects of phosphorylation on both light harvesting and directly on electron transport. Inclusion of Mg2+ within the phosphorylated material gave decreased energy transfer, but slightly increased PSI electron transport. A cation-induced direct promotion of PSI electron transport was also observed in isolated PSI particles. The PSI/LHC-II material represents a model system for examining protein interactions during light-state adaptations and the possibility that LHC-II can contribute to the antenna of PSI in light state 2 in vivo is discussed.  相似文献   

19.
Polyclonal antibodies were prepared against the major antenna chlorophyll (Chl) a/b-binding protein from the prokaryote Prochlorothrix hollandica (Burger-Wiersma et al. (1986) Nature (Lond.) 320, 262-264). Immunoblotting experiments on Triton X-114 phase-partitioned P. hollandica thylakoids revealed that the antibody recognizes intrinsic membrane polypeptides of 33 and 30 kDa, and immunocytochemistry of P. hollandica thin sections showed that the antibody preferentially decorates the thylakoid. The antibody was immunopurified against a LacZ fusion protein produced in Escherichia coli by an immunopositive phage clone retrieved from a lambda ZAP expression library. This purified antibody crossreacted to both the 33 and 30 kDa polypeptides, indicating that these proteins are either structurally related products of different genes, or modified forms of the same gene product. Whereas immunological crossreactivity of Prochlorothrix antibody to the major LHC-II Chl a/b antenna of maize could not be detected, the immunopurified antibody reacted strongly to the major 34 kDa Chl a/b antenna protein from the prokaryote Prochloron sp. (Lewin (1975) Phycologia 14, 153-160). These data confirm the structural similarity of the prochlorophyte photosynthetic antenna systems.  相似文献   

20.
Three pulse echo peak shift and transient grating (TG) measurements on the plant light-harvesting complexes LHCII and CP29 are reported. The LHCII complex is by far the most abundant light-harvesting complex in higher plants and fulfills several important physiological functions such as light-harvesting and photoprotection. Our study is focused on the light-harvesting function of LHCII and the very similar CP29 complex and reveals hitherto unresolved excitation energy transfer processes. All measurements were performed at room temperature using detergent isolated complexes from spinach leaves. Both complexes were excited in their Chl b band at 650 nm and in the blue shoulder of the Chl a band at 670 nm. Exponential fits to the TG and three pulse echo peak shift decay curves were used to estimate the timescales of the observed energy transfer processes. At 650 nm, the TG decay can be described with time constants of 130 fs and 2.2 ps for CP29, and 300 fs and 2.8 ps for LHCII. At 670 nm, the TG shows decay components of 230 fs and 6 ps for LHCII, and 300 fs and 5 ps for CP29. These time constants correspond to well-known energy transfer processes, from Chl b to Chl a for the 650 nm TG and from blue (670 nm) Chl a to red (680 nm) Chl a for the 670 nm TG. The peak shift decay times are entirely different. At 650 nm we find times of 150 fs and 0.5-1 ps for LHCII, and 360 fs and 3 ps for CP29, which we can associate mainly with Chl b <--> Chl b energy transfer. At 670 nm we find times of 140 fs and 3 ps for LHCII, and 3 ps for CP29, which we can associate with fast (only in LHCII) and slow transfer between relatively blue Chls a or Chl a states. From the occurrence of both fast Chl b <--> Chl b and fast Chl b --> Chl a transfer in CP29, we conclude that at least two mixed binding sites are present in this complex. A detailed comparison of our observed rates with exciton calculations on both CP29 and LHCII provides us with more insight in the location of these mixed sites. Most importantly, for CP29, we find that a Chl b pair must be present in some, but not all, complexes, on sites A(3) and B(3). For LHCII, the observed rates can best be understood if the same pair, A(3) and B(3), is involved in both fast Chl b <--> Chl b and fast Chl a <--> Chl a transfer. Hence, it is likely that mixed sites also occur in the native LHCII complex. Such flexibility in chlorophyll binding would agree with the general flexibility in aggregation form and xanthophyll binding of the LHCII complex and could be of use for optimizing the role of LHCII under specific circumstances, for example under high-light conditions. Our study is the first to provide spectroscopic evidence for mixed binding sites, as well as the first to show their existence in native complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号