首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single sodium channel currents were analysed in cell attached patches from single ventricular cells of guinea pig hearts in the presence of a novel cardiotonic compound DPI 201-106. The mean single channel conductance of DPI-treated Na channels was not changed by DPI (20.8 +/- 4 pS, control, 3 patches; 21.3 +/- 1 pS with DPI, 5 mumol/1,3 patches). DPI voltage-dependently prolongs the cardiac sodium channel openings by removal of inactivation at potentials positive to -40 mV. At potentials negative to -40 mV a clustering of short openings at the very beginning of the depolarizing voltage steps can be observed causing a transient time course of the averaged currents. Long openings induced an extremely slow inactivation. Short openings, long openings and nulls appeared in groups referring to a modal gating behaviour of DPI-treated sodium channels. DPI-modified Na channels showed a monotonously prolonged mean open time with increased depolarizing voltage steps, e.g. the open state probability within a sweep was increased. However, the number of non-empty sweeps was decreased with the magnitude of the depolarizing steps, e.g. the probability of the channel being open as calculated from the averaged currents was voltage-dependently decreased by DPI (50% decrease at -50.7 +/- 9 9 mV, 3 patches). Short and long openings of DPI-modified channels could be separated by variation of the holding potential. The occurrence of long Na channel openings was much more suppressed by reducing the holding potential (half maximum inactivation at -112 +/- 8 mV, 4 patches) than that of short openings (half maximum inactivation at -88 +/- 8 mV, 4 patches). Otherwise, short living openings completely disappeared at potentials positive to -40 mV where the occurrence of long openings was favoured. The differential voltage dependence of blocking and activating effects of DPI on cardiac Na channels as well as the differential voltage dependence of the appearance of short and long openings refers to a modal gating behaviour of cardiac Na channels.  相似文献   

2.
Developmental changes in functions of myocardial sodium channels were examined from inotropic effects of several neurotoxins in ventricular muscle preparations obtained from prenatal (20-22 day gestation) or adult (3-4 months old) rat hearts. Tetrodotoxin caused a negative inotropic effect in low concentrations and a loss of muscle responsiveness to electrical stimulation in high concentrations in preparations obtained from either prenatal or adult rat heart. The tetrodotoxin concentration that caused a 50% decrease in developed tension was higher in prenatal rats. Anemonia sulcata toxin, Androctonus australis toxin, veratridine, and Centruroides sculpturatus toxin all produced positive inotropic effects in adult rat heart. The effects were largest with A. sulcata and A. australis toxins, intermediate with veratridine, and smallest with C. sculpturatus toxin. Prenatal heart required higher concentrations of either veratridine, or A. sulcata or A. australis toxins to produce comparable positive inotropic effects. With C. sculpturatus toxin, no significant positive inotropic effect was observed in prenatal heart muscle preparations. These results indicate that cardiac sodium channels undergo significant functional changes during development and that negative and positive inotropic effects of neurotoxins resulting from inhibition and enhancement of fast Na+ channels reflect developmental changes in the cardiac sodium channels.  相似文献   

3.
The effects of ouabain 10(-6) M on rat and guinea pig hearts have been studied at 18 degrees C, in order to reduce almost fully both the Na+, K+-dependent ATPase activity and the ouabain induced inhibition of this enzyme. In isolated guinea pig hearts the positive inotropic response to ouabain obtained at 32 degrees C disappeared at 18 degrees C. On the contrary, the contractile strength of rat hearts was slightly reduced by ouabain and in the same manner at both temperatures. Current and voltage clamp experiments carried out at 18 degrees C in ventricular fibres revealed that ouabain 10(-6) M decreased both the action potential overshoot and the fast sodium current in rat and guinea pig, by reduction of the membrane sodium conductance. Ouabain did not change the calcium current in guinea pig preparations, whereas in rat heart muscle this current was reduced. The effects of ouabain on both the action potential plateau and outward repolarizing current indicated some inconsistencies from preparation to preparation and cannot therefore be considered as significant. The persistence of the ouabain induced alterations of g Na (in rat and guinea pig) and calcium current (in rat) at 18 degrees C supports the hypothesis of two ouabain cell receptors in heart muscle.  相似文献   

4.
In previous works we demonstrated that 2-methyl-1,4-naphthoquinone (menadione) causes a marked increase in the force of contraction of guinea pig and rat isolated atria. This inotropic effect was significantly higher in the guinea pig than in the rat and was strictly related to the amount of superoxide anion (O(2)(*-)), generated as a consequence of cardiac menadione metabolism through mitochondrial NADH-ubiquinone oxidoreductase. The present study was designed to further elucidate the basis of these quantitatively different positive inotropic responses. To this purpose, we measured O(2)(*-) and hydrogen peroxide (H(2)O(2)) produced by mitochondria isolated from guinea pig and rat hearts in the presence of 20 microM menadione. Moreover, we evaluated the menadione detoxification activity (DT-diaphorase) and the antioxidant defences of guinea pig and rat hearts, namely their GSH/GSSG content, Cu/Zn- and Mn-dependent superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (Gpx) activities. Our results indicate that DT-diaphorase activity and glutathione levels were similar in both animal species. By contrast, guinea pig mitochondria produced greater amounts of O(2)(*-) and H(2)O(2) than those of rat heart. This is probably due to both the higher Mn-SOD activity (2.93 +/- 0.02 vs. 1.95 +/- 0.06 units/mg protein; P < 0.05) and to the lower Gpx activity (10.09 +/- 0.30 vs. 32.67 +/- 1.02 units/mg protein; P < 0.001) of guinea pig mitochondria. A lower CAT activity was also observed in guinea pig mitochondria (2.40 +/- 0.80 vs. 6.13 +/- 0.20 units/mg protein; P < 0.01). Taken together, these data provide a rational explanation for the greater susceptibility of guinea pig heart to the toxic effect of menadione: because of the greater amount of O(2)(*-) generated by the quinone and the higher mitochondrial Mn-SOD activity, guinea pig heart is exposed to more elevated concentrations of H(2)O(2) that is less efficiently detoxified, because of lower Gpx and CAT levels of mitochondria.  相似文献   

5.
The cardiotonic activities of pumiliotoxins, pyrethroids and sodium and calcium channel activators were assessed in vitro with spontaneously beating guinea pig atria. The ability of these compounds to stimulate phosphoinositide turnover was assessed in guinea pig cerebral cortical synaptoneurosomes. The activity of pumiliotoxins for both cardiotonic activity and phosphoinositide breakdown was strongly dependent on the structure and configuration of the side chain and there was a correlation between structure and activity in the two systems. Pyrethroids that had cardiotonic activity also induced phosphoinositide breakdown. Other sodium channel and calcium channel activators that induced phosphoinositide breakdown were also cardiotonic. It is suggested that phosphoinositide breakdown leading to inositol phosphates and diacylglycerols may represent a mechanism underlying the cardiotonic effects of certain agents. A phorbol ester, phorbol 12-myristate 13-acetate, that mimics the activation of protein kinase C elicited by diacylglycerols, had cardiotonic activity.  相似文献   

6.
BDS II, a 43-residue polypeptide from the sea anemone Anemonia sulcata, is reported to have both antihypertensive and antiviral activity. This polypeptide possesses a number of sequence and structural similarities to a class of cardiotonic proteins which bind to receptor site 3 of the voltage-gated sodium channel. In contrast to these cardiostimulant proteins, which produce positive inotropic effects at concentrations of 2-15 nM, BDS II produced a weak negative inotropic effect upon isolated guinea-pig atria, with doses of 90 and 180 nM depressing contractile strength by 15 and 28%, respectively. BDS II also competed with a 125-iodine labelled derivative of AP-A (a representative of the cardiostimulant proteins) bound to sodium channels in rat brain synaptosomes. The IC50 for BDS II versus AP-A was 5.2 microM. BDS II may therefore be considered an antagonist for receptor site 3 of the voltage-gated sodium channel. Structural differences between BDS II and the agonist AP-A which may give rise to their different effects on the sodium channel are considered.  相似文献   

7.
The effects of the peripheral-type benzodiapine receptor (PBR) ligands Ro 5-4864 and PK 11195 were studied in the spontaneously beating guinea pig atrium and in a model for myocardial ischemia in the rat. In the former, Bay K 8644 produced positive chronotropic and inotropic responses; intracarotid administration of this agonist (5 or 10 micrograms kg-1) to anesthetized rats elicited a transient increase in mean arterial blood pressure accompanied by alterations in the ECG pattern. Ro 5-4864 and PK 11195 (10 microM) completely blocked the positive chronotropic effect of Bay K 8644 in the atrium, PK 11209, a structural analog of PK 11195 with a low affinity for PBR, was inactive, and the central benzodiazepine receptor ligand clonazepam had a marginal effect. Ro 5-4864 potentiated whereas PK 11195 inhibited the myocardial ischemia produced by Bay K 8644 in the rat. Furthermore, PK 11195 blocked the combined response to Bay K 8644 and Ro 5-4864. Addition of Ro 5-4864 (10 microM) to the organ bath potentiated the inotropic effect of Bay K 8644 in the atria; PK 11195 at the same concentration inhibited this effect. Clonazepam and PK 11209 were both inactive in this regard. Nifedipine, a potent calcium channel antagonist, completely blocked the inotropic and chronotropic responses to Bay K 8644. PK 11195 and Ro 5-4864 did not affect this action. These findings strongly suggest that there is a functional association between PBR and voltage-operated calcium channels in the guinea pig atrium and rat cardiovascular system.  相似文献   

8.
E Aasum  T S Larsen 《Cryobiology》1999,38(3):243-249
We examined the effect of hypothermia and rewarming on myocardial function and calcium control in Langendorff-perfused hearts from rat and guinea pig. Both rat and guinea pig hearts demonstrated a rise in myocardial calcium ([Ca]total) in response to hypothermic perfusion (40 min, 10 degrees C), which was accompanied by an increase in left ventricular end diastolic pressure (LVEDP). The elevation in [Ca]total was severalfold higher in guinea pig than in rat hearts, reaching 12.9 +/- 0.8 and 3.1 +/- 0.6 micromol.g dry wt-1, respectively. The rise in LVEDP, however, was comparable in the two species: 62.5 +/- 2.5 (guinea pig) and 52.5 +/- 5.1 mm Hg (rat). Following rewarming, [Ca]total remained elevated in guinea pig, whereas a moderate decline in [Ca]total was observed in the rat (13.6 +/- 1.9 and 2.2 +/- 0.3 micromol.g dry wt-1, respectively). Posthypothermic values of LVEDP were also significantly higher in guinea pig compared to rat hearts (42.5 +/- 6.8 vs 20.5 +/- 5.1 mm Hg, P < 0.027). Furthermore, whereas rat hearts demonstrated a 78 +/- 7% recovery of left ventricular developed pressure, there was only a 15 +/- 7% recovery in guinea pig hearts. Measurements of tissue levels of high energy phosphates and glycogen utilization indicated a higher metabolic requirement in guinea pig than in rat hearts in order to oppose the hypothermia-induced calcium load. Thus, we conclude that isolated guinea pig hearts are more sensitive to a hypothermic insult than rat hearts.  相似文献   

9.
Currents through DPI 201-106 modified single cardiac sodium channels in guinea pig ventricular cells were measured using the patch clamp technique in the cell-free configuration to control the sodium concentrations on both sides of the patch membrane. Current-voltage relationships of the single channels were obtained by application of linear voltage ramps from -140 to 100 mV. With 10 mmol/l Na+ at the inner surface of the patch, openings of sodium channels with conductances of 17 pS (selectivity ratios PK/PNa = 0.083 and PK/PNa = 0.58) and 12 pS (selectivity ratios PK/PNa = 0.084 and PK/PNa = 1.832) were obtained. With 30 mmol/l internal sodium, conductances of 20, 10, and 7 pS and selectivity ratios of 0.084, 0.386, and 0.543, respectively, could be measured. It is concluded that substates of sodium channel currents are due to changes in single channel conductance as well as in selectivity, or to changes of both independently of each other which accounts for the variability of conductance levels of cardiac Na channels.  相似文献   

10.
Isolated left and right guinea pig atria were used as a bioassay for the detection of an endogenous cardioactive substance in bovine serum. Serum, buffer exchanged to Krebs–Henseleit solution, produced positive inotropic and chronotropic effects on the isolated guinea pig atria. The cardiotonic effects were unaffected by the combined presence of propranolol and methysergide (both 10–6M) and were also dissimilar in time course from other known cardiotons such as catecholamines and cardiac glycosides. Following ultrafiltration (using XM100A Amicon membranes), activity was found solely in the retentate fractions and was therefore probably due to a large molecular weight (>100 kDa) substance or a small molecule bound to a large protein. The cardioactive factor (CF) in the whole serum was heat labile, sensitive to acidification, exposure to potassium bromide and equilibration to physiological buffers of a low ionic strength. Isolation by conventional protein purification techniques was unsuccessful due to the labile nature of the active molecule(s) when exposed to non-physiological experimental conditions. Physical and biochemical properties of the CF which may help avoid inactivation are discussed for future experiments aimed at elucidating the nature and identity of the cardiotonic principle. (Mol Cell Biochem 261: 201–207, 2004)  相似文献   

11.
Forskolin (0.375 mumol 1(-1)) produced positive inotropic and chronotropic effects on the isolated, spontaneously beating atria of the guinea pig. The same effects were also observed or even increased in the presence of various concentrations of isoprenaline (0.024 and 0.12 mumol 1(-1)) in the organ bath. The effects of forskolin on the isometric contraction and the atrial rate of the isolated, spontaneously beating atria of the guinea-pig were significantly inhibited by propranolol (9 mumol 1(-1)). These results indicate that the action of forskolin on the spontaneously beating atria of the guinea-pig is mediated by stimulation of the adenylate cyclase system, but in some steps of this action, a direct stimulation of beta-adrenoceptors might also be implicated.  相似文献   

12.
D J Jones 《Life sciences》1982,31(5):479-488
The stimulation of cyclic adenosine 3',5'-monophosphate (cyclic AMP) accumulation by the depolarizing agents K+, ouabain and veratridine, was studied in rat and guinea pig spinal cord tissue slices. Significantly increased accumulation of cyclic AMP was produced by each of the agents in a concentration-dependent manner. Veratridine and ouabain were equipotent (EC50 = 5 x 10(-5)M) and approximately 500 fold more potent than K+ (EC50 = 10(-2)M). Depolarizing agent-induced cyclic AMP accumulation in slices from guinea pig spinal cord was approximately double the response in rat spinal cord. Maximum stimulation occurred within 2.5 min of incubation with these agents and lasted for at least 30 min. Regional studies demonstrated that the maximal accumulation of cyclic AMP occurred to a greater degree in tissue slices from the dorsal section of spinal cord from both rat and guinea pig. Whereas the ouabain and veratridine stimulatory responses are completely dependent on extracellular Ca++, the K+ response is only partially dependent. Stimulation due to ouabain and veratridine is dependent, and K+ is independent, of release of neurohumoral substances such as norepinephrine or adenosine from spinal neurons. These experiments indicate the possible modulatory role of depolarization-linked events in regulating the spinal cord cyclic AMP system.  相似文献   

13.
Isolated left and right guinea pig atria were used as a bioassay for the detection of an endogenous cardioactive substance in bovine serum. Serum, buffer exchanged to Krebs-Henseleit solution, produced positive inotropic and chronotropic effects on the isolated guinea pig atria. The cardiotonic effects were unaffected by the combined presence of propranolol and methysergide (both 10(-6)M) and were also dissimilar in time course from other known cardiotons such as catecholamines and cardiac glycosides. Following ultrafiltration (using XM100A Amicon membranes), activity was found solely in the retentate fractions and was therefore probably due to a large molecular weight (> 100 kDa) substance or a small molecule bound to a large protein. The cardioactive factor (CF) in the whole serum was heat labile, sensitive to acidification, exposure to potassium bromide and equilibration to physiological buffers of a low ionic strength. Isolation by conventional protein purification techniques was unsuccessful due to the labile nature of the active molecule(s) when exposed to non-physiological experimental conditions. Physical and biochemical properties of the CF which may help avoid inactivation are discussed for future experiments aimed at elucidating the nature and identity of the cardiotonic principle.  相似文献   

14.
Action potentials and developed contractions of externally unloaded single ventricular myocytes isolated from adult rat and guinea pig hearts were recorded by means of an optical system for recording contractile activity during regular stimulation by microelectrodes. Under control conditions, the shortenings (twitches) in the rat myocytes were fully inhibited by 0.1 microM ryanodine, but they were rather insensitive to the Ca2+ blocker 0.2-0.5 microM nifedipine. In contrast, the contractions of the isolated guinea pig ventricular myocytes were greatly suppressed by 0.2-0.5 microM nifedipine (to less than 30%), while they were only slightly reduced by 1 microM ryanodine. When the Na+ gradient was decreased by reducing [Na]o or by elevating [Na]i in the presence of veratridine, the twitch contractions were increased in both species. The effect of reduced [Na]o on twitch contractions was not affected by ryanodine in either type of myocytes, while nifedipine still fully abolished the twitches in the guinea pig cells, indicating a strong dependence of guinea pig contractions on Ca2+ influx. On the other hand, the effect of a reduced Na gradient by veratridine was more complex; the usual twitch (phasic component) was increased and it was followed by a second (tonic) component which relaxed only after the repolarization of the action potential. While the phasic component was decreased by nifedipine and ryanodine in the usual way (as in the controls), the sustained contractions (lasting up to several seconds) were ryanodine and nifedipine insensitive. Furthermore, the cardiomyocytes of both species exposed to strontium in place of external calcium still exhibited all the effects observed when reducing the Na+ gradient.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Positive inotropic effects of strophanthidin were compared with those of isoproterenol, BAY K 8644, grayanotoxin, veratridine, and monensin in electrically stimulated left atrial muscle preparations of guinea pig heart under conditions in which the calcium pool, playing a primary role in contractile activation, was altered. In concentrations that caused similar degrees of increase in developed tension under 1 Hz stimulation, grayanotoxin and strophanthidin caused a relatively large increase in potentiated postrest contraction compared with that caused by isoproterenol, whereas the effect of BAY K 8644 on the postrest contraction was the smallest. The effect of high concentrations of grayanotoxin or strophanthidin, however, resembled that of isoproterenol. The sensitivity of the isolated heart muscle to these agents was compared under conditions in which utilization of various calcium pools contributing to contractile activation was suppressed. Mn2+, which reduces contribution of very superficial Ca2+, reduced sensitivity of heart muscle to the positive inotropic effect of isoproterenol and enhanced the inotropic effect of monensin or veratridine. Verapamil, nifedipine, diltiazem, or ryanodine did not have marked effects on the positive inotropic action of Ca2+, monensin, veratridine, or strophanthidin. These results suggest that the positive inotropic actions of veratridine, grayanotoxin, and strophanthidin share a common mechanism and that low concentrations of strophanthidin may increase loading of Ca2+ pool, which plays an important role in potentiated postrest contraction.  相似文献   

16.
Concentration-dependent effects of thymol on calcium handling were studied in canine and guinea pig cardiac preparations (Langendorff-perfused guinea pig hearts, canine ventricular trabeculae, canine sarcoplasmic reticular vesicles and single ryanodine receptors). Thymol induced a concentration-dependent negative inotropic action in both canine and guinea pig preparations (EC(50) = 297 +/- 12 microM in dog). However, low concentrations of thymol reduced intracellular calcium transients in guinea pig hearts without decreasing contractility. At higher concentrations both calcium transients and contractions were suppressed. In canine sarcoplasmic reticular vesicles thymol induced rapid release of calcium (V(max) = 0.47 +/- 0.04 nmol s(-1), EC(50) = 258 +/- 21 microM, Hill coefficient = 3.0 +/- 0.54), and decreased the activity of the calcium pump (EC(50) = 253 +/- 4.7 microM, Hill coefficient = 1.62 +/- 0.05). Due to the less sharp concentration-dependence of the ATPase inhibition, this effect was significant from 50 microM, whereas the thymol-induced calcium release only from 100 microM. In single ryanodine receptors incorporated into artificial lipid bilayer thymol induced long lasting openings, having mean open times increased with 3 orders of magnitude, however, the specific conductance of the channel remained unaltered. This effect of thymol was not voltage-dependent and failed to prevent the binding of ryanodine. In conclusion, the negative inotropic action of thymol can be explained by reduction in calcium content of the sarcoplasmic reticulum due to the combination of the thymol-induced calcium release and inhibition of the calcium pump. The calcium-sensitizer effect, observed at lower thymol concentrations, indicates that thymol is likely to interact with the contractile machinery also.  相似文献   

17.
Vanadate produces a positive inotropic effect on ventricular muscle from rat, rabbit, guinea pig and cat; a positive inotropic effect on the atria of rat and rabbit, but a negative inotropic effect on the atria of guinea pig and cat. The effects of vanadate are completely reversible and occur in a concentration range of 10?5M to 10?3M. In this same concentration range, vanadate also causes a marked activation of cardiac adenylate cyclase suggesting that the positive inotropic action might be due in part to an elevation of cyclic AMP levels. The effects of vanadate are not influenced by alprenolol, cimetidine, or mepyramine, indicating a lack of involvement of β-adrenergic or histamine H2 and H1 receptors.  相似文献   

18.
Using models of various complexity (isolated troponin C, troponin C-troponin I complex, troponin complex, troponin-tropomyosin complex, myofibrils), the effects of several low molecular weight organic compounds on the Ca(2+)-binding properties of troponin C were investigated. Trifluoperazine, calmidazolium and substance 48/90 increased the affinity of Ca(2+)-specific sites of troponin C both in the case of isolated troponin and in all the complexes under study. Nicardipine had no effect on the cation-binding activity of isolated troponin C, but increased the affinity of the Ca(2+)-binding sites of troponin C in the complex with troponin I. The cardiotonic drugs APP 201-533 and DPI 201-106 had practically no effect on the cation-binding properties of isolated troponin C or of simple complexes of troponin C. At the same time APP 201-533 increased, whereas DPI, 201-106 decreased the affinity of the Ca(2+)-binding sites of troponin C in myofibrils. It is concluded that the effects of the drugs on the cation-binding properties of troponin C depend on the protein-protein interaction with the filament. Studies of physiological activity of low molecular weight organic compounds require a detailed analysis of their effects on the Ca(2+)-binding activity of troponin C included into protein complexes of different complexity.  相似文献   

19.
Studies were carried out to study the effect of endocrine changes on rat cardiac performance, biochemistry, and responses to drugs. Hyperthyroidism increased contractility in rat hearts and enhanced the phosphorylase response to catecholamine. The inotropic response may be due to an increase in cardiac mass while the enzyme changes may be due to several factors. Hypothyroidism decreased force of contraction, enhanced alpha-adrenergic inotropic and chronotropic responses, and decreased beta-adrenergic responses in isolated atrial preparations. An interaction between cyclic AMP and cyclic GMP is suggested as a possible explanation. Diabetes induced by alloxan or streptozotocin produced a decrease in cardiac performance after 42 days which was correlated with a decrease in sarcoplasmic reticulum (SR) Ca2+ uptake. Insulin treatment reversed or prevented both SR and functional changes; other treatments were not as successful. Responses to cardiotonic drugs were altered by the diabetic state. The phosphorylase response to isoproterenol was enhanced while the inotropic response was not affected. An initial subsensitivity to carbachol at 30-100 days of diabetes subsequently converted to a supersensitivity to the muscarinic agent. Ouabain responses were decreased in atrial and papillary preparations from diabetic animals. Studies are continuing to elucidate the mechanisms involved in the altered pharmacological responses seen in hearts from diabetic animals.  相似文献   

20.
We investigated the effects of two purported calcium sensitizing agents, MCI-154 and DPI 201–106, and a known calcium sensitizer caffeine on Mg-ATPase (myofibrillar ATPase) and myosin ATPase activity of left ventricular myofibrils isolated from non-failing, idiopathic (IDCM) and ischemic cardiomyopathic (ISCM) human hearts (i.e. failing hearts). The myofibrillar ATPase activity of non-failing myofibrils was higher than that of diseased myofibrils. MCI-154 increased myofibrillar ATPase Ca2+ sensitivity in myofibrils from non-failing and failing human hearts. Effects of caffeine similarly increased Ca2+ sensitivity. Effects of DPI 201–106 were, however, different. Only at the 10–6 M concentration was a significant increase in myofibrillar ATPase calcium sensitivity seen in myofibrils from non-failing human hearts. In contrast, in myofibrils from failing hearts, DPI 201–106 caused a concentration-dependent increase in myofibrillar ATPase Ca2+ sensitivity. Myosin ATPase activity in failing myocardium was also decreased. In the presence of MCI-154, myosin ATPase activity increased by 11, 19, and 24% for non-failing, IDCM, and ISCM hearts, respectively. DPI 201–106 caused an increase in the enzymatic activity of less than 5% for all preparations, and caffeine induced an increase of 4, 11, and 10% in non-failing, IDCM and ISCM hearts, respectively. The mechanism of restoring the myofibrillar Ca2+ sensitivity and myosin enzymatic activity in diseased human hearts is most likely due to enhancement of the Ca2+ activation of the contractile apparatus induced by these agents. We propose that myosin light chain-related regulation may play a complementary role to the troponin-related regulation of myocardial contractility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号